JP2590681B2 - Semiconductor logic circuit device - Google Patents

Semiconductor logic circuit device

Info

Publication number
JP2590681B2
JP2590681B2 JP5096358A JP9635893A JP2590681B2 JP 2590681 B2 JP2590681 B2 JP 2590681B2 JP 5096358 A JP5096358 A JP 5096358A JP 9635893 A JP9635893 A JP 9635893A JP 2590681 B2 JP2590681 B2 JP 2590681B2
Authority
JP
Japan
Prior art keywords
mos transistor
transistor
drain
level
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5096358A
Other languages
Japanese (ja)
Other versions
JPH06311022A (en
Inventor
寿充 木本
弘行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5096358A priority Critical patent/JP2590681B2/en
Publication of JPH06311022A publication Critical patent/JPH06311022A/en
Application granted granted Critical
Publication of JP2590681B2 publication Critical patent/JP2590681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体論理回路装置に関
し、特にBiCMOSやCMOS技術を用いた半導体論
理回路装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor logic circuit device, and more particularly to a semiconductor logic circuit device using BiCMOS or CMOS technology.

【0002】[0002]

【従来の技術】従々来の半導体論理回路装置は、例え
ば、図6〜図9に示す様な回路構成となっている。
2. Description of the Related Art A conventional semiconductor logic circuit device has a circuit configuration as shown in FIGS. 6 to 9, for example.

【0003】図6はCMOS構成の、図7はBiCMO
S構成のNOR回路の1例であり、どちらも2つの入力
信号端子A,Bがともにロウ(以下L)レベルの時のみ
ハイ(以下H)レベルを出力し、それ以外の時はLレベ
ルを出力する。
FIG. 6 shows a CMOS configuration, and FIG. 7 shows a BiCMO.
This is an example of a NOR circuit having an S configuration. Both circuits output a high (H) level only when both input signal terminals A and B are at a low (L) level, and output an L level otherwise. Output.

【0004】図8はCMOS構成の、図9はBiCMO
S構成のNAND回路の1例であり、どちらも2つの入
力信号端子A,BがともにHレベルの時のみLレベルを
出力し、それ以外の時はHレベルを出力する。
FIG. 8 shows a CMOS configuration, and FIG. 9 shows a BiCMO.
This is an example of a NAND circuit having an S configuration, and both output an L level only when the two input signal terminals A and B are both at an H level, and output an H level otherwise.

【0005】また、面積を縮小する効果を目的とした最
新の従来技術としては、「特開平2−271714」で
示されている図10〜図13の様な半導体論理回路装置
がある。
Further, as the latest prior art for the purpose of reducing the area, there is a semiconductor logic circuit device shown in FIG. 10 to FIG. 13 shown in Japanese Patent Laid-Open No. 2-271714.

【0006】図10はXOR回路であり、2つの入力信
号端子A,Bの論理値が相異なる時Hレベルを出力し、
一致する時Lレベルを出力する。
FIG. 10 shows an XOR circuit which outputs an H level when the logic values of two input signal terminals A and B are different from each other,
When they match, an L level is output.

【0007】図11はXNOR回路であり、2つの入力
信号端子A,Bの論理値が相異なる時Lレベルを出力
し、一致する時Hレベルを出力する。
FIG. 11 shows an XNOR circuit which outputs an L level when the logic values of the two input signal terminals A and B are different, and outputs an H level when they match.

【0008】図12はOR回路であり、2つの入力信号
端子A,BがともにLレベルの時のみLレベルを出力
し、それ以外の時はHレベルを出力する。
FIG. 12 shows an OR circuit which outputs an L level only when the two input signal terminals A and B are both at an L level, and outputs an H level otherwise.

【0009】図13はAND回路であり、2つの入力信
号端子A,BがともにHレベルの時のみHレベルを出力
し、それ以外の時はLレベルを出力する。
FIG. 13 shows an AND circuit which outputs an H level only when the two input signal terminals A and B are both at an H level, and outputs an L level otherwise.

