JP2596047B2 - Steel carburizing method - Google Patents

Steel carburizing method

Info

Publication number
JP2596047B2
JP2596047B2 JP4919388A JP4919388A JP2596047B2 JP 2596047 B2 JP2596047 B2 JP 2596047B2 JP 4919388 A JP4919388 A JP 4919388A JP 4919388 A JP4919388 A JP 4919388A JP 2596047 B2 JP2596047 B2 JP 2596047B2
Authority
JP
Japan
Prior art keywords
carburizing
steel
gas
fatigue strength
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4919388A
Other languages
Japanese (ja)
Other versions
JPH01222042A (en
Inventor
邦夫 並木
利光 木村
知人 飯久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4919388A priority Critical patent/JP2596047B2/en
Publication of JPH01222042A publication Critical patent/JPH01222042A/en
Application granted granted Critical
Publication of JP2596047B2 publication Critical patent/JP2596047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、耐摩耗性と高い疲れ強さとを兼ねそなえた
高品質の部品を得ることのできる鋼の浸炭方法に関す
る。
The present invention relates to a method for carburizing steel capable of obtaining a high-quality part having both wear resistance and high fatigue strength.

【従来の技術】[Prior art]

耐摩耗性と高い疲れ強さを要求される機械構造部品と
くに動力伝達部品は、一般に浸炭処理を施して使用に供
している。浸炭処理により耐摩耗性と疲れ強さを向上さ
せるという観点からは、健全な心部、すなわち微細な結
晶粒からなる心部をもつ部品に、健全な浸炭層を形成す
ることが理想的である。 しかし、従来のガス浸炭法、真空浸炭法では、このよ
うな条件を満足する部品を与えることができない。 たとえば、現在主流となっているガス浸炭法は、浸炭
時に使用する変成ガス中に微量とはいえH2OおよびCO2
含むので、酸素が鋼の表面に侵入して粒界酸化が起る。
粒界酸化は表面近傍の焼入性を低下させ、疲れ強さや耐
摩耗性を低下させることから忌避されているが、ガス浸
炭法を用いる限り、その防止は困難である。 一方、真空浸炭法は、950℃以上の高温で処理を行な
うため、浸炭時に処理部品の結晶粒が粗大化を免れな
い。結晶粒の粗大化は部品の靭性を低くし疲れ強さの低
下を招くため、真空浸炭法では部品の心部を健全に維持
することができない。 すなわち、いずれの浸炭法も、それぞれの処理過程に
起因する不可避な欠点をもっており、浸炭処理の効果を
最大限に生かしきることができない、というのが現状で
ある。
Machine structural parts that require wear resistance and high fatigue strength, especially power transmission parts, are generally used after being carburized. From the viewpoint of improving wear resistance and fatigue strength by carburizing, it is ideal to form a sound carburized layer on a sound core, that is, a component having a core made of fine crystal grains. . However, the conventional gas carburizing method and vacuum carburizing method cannot provide parts satisfying such conditions. For example, the currently mainstream gas carburizing method uses a small amount of H 2 O and CO 2 in the metamorphic gas used during carburizing, so oxygen enters the steel surface and grain boundary oxidation occurs .
Grain boundary oxidation is avoided because it reduces the hardenability in the vicinity of the surface and reduces the fatigue strength and wear resistance, but it is difficult to prevent it as long as the gas carburizing method is used. On the other hand, in the vacuum carburization method, since the treatment is performed at a high temperature of 950 ° C. or more, the crystal grains of the treated parts are inevitably coarsened during carburization. Since the coarsening of the crystal grains lowers the toughness of the part and lowers the fatigue strength, the core part of the part cannot be kept sound by the vacuum carburizing method. That is, all the carburizing methods have unavoidable drawbacks caused by the respective processing steps, and at present, the effect of the carburizing treatment cannot be fully utilized.