【0010】[0010]

【発明が解決しようとする課題】上述した様な従々来技
術では、MOSトランジスタで論理演算を行う部分で2
入力信号がともにゲートに接続され、かつ、図6,7で
はP型MOSトランジスタが、図8,9ではN型MOS
トランジスタがそれぞれ2個直列に接続されているた
め、論理回路の遅延時間(tPD)が増加し、面積も増え
る。また、ゲート容量が大きなため、前段の回路の負荷
が大きくなってしまう、という問題点があった。
In the conventional technology as described above, a portion where a logical operation is performed by a MOS transistor is used.
The input signals are both connected to the gate, and the P-type MOS transistor is used in FIGS.
Since two transistors are connected in series, the delay time (t PD ) of the logic circuit increases, and the area also increases. In addition, there is a problem that the load of the circuit in the preceding stage increases due to the large gate capacitance.

【0011】また、前記問題点のうち面積の縮小を目的
とした「特開平2−271714」に示された最新の従
来技術の回路構成ではNORやNAND回路は構成でき
ず、図12,13の前または後にインバータ回路を接続
したような構成をとらねばならず、面積縮小の効果が得
られない。しかも根本的な問題として、図10,12で
はB=L、図11,13ではB=Hの時、実際には出力
はフローティング状態で確定しないため、この回路では
「特開平2−271714」で期待されている論理動作
を行えない、という問題点があった。
Of the above problems, a NOR or NAND circuit cannot be constructed with the latest prior art circuit configuration disclosed in Japanese Patent Application Laid-Open No. 2-271714 for the purpose of reducing the area. It is necessary to adopt a configuration in which an inverter circuit is connected before or after, and the effect of reducing the area cannot be obtained. In addition, as a fundamental problem, when B = L in FIGS. 10 and 12 and B = H in FIGS. 11 and 13, the output is not actually determined in a floating state. There has been a problem that the expected logical operation cannot be performed.

【0012】[0012]

【課題を解決するための手段】2つの入力信号から論理
出力信号を生成する半導体論理回路において、ソースが
第1の入力信号端子に接続され、ゲートが第2の入力信
号端子に接続されたMOS型トランジスタを少なくとも
1つ有すること。また前記手段において、第1の入力信
号端子が接続されたMOS型トランジスタのソース部
を、同一信号が入力される他のMOS型トランジスタの
ソース部とマスクパタン上共通にすること。
SUMMARY OF THE INVENTION In a semiconductor logic circuit for generating a logic output signal from two input signals, a MOS transistor having a source connected to a first input signal terminal and a gate connected to a second input signal terminal. Having at least one type transistor. Further, in the above means, the source portion of the MOS transistor to which the first input signal terminal is connected is made common to the source portion of another MOS transistor to which the same signal is input on a mask pattern.

【0013】[0013]

【実施例1】次に本発明について図面を参照して説明す
る。
Embodiment 1 Next, the present invention will be described with reference to the drawings.

【0014】図1は本発明の実施例1を示す回路図であ
る。この実施例はソース部が第1の信号入力端子Aに接
続され、ゲート部が第2の信号入力端子Bに接続され、
ドレイン部が出力信号端子OUTに接続されたP型の第
1のMOSトランジスタP11と、ソース部が低電位側の
電源供給端子GNDに接続され、ゲート部が第2の信号
入力端子Bに接続され、ドレイン部が出力信号端子OU
Tに接続されたN型の第2のMOSトランジスタN
11と、ソース部が低電位側の電源供給端子に接続され、
ゲート部が高電位側の電源供給端子VCCに接続され、
ドレイン部が出力信号端子OUTと接続されたN型の第
3のMOSトランジスタN12とを有する構成となってい
る。
FIG. 1 is a circuit diagram showing Embodiment 1 of the present invention. In this embodiment, the source section is connected to the first signal input terminal A, the gate section is connected to the second signal input terminal B,
A first MOS transistor P 11 the drain portion is connected to P-type to the output signal terminal OUT, and the source unit is connected to the power supply terminal GND on the low potential side, the gate portion is connected to the second signal input terminal B And the drain is connected to the output signal terminal OU.
N-type second MOS transistor N connected to T
11 and the source part is connected to the power supply terminal on the low potential side,
The gate is connected to the power supply terminal VCC on the high potential side,
It has a configuration having a first 3 MOS transistor N 12 of the N-type drain part is connected to the output signal terminal OUT.