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明の目的は、耐摩耗性とともに疲れ強さにすぐれ
た、高品質の機械構造用部品を得ることのできる鋼の浸
炭方法を提供することにある。
An object of the present invention is to provide a method of carburizing steel capable of obtaining a high-quality part for machine structural use having excellent wear resistance and fatigue strength.

【課題を解決するための手段】[Means for Solving the Problems]

本発明の鋼の浸炭方法は、肌焼鋼を加工した部品を、
酸素濃度を1000ppm以下にした炉内で800〜950℃に加熱
し、減圧下に部品の表面において電力密度が300〜2500W
/m2となる条件下にグロー放電を行なうとともに浸炭ガ
スを導入して浸炭し、真空または非酸化性ガスの雰囲気
に保持して炭素を拡散させ、次いで熱処理することによ
って、表面の炭素濃度が0.4〜1.2%で粒界酸化層の深さ
が3μm以下であり、心部の組織が結晶粒度番号(JIS-
G0551に定める鋼のオーステナイト結晶粒度測定方法に
よる)8番以上の整細粒である部品を得ることからな
る。 本発明で処理の対象とする肌焼鋼は、クロム鋼、ニッ
ケルクロム鋼、クロムモリブデン鋼またはニッケルクロ
ムモリブデン鋼などの各種合金鋼を包含する。 熱処理は、従来の浸炭による表面硬化処理において行
なっていた、焼入れ焼もどし処理を実施すればよい。 浸炭ガスは、CH4,C3H8などの炭化水素系ガスをそのま
ま使用すればよい。 浸炭に先立って、後記する実施例に示すように、Arお
よびH2雰囲気下におけるグロー放電をしばらく行ない、
部品の表面を清浄化することが好ましい。
The carburizing method of the steel of the present invention, a part processed from case hardened steel,
Heat to 800-950 ° C in a furnace with an oxygen concentration of 1000ppm or less, and power density of 300-2500W on the surface of the parts under reduced pressure
/ m 2 and glow discharge, carburizing gas is introduced and carburized, carbon is diffused in a vacuum or non-oxidizing gas atmosphere, and heat treatment is performed to reduce the carbon concentration on the surface. 0.4 to 1.2%, the depth of the grain boundary oxide layer is 3 μm or less, and the core structure has a grain size number (JIS-JIS).
Obtaining a part which is finer than number 8) (according to the method for measuring the austenite grain size of steel specified in G0551). The case hardening steels to be treated in the present invention include various alloy steels such as chromium steel, nickel chrome steel, chromium molybdenum steel, and nickel chromium molybdenum steel. The heat treatment may be a quenching and tempering treatment which has been performed in the conventional surface hardening treatment by carburization. As the carburizing gas, a hydrocarbon gas such as CH 4 or C 3 H 8 may be used as it is. Prior to carburization, as shown in examples described later, while subjected to glow discharge in Ar and H 2 atmosphere,
Preferably, the surface of the component is cleaned.

【作用】[Action]

発明者らは、減圧下のグロー放電によって鋼を浸炭す
るイオン浸炭法が、浸炭ガスに酸化性ガスを使用しない
ことと、比較的低い温度域でも高いカーボンポテンシャ
ルをもつことに着目して研究の結果、本発明に至った。
以下に、本発明で採用した諸要件につき、その限定理由
を説明する。 浸炭温度:800〜950℃ 800℃を下回る低温では、浸炭速度がおそく実用的で
ない。浸炭を促進させるためには高温で処理することが
好ましいが、950℃を超える高温では結晶粒が粗大にな
って、心部の靭性が低下する。 電力密度:300〜2500W/m2 電力が、部品表面1m2あたり300Wに至らない量では浸
炭効率が悪い。一方、1m2あたり2500Wを超す電力をかけ
ると、局部的なアークの発生する頻度が高くなり、浸炭
ムラの原因となる。また、このような大容量の電源設備
を用意することは多大の設備費を要する。 酸素濃度:1000ppm以下 炉内の酸素濃度が高いほど、結晶粒界に形成される酸
化物は多くなる。従って炭素の拡散が終了するまで、炉
内の酸素濃度を1000ppm以下に維持する。 本発明は、上記した範囲内の処理条件に加えて処理時
間を、鋼種や部品の用途などに従って選択して処理し、
表面の炭素濃度が0.4〜1.2%で粒界酸化層の深さが3μ
m以下であり、心部の組織が結晶粒度番号(JIS-G055
1)8番以上の整細粒である部品を得る。 表面炭素濃度が0.4%未満のものは、浸炭が不足であ
って耐摩耗性と疲れ強さが低い。1.2%を超過するほど
浸炭を施すと残留オーステナイト量の増加を招き、表面
硬さがむしろ低下し、その上、粗大炭化物が粒界上へ析
出して、耐摩耗性、疲れ強さ特性が劣ってくる。 機械的諸特性に悪影響を及ぼさない粒界酸化層の深さ
は3μmまでであり、酸化物をこれより深部に形成させ
てはならない。 心部の組織の結晶粒度が粗粒または混粒の部品は、疲
れ強さと靭性が低い。
The inventors of the present invention focused on the fact that the ion carburizing method of carburizing steel by glow discharge under reduced pressure does not use an oxidizing gas as a carburizing gas and has a high carbon potential even at a relatively low temperature range. As a result, the present invention has been achieved.
Hereinafter, the reasons for limiting various requirements adopted in the present invention will be described. Carburizing temperature: 800-950 ° C At low temperatures below 800 ° C, the carburizing speed is slow and impractical. In order to promote carburization, it is preferable to perform the treatment at a high temperature, but at a temperature higher than 950 ° C., the crystal grains become coarse and the toughness of the core decreases. Power Density: 300~2500W / m 2 power, poor carburization efficiency in volume does not lead to the component surface 1 m 2 per 300 W. On the other hand, if an electric power exceeding 2500 W per 1 m 2 is applied, the frequency of occurrence of local arc increases, which causes uneven carburization. Also, preparing such a large-capacity power supply facility requires a large facility cost. Oxygen concentration: 1000 ppm or less The higher the oxygen concentration in the furnace, the more oxides are formed at the grain boundaries. Therefore, the oxygen concentration in the furnace is maintained at 1000 ppm or less until the diffusion of carbon is completed. The present invention, processing time in addition to the processing conditions within the above range, selected and processed according to the type of steel and application of parts,
Surface carbon concentration 0.4-1.2% and grain boundary oxide layer depth 3μ
m or less, and the core structure has a crystal grain size number (JIS-G055
1) Obtain 8th or more fine-grained parts. If the surface carbon concentration is less than 0.4%, carburization is insufficient and wear resistance and fatigue strength are low. Carburizing more than 1.2% leads to an increase in the amount of retained austenite, and rather lowers the surface hardness. In addition, coarse carbides precipitate on the grain boundaries, resulting in poor wear resistance and fatigue strength characteristics. Come. The depth of the grain boundary oxide layer that does not adversely affect the mechanical properties is up to 3 μm, and the oxide should not be formed deeper than this. Parts having a core structure with coarse or mixed grain size have low fatigue strength and toughness.