【0015】次にこの実施例の動作について説明する。Next, the operation of this embodiment will be described.

【0016】第1の入力信号端子AがLレベルすなわち
低電位側にあるときは、トランジスタP11は常にOFF
状態であり、第2の入力信号端子BがHレベルすなち高
電位側にある時はトランジスタN11はON状態となり、
出力信号端子OUTはLレベルとなる。また、第2の入
力信号端子BがLレベルの時はP11,N11ともOFF状
態となるが、ゲート部が高電位電源端子にあるため常に
ON状態であるトランジスタN12により、出力信号端子
OUTはフローティング状態にはならず、Lレベルを出
力する。
[0016] When the first input signal terminal A is at the L level, that is the low potential side, the transistor P 11 is always OFF
A state, when the second input signal terminal B is at the H level sand high potential side transistor N 11 is turned ON,
The output signal terminal OUT becomes L level. When the second input signal terminal B is at the L level, both P 11 and N 11 are in the OFF state. However, since the gate portion is at the high potential power supply terminal, the transistor N 12 which is always in the ON state provides the output signal terminal. OUT does not enter a floating state but outputs an L level.

【0017】次に、第1の入力信号端子AがHレベルに
ある時は、第2の入力信号端子BがHレベルの時はトラ
ンジスタP11はOFF、N11,N12はONなので出力信
号端子OUTはLレベルとなる。第2の入力信号端子B
がLレベルの時はトランジスタP11,N12はON,N11
はOFFとなり、この時トランジスタN12のサイズがト
ランジスタP11のサイズに比べて充分に小さい、すなわ
ちON状態での抵抗成分が充分に大きいとすれば、出力
信号端子OUTはHレベルを出力する。
Next, when the first input signal terminal A is at the H level, the transistor P 11 when the second input signal terminal B is H level OFF, N 11, N 12 is ON since the output signal The terminal OUT becomes L level. Second input signal terminal B
Are at L level, transistors P 11 and N 12 are ON and N 11
Next is OFF, this time the size of the transistor N 12 is sufficiently small compared to the size of the transistors P 11, i.e. assuming that there is sufficiently large resistance component in the ON state, the output signal terminal OUT outputs a H level.

【0018】従って、この実施例は2入力信号A,Bの
4通りの組み合わせに対し、A=H,B=Lの選択状態
の時のみHレベルを出力し、それ以外の時はLレベルを
出力するという図6,7で示したNOR回路と同等の論
理動作を行う。
Accordingly, this embodiment outputs an H level only when A = H and B = L is selected for four combinations of two input signals A and B, and otherwise outputs an L level. A logical operation equivalent to that of the NOR circuit shown in FIGS.

【0019】このとき図1と図6を比較して明らかなよ
うに本実施例の方が素子数が少なくて済み面積縮小の効
果が得られる。また本実施例では図6のトランジスタP
61,P62の様な直列接続が存在しないのでtPDの高速化
がはかれる。
At this time, as is apparent from a comparison between FIG. 1 and FIG. 6, in this embodiment, the number of elements is smaller and the effect of reducing the area can be obtained. In this embodiment, the transistor P shown in FIG.
61, since the series connection, such as the P 62 does not exist t PD high-speed can be achieved.