【実施例】【Example】

第1表に示すNo.1〜3の組成の合金を溶製した。 各材料の試験片を炉に入れて、下記のAないしDのい
ずれかの処理を施した。 処理A(本発明) 炉内を10-2Torrまで減圧し、920℃に加熱後、Arおよ
びH2を供給して炉内圧を2Torrに調整した。試験片を陰
極とし、陽極との間に500Vの直流電圧を印加して、グロ
ー放電を起させた。電力密度は800W/m2である。前処理
として20分間、ArおよびHのイオンによる表面清浄化を
行なってからArおよびH2を排気した。続いて炉内にC3H8
を送り込んで1時間、浸炭した。浸炭ガスを排気して4
時間、そのままの温度に保持して拡散を行なった。上記
諸工程の間、炉内の酸素濃度は10ppm以下に維持した。 処理B(比較例) 条件を下記のように変えて、処理Aと同様な処理とし
た。 処理C(ガス浸炭) 炉内を920℃に加熱して20分間、材料を均熱した。浸
炭ガス(カーボンポテンシャル:約0.9%)を炉内に供
給して、3.5時間にわたり浸炭処理を行なった。ついで
このエンリッチガスの供給を止めて2時間、そのままの
温度に保持し、炭素を拡散させた。 処理D(真空浸炭) 炉内を10-2Torrまで減圧し、1030℃に加熱して20分
間、材料を均熱した。C3H8を供給して炉内圧を400Torr
に調整し、1.3時間、浸炭した。この場合だけ浸炭温度
を1030℃に設定したのは、他の処理の浸炭温度920℃で
は浸炭ムラが生じ、各種の試験に供する試験片が得られ
ないためである。 AないしDの処理に続いて、830℃に30分間保持して
から油冷する焼入れ、および160℃に2時間保持してか
ら放冷する焼もどしを行なった。 このようにして得た各試験片について、表面硬さ、有
効硬化層深さ、および粒界酸化層深さを測定し、結晶粒
度をしらべた。その結果を、第2表に示す。 ここで有効硬化層深さとは、試験片の断面においてそ
の端から硬度を測定し、深さに対応してグラフをかき、
グラフにおいて硬度550Hvとなる点の、試験片の表面か
らの距離をいう。 第2表の結果から、本発明の方法(処理A)に従って
得た試験片は粒界酸化物が観察されず、健全な浸炭層を
有し、かつ整細粒であった。 一方、これと同様な工程を経ても、操業条件を本発明
の範囲外とした処理B-1ないしB-6によって得た試験片
は、浸炭ムラを生じたり粒界酸化層が厚く形成されてい
たりして、すぐれた品質のものとはいえない。 また、現在ひろく行なわれているガス浸炭法(処理
C)によるものは、表面の硬化は十分であったが、粒界
酸化層がかなり深くまで観察された。真空浸炭法(処理
D)によるものは、十分に浸炭され、粒界酸化層も認め
られないが、高温で処理したため、結晶粒が粗大化して
いた。 これらの結果から、本発明の処理方法によりすぐれた
品質の部品が得られることがわかるが、確認のため、処
理A,CおよびDにより得た試験片につき、回転曲げ疲れ
強さ、歯車疲れ強さ、および衝撃値を測定した。その結
果を第3表に示す。 回転曲げ疲れ強さは、平行部が直径8mmの平滑試験片
を使用して、小野式回転曲げ試験機によって測定した。
条件は下記のとおり。 回転数 3,500rpm 温度 室温 表面研摩 なし 歯車疲れ強さは、下記の条件で、動力循環式歯車試験
によって測定した。 歯形 並歯 モジュール 2.5 歯数 28 ピッチ円直径 70mm 衝撃値は、10Rノッチつき試験片を使用して、シャル
ピー衝撃試験によって測定した。 第3表の結果から明らかなように、回転曲げ疲れ強
さ、歯車疲れ強さおよび衝撃値のいずれについても、本
発明によって得た試験片は、他の方法によって得た試験
片よりすぐれた値を示した。
Alloys having compositions Nos. 1 to 3 shown in Table 1 were melted. A test piece of each material was placed in a furnace and subjected to any of the following processes A to D. Treatment A (Invention) The pressure in the furnace was reduced to 10 -2 Torr and heated to 920 ° C., and then Ar and H 2 were supplied to adjust the furnace pressure to 2 Torr. A test piece was used as a cathode, and a DC voltage of 500 V was applied between the test piece and the anode to cause glow discharge. Power density is 800 W / m 2. The surface was cleaned with Ar and H ions for 20 minutes as a pretreatment, and then Ar and H 2 were evacuated. Then C 3 H 8 in the furnace
And carburized for 1 hour. Exhaust carburizing gas 4
The diffusion was performed while maintaining the temperature as it was for a time. During the above steps, the oxygen concentration in the furnace was maintained at 10 ppm or less. Process B (Comparative Example) A process similar to process A was performed by changing the conditions as described below. Treatment C (gas carburizing) The furnace was heated to 920 ° C. and the materials were soaked for 20 minutes. Carburizing gas (carbon potential: about 0.9%) was supplied into the furnace, and carburizing was performed for 3.5 hours. Then, the supply of the enriched gas was stopped, and the temperature was maintained at that temperature for 2 hours to diffuse carbon. Treatment D (vacuum carburizing) The furnace was evacuated to 10 -2 Torr, heated to 1030 ° C, and soaked for 20 minutes. Supply C 3 H 8 to increase furnace pressure to 400 Torr
And carburized for 1.3 hours. Only in this case, the carburizing temperature was set to 1030 ° C. because carburizing unevenness occurs at a carburizing temperature of 920 ° C. in other treatments, and test pieces to be subjected to various tests cannot be obtained. Subsequent to the treatments A to D, quenching was performed by holding at 830 ° C. for 30 minutes and then oil-cooling, and tempering by holding at 160 ° C. for 2 hours and then allowed to cool. The surface hardness, effective hardened layer depth, and grain boundary oxide layer depth of each test piece thus obtained were measured, and the crystal grain size was examined. Table 2 shows the results. Here, the effective hardened layer depth is measured hardness from the end in the cross section of the test piece, draw a graph corresponding to the depth,
The distance from the surface of the test piece at the point where the hardness becomes 550 Hv in the graph. From the results shown in Table 2, the test pieces obtained according to the method of the present invention (treatment A) had no grain boundary oxides, had a sound carburized layer, and were fine-grained. On the other hand, even after the same steps, the test specimens obtained by the treatments B-1 to B-6 in which the operating conditions are out of the range of the present invention have carburized unevenness and a thick grain boundary oxide layer. It is not of good quality. In the case of the presently widespread gas carburizing method (treatment C), the surface was hardened sufficiently, but the grain boundary oxide layer was observed to a considerable depth. In the case of the vacuum carburizing method (treatment D), the carburization was sufficiently performed and no grain boundary oxide layer was observed, but the crystal grains were coarsened due to the treatment at a high temperature. From these results, it can be seen that parts having excellent quality can be obtained by the treatment method of the present invention. For confirmation, the test pieces obtained by the treatments A, C and D were subjected to rotation bending fatigue strength and gear fatigue strength And impact values were measured. Table 3 shows the results. The rotational bending fatigue strength was measured by an Ono-type rotary bending tester using a smooth test piece having a parallel portion having a diameter of 8 mm.
The conditions are as follows. Rotation speed 3,500rpm Temperature Room temperature Surface polishing None Gear fatigue strength was measured by a power circulation gear test under the following conditions. Tooth profile Normal tooth module 2.5 Number of teeth 28 Pitch diameter 70mm Impact value was measured by a Charpy impact test using a 10R notched test piece. As is clear from the results in Table 3, the test pieces obtained according to the present invention were superior to the test pieces obtained by other methods in all of the rotational bending fatigue strength, the gear fatigue strength and the impact value. showed that.