【0020】実際、図6の回路のトランジスタP61,P
62のサイズが30μm、N61,N62のサイズが15μ
m、負荷容量が0.1pFの場合と比較して、図1の回
路はトランジスタP11のサイズが20μm、N11のサイ
ズが10μm、N12のサイズが2μmでtPDが0.25
nsから0.2nsへと20%改善する。かつ、この数
値例からわかるように従来の回路以上の性能を得るため
に素子数が少なくてすむだけでなく素子サイズ自身も小
さくてすみ、さらなる面積縮小の効果が得られる。
In fact, the transistors P 61 and P 61 in the circuit of FIG.
The size of 62 is 30 μm, the size of N 61 and N 62 is 15 μm
m, the load capacity as compared with the 0.1 pF, the circuit of Figure 1 the size of the transistor P 11 is 20 [mu] m, the size of the N 11 is 10 [mu] m, the size of the N 12 is the t PD at 2 [mu] m 0.25
20% improvement from ns to 0.2 ns. In addition, as can be seen from the numerical examples, in order to obtain a performance higher than that of the conventional circuit, not only the number of elements can be reduced but also the element size itself can be reduced, and the effect of further reducing the area can be obtained.

【0021】また、従来例MOSトランジスタのゲート
容量とソース・ドレイン部の拡散容量では拡散容量の方
が大きかったが、近年の微細化技術によるゲート酸化膜
の薄膜化によるゲート容量の増大および拡散層の面積の
縮小や深さ方向の薄層化による底面・側面容量の低下に
より、ゲート容量と拡散容量がほぼ同等となってきてい
る。このため、本実施例の回路を従来例と置き換えて使
用する分には何ら問題ないだけでなく、本実施例の回路
が図2の様に、入力信号端子Aが複数の回路で共通に接
続されている場合、図3の様にソース部をマスクデータ
上共通にすることにより前段の回路(入力信号Aを発生
させる回路)からみた負荷を半減させることができる。
Although the diffusion capacitance of the gate capacitance and the diffusion capacitance of the source / drain portion of the conventional MOS transistor is larger, the increase in the gate capacitance due to the thinning of the gate oxide film by the recent miniaturization technology and the diffusion layer The gate capacitance and the diffusion capacitance have become almost equal due to the reduction in the bottom surface and the side surface capacitance due to the reduction in the area of the device and the reduction in the thickness in the depth direction. Therefore, not only is there no problem in using the circuit of the present embodiment in place of the conventional example, but also the circuit of the present embodiment has an input signal terminal A commonly connected to a plurality of circuits as shown in FIG. In this case, the load seen from the circuit at the preceding stage (the circuit for generating the input signal A) can be reduced by half by making the source portion common to the mask data as shown in FIG.

【0022】図4は本実施例のNAND回路(BiCM
OS構成)の1例である。この場合は入力信号端子Aが
Hレベル、入力信号端子BがLレベルの時のみ出力信号
端子OUTがLレベルとなり、それ以外の時はHレベル
を出力するという図8,9で示したNAND回路と同等
の回路動作を行う。
FIG. 4 shows a NAND circuit (BiCM) of this embodiment.
OS configuration). In this case, the NAND circuit shown in FIGS. 8 and 9 outputs the output signal terminal OUT only when the input signal terminal A is at the H level and the input signal terminal B is at the L level, and outputs the H level otherwise. Performs the same circuit operation as.

【0023】[0023]

【実施例2】図5は本発明の実施例2を示す回路図であ
る。
Embodiment 2 FIG. 5 is a circuit diagram showing Embodiment 2 of the present invention.

【0024】図1に示す実施例1では、入力信号端子A
がHレベル、BがLレベルの時トランジスタP11とN12
が共にON状態となるため、入力信号端子Aから低電位
側電源端子に電流が流れ、回路数が多ければパワーの増
加につながる可能性がある。また、この電流と入力信号
A自身の配線抵抗とトランジスタP11のON状態での抵
抗成分で出力信号端子OUTのHレベルが多少電位ドロ
ップしてしまう。
In the first embodiment shown in FIG. 1, the input signal terminal A
Transistor P 11 and N 12 when but H level, B is the L level
Are both turned on, a current flows from the input signal terminal A to the low potential side power supply terminal, and if the number of circuits is large, the power may increase. Moreover, resulting in less potential drop is H level of the output signal terminal OUT in the resistance component of the ON state of the wiring resistance and the transistor P 11 of the current and the input signal A itself.

【0025】実施例2はこういった問題を解消すべく発
明されたものであり、図1では高電位側の電源端子に接
続されていたトランジスタN12のゲート部を、入力信号
AをCMOSインバータ回路INV1で反転させた信号
に接続した構成となっている。
[0025] Example 2 has been invented to solve the problems saying, the gate portion of the transistor N 12 which is connected to the power supply terminal of the high-potential side in Fig. 1, CMOS inverter input signal A The configuration is such that the signal is connected to the signal inverted by the circuit INV1.

【0026】これにより、トランジスタN12は入力信号
AがLレベルの時のみON状態となり上記電流は0とな
る。実際には実施例1に比べINV1分だけ面積の増加
が生じるが、このインバータは小さなサイズでよく、ま
た図2の様な複数の回路に共通に入力信号Aが接続され
ている場合にもこのインバータは1個でよいので、この
面積の増加はほとんど問題にならない。
[0026] Thus, the transistor N 12 is the current in an ON state only when the input signal A is L level is 0. Actually, the area is increased by INV1 compared to the first embodiment. However, this inverter may be small in size, and this inverter can be used even when the input signal A is commonly connected to a plurality of circuits as shown in FIG. Since only one inverter is required, this increase in the area hardly causes a problem.

【0027】[0027]

【発明の効果】以上述べてきたように、本発明は2入力
の半導体論理回路装置において入力信号の一方をMOS
トランジスタのソース部に接続することで、論理回路の
遅延時間の高速化および素子数減による占有面積の縮小
という効果を得ることができる。また、マスクデータ上
工夫することにより前段の回路からみた負荷を従来の半
分に減少させる効果も得られる。
As described above, according to the present invention, in a two-input semiconductor logic circuit device, one of the input signals is MOS.
By connecting to the source portion of the transistor, the effect of increasing the delay time of the logic circuit and reducing the occupied area by reducing the number of elements can be obtained. Further, by devising the mask data, it is possible to obtain an effect of reducing the load viewed from the circuit in the preceding stage to half that of the conventional circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1を示す回路図、FIG. 1 is a circuit diagram showing a first embodiment of the present invention;

【図2】本発明の実施例1の使用例を示す回路図、FIG. 2 is a circuit diagram showing a usage example of the first embodiment of the present invention;

【図3】図2の回路図のマスクパタンを示す図、FIG. 3 is a view showing a mask pattern in the circuit diagram of FIG. 2;

【図4】本発明の実施例1の応用例を示す回路図、FIG. 4 is a circuit diagram showing an application example of the first embodiment of the present invention;

【図5】本発明の実施例2を示す回路図、FIG. 5 is a circuit diagram showing a second embodiment of the present invention;

【図6】従来例を示す回路図、FIG. 6 is a circuit diagram showing a conventional example;

【図7】従来例を示す回路図、FIG. 7 is a circuit diagram showing a conventional example;

【図8】従来例を示す回路図、FIG. 8 is a circuit diagram showing a conventional example,

【図9】従来例を示す回路図、FIG. 9 is a circuit diagram showing a conventional example;

【図10】従来例を示す回路図、FIG. 10 is a circuit diagram showing a conventional example;

【図11】従来例を示す回路図、FIG. 11 is a circuit diagram showing a conventional example.

【図12】従来例を示す回路図、FIG. 12 is a circuit diagram showing a conventional example.