【発明の効果】【The invention's effect】

本発明の浸炭方法によれば、耐摩耗性とともに疲れ強
さをかねそなえた、これまでにない高品質の機械構造用
部品を製造することができる。従って、本発明により製
造した部品を使用する機械、装置等は、従来にまして安
全で信頼性の高いものとなる。
According to the carburizing method of the present invention, an unprecedented high-quality part for a machine structure having both wear resistance and fatigue strength can be manufactured. Therefore, machines, devices, and the like that use parts manufactured according to the present invention are safer and more reliable than ever.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】肌焼鋼を加工した部品を、酸素濃度を1000
ppm以下にした炉内で800〜950℃に加熱し、減圧下に、
部品の表面において電力密度が300〜2500W/m2となる条
件下にグロー放電を行なうとともに浸炭ガスを導入して
浸炭し、真空または非酸化性ガスの雰囲気に保持して炭
素を拡散させ、次いで熱処理することによって、表面の
炭素濃度が0.4〜1.2%で粒界酸化層深さが3μm以下で
あり、心部の組織が結晶粒度番号(JIS-G0551)8番以
上の整細粒である部品を得ることからなる鋼の浸炭方
法。
1. A part made of case hardened steel is subjected to an oxygen concentration of 1000
Heat to 800-950 ° C in a furnace below ppm, and under reduced pressure,
By introducing a carburizing gas performs a glow discharge was carburized at the surface of the component under conditions that the power density is 300~2500W / m 2, to diffuse the carbon and held in an atmosphere of vacuum or non-oxidizing gas, then Parts that have a surface carbon concentration of 0.4 to 1.2%, a grain boundary oxide layer depth of 3 μm or less, and a core structure of fine grain with a grain size number of 8 or more (JIS-G0551) by heat treatment. The method of carburizing steel.
JP4919388A 1988-03-02 1988-03-02 Steel carburizing method Expired - Lifetime JP2596047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4919388A JP2596047B2 (en) 1988-03-02 1988-03-02 Steel carburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4919388A JP2596047B2 (en) 1988-03-02 1988-03-02 Steel carburizing method

Publications (2)

Publication Number Publication Date
JPH01222042A JPH01222042A (en) 1989-09-05
JP2596047B2 true JP2596047B2 (en) 1997-04-02

Family

ID=12824177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4919388A Expired - Lifetime JP2596047B2 (en) 1988-03-02 1988-03-02 Steel carburizing method

Country Status (1)

Country Link
JP (1) JP2596047B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050011192A1 (en) * 2001-05-10 2005-01-20 Shinjiroh Ohishi Surface-reformed exhaust gas guide assembly of vgs type turbo charger, and method surface-reforming component member thereof

Also Published As

Publication number Publication date
JPH01222042A (en) 1989-09-05

Similar Documents

Publication Publication Date Title
JP5614426B2 (en) Manufacturing method of machine parts
WO2010041561A1 (en) Process for production of carburized part and steel part
CN113862610B (en) Pretreatment method for improving corrosion resistance of carburized layer
JP3867376B2 (en) Manufacturing method of rolling member
JP3385722B2 (en) Carburizing and quenching method
JP2596047B2 (en) Steel carburizing method
JP6658981B1 (en) Carburized parts and method of manufacturing the same
JPH01205063A (en) Wear-resistant stainless steel parts
JP2808621B2 (en) Method of carburizing steel
JP2596051B2 (en) Manufacturing method of carburized parts
KR100333199B1 (en) Carburizing Treatment Method
JPH01212748A (en) Rapid carburizing treatment for steel
JPH01201459A (en) Parts combining high toughness with wear resistance
JP2885061B2 (en) Method for producing nitrided steel member excellent in fatigue characteristics
JPH11131135A (en) Induction-hardened parts and production thereof
JPH0254403B2 (en)
JP3940322B2 (en) Manufacturing method of steel part for machine structure and steel part for machine structure
JP2884519B2 (en) Manufacturing method of carburized parts
JP3355914B2 (en) Alloy steel material
JP2000309846A (en) Non-heat treated steel for soft nitriding
JPH0452265A (en) Parts for machine structure
JPS60177167A (en) High-speed steel drill
JP3950527B2 (en) Carburizing surface hardening method of maraging steel
JPH01205064A (en) Wear-resistant stainless steel parts
JP3036193B2 (en) Method of carburizing cold-worked parts