【図13】従来例を示す回路図。FIG. 13 is a circuit diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

A,B,B1,B2 入力信号端子 OUT,OUT1,OUT2 出力信号端子 P11,P61,P62 P型MOSトランジスタ N11,N12,N61,N62 N型MOSトランジスタ INV1 インバータ回路A, B, B1, B2 input signal terminal OUT, OUT1, OUT2 output signal terminal P 11, P 61, P 62 P -type MOS transistor N 11, N 12, N 61 , N 62 N -type MOS transistor INV1 inverter circuit

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1および第2入力信号がそれぞれ入力
される第1および第2の入力端子と、ソースが前記第1
の入力端子に接続され、ゲートが前記第2の入力端子に
接続され、ドレインが出力端子に接続された第1の極性
の第1のMOSトランジスタと、ゲートが前記第2の入
力端子に接続され、ソースが第1の電源に接続され、ド
レインが前記出力端子に接続された第2の極性の第2の
MOSトランジスタと、ドレインおよびソースが前記第
2のトランジスタのドレインおよびソースにそれぞれ接
続された第2の極性の第3のトランジスタと、少なくと
も前記第1および前記第2のMOSトランジスタが両方
とも非通の時に前記第3のMOSトランジスタを導通
せしめる手段とを有する半導体論理回路装置。
A first and a second input terminal to which a first and a second input signal are respectively inputted; and a source connected to the first and the second input signals.
A first MOS transistor having a first polarity, a gate connected to the second input terminal, a drain connected to the output terminal, and a gate connected to the second input terminal. A source is connected to the first power supply, a drain is connected to the output terminal, a second MOS transistor of a second polarity, and a drain and a source are connected to a drain and a source of the second transistor, respectively. a third transistor of a second polarity, the semiconductor logic circuit device having a means for allowed to conduct the third MOS transistor when at least both the first and the second MOS transistor is non-conduction.
【請求項2】 第1および第2入力信号がそれぞれ入力
される第1および第2の入力端子と、ソースが前記第1
の入力端子に接続され、ゲートが前記第2の入力端子に
接続された第1の極性の第1のMOSトランジスタと、
ソースが第1の電源に接続され、ゲートが前記第2の入
力端子に接続され、ドレインが前記第1のMOSトラン
ジスタのドレインに接続された第2の極性の第2のMO
Sトランジスタと、ソースが前記第1の電源に接続さ
れ、ドレインが前記第1のMOSトランジスタのドレイ
接続された第2の極性の第3のMOSトランジスタ
と、ソースが前記第1の入力端子に接続され、ゲートが
前記第2の入力端子に接続され、ドレインが出力端子に
接続された第1の極性の第4のMOSトランジスタと、
エミッタが前記出力端子に接続され、コレクタが前記第
1の電源に接続され、ベースが前記第1のMOSトラン
ジスタのドレインに接続されたバイポーラトランジスタ
と、少なくとも前記第1および前記第2のMOSトラン
ジスタが両方とも非通の時に前記第3のMOSトラン
ジスタを導通せしめる手段とを有する半導体論理回路装
置。
2. A first and second input terminal to which first and second input signals are respectively input, and a source connected to the first and second input signals.
A first MOS transistor of a first polarity, the gate of which is connected to the input terminal of
A second MO of a second polarity having a source connected to the first power supply, a gate connected to the second input terminal, and a drain connected to the drain of the first MOS transistor.
And S transistor, a source connected to said first power supply, and a second third MOS transistor polarity having a drain connected to a drain of said first MOS transistor, the source of the first input terminal A fourth MOS transistor of a first polarity, the first MOS transistor being connected to the second input terminal, the drain being connected to the output terminal,
A bipolar transistor having an emitter connected to the output terminal, a collector connected to the first power supply, and a base connected to the drain of the first MOS transistor, and at least the first and second MOS transistors both semiconductor logic circuit device having a means for allowed to conduct the third MOS transistor when a non-conduction.
【請求項3】 前記手段は、前記第3のMOSトランジ
スタのゲートを第2の電源に接続して前記第3のMOS
トランジスタを導通状態にする請求項1または2記載の
半導体論理回路装置。
3. The device according to claim 3, wherein the means connects the gate of the third MOS transistor to a second power supply and connects the third MOS transistor to the third MOS transistor.
3. The semiconductor logic circuit device according to claim 1, wherein the transistor is turned on.
【請求項4】 前記手段は、前記第1入力信号の反転信
号を前記第2のMOSトランジスタのゲートに印加する
インバータでなる請求項1または2記載の半導体論理回
路装置。
4. The semiconductor logic circuit device according to claim 1, wherein said means is an inverter that applies an inverted signal of said first input signal to a gate of said second MOS transistor.
JP5096358A 1993-04-23 1993-04-23 Semiconductor logic circuit device Expired - Fee Related JP2590681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5096358A JP2590681B2 (en) 1993-04-23 1993-04-23 Semiconductor logic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5096358A JP2590681B2 (en) 1993-04-23 1993-04-23 Semiconductor logic circuit device

Publications (2)

Publication Number Publication Date
JPH06311022A JPH06311022A (en) 1994-11-04
JP2590681B2 true JP2590681B2 (en) 1997-03-12

Family

ID=14162776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5096358A Expired - Fee Related JP2590681B2 (en) 1993-04-23 1993-04-23 Semiconductor logic circuit device

Country Status (1)

Country Link
JP (1) JP2590681B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649800B2 (en) 2004-12-22 2010-01-19 Nec Electronics Corporation Logic circuit and word-driver circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495102B1 (en) * 1990-08-07 1996-01-31 Mitsubishi Materials Corporation Surge-absorbing element for protection against overvoltage and overcurrent
JP2011234157A (en) * 2010-04-28 2011-11-17 Elpida Memory Inc Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362412A (en) * 1986-09-02 1988-03-18 Mitsubishi Electric Corp Logical gate circuit
JPH01144724A (en) * 1987-11-30 1989-06-07 Nec Corp Logical operating circuit
JPH02271714A (en) * 1989-04-12 1990-11-06 Nec Corp Logic circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649800B2 (en) 2004-12-22 2010-01-19 Nec Electronics Corporation Logic circuit and word-driver circuit

Also Published As

Publication number Publication date
JPH06311022A (en) 1994-11-04

Similar Documents

Publication Publication Date Title
US7859308B2 (en) Reconfigurable logic cell made up of double-gate MOSFET transistors
JPS626369B2 (en)
JP2544343B2 (en) Semiconductor integrated circuit device
JPS62132424A (en) Logic gate circuit
JP3436400B2 (en) Semiconductor integrated circuit device
EP0651511B1 (en) Semiconductor device having a combination of CMOS circuit and bipolar circuits
JP2590681B2 (en) Semiconductor logic circuit device
US4977337A (en) Bi-CMOS logic circuit
US5057714A (en) BiCMOS integrated circuit device utilizing Schottky diodes
JP3190191B2 (en) Output buffer circuit
JP2570492B2 (en) Semiconductor circuit
JP2852051B2 (en) Complementary clock donand circuit
JPH09214324A (en) Cmos logic circuit
JP3413445B2 (en) Input buffer circuit
JP2001274672A (en) Try-state buffer circuit
JP3547852B2 (en) Semiconductor device
JP2830244B2 (en) Tri-state buffer circuit
JPH0834427B2 (en) Logic circuit
JP2845665B2 (en) Output buffer circuit
JPH098638A (en) Cmos input/output buffer circuit
JPH02264519A (en) Semiconductor device
JPH0661436A (en) Ttl-cmos output stage
JP3073064B2 (en) Multi-input logic circuit and semiconductor memory
JP2924465B2 (en) Semiconductor integrated circuit
EP1326344A2 (en) Universal logic module and ASIC using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees