JP2585052B2 - Manufacturing method of inorganic flame retardant for thermoplastic resin - Google Patents

Manufacturing method of inorganic flame retardant for thermoplastic resin

Info

Publication number
JP2585052B2
JP2585052B2 JP63059580A JP5958088A JP2585052B2 JP 2585052 B2 JP2585052 B2 JP 2585052B2 JP 63059580 A JP63059580 A JP 63059580A JP 5958088 A JP5958088 A JP 5958088A JP 2585052 B2 JP2585052 B2 JP 2585052B2
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
flame retardant
thermoplastic resin
inorganic polymer
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63059580A
Other languages
Japanese (ja)
Other versions
JPH01234493A (en
Inventor
栄治 澤田
靖弘 松本
俊宏 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP63059580A priority Critical patent/JP2585052B2/en
Publication of JPH01234493A publication Critical patent/JPH01234493A/en
Application granted granted Critical
Publication of JP2585052B2 publication Critical patent/JP2585052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐炭酸化性に優れた水酸化マグネシウム型
の熱可塑性樹脂用無機難燃剤の製造法に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a magnesium hydroxide type inorganic flame retardant for thermoplastic resin having excellent carbonation resistance.

〔従来の技術〕[Conventional technology]

最近、熱可塑性樹脂用の無害な難燃剤として水酸化マ
グネシウムが注目され、同水酸化マグネシウムを利用し
た熱可塑性樹脂用難燃剤に関して種々の提案が行われて
いる。
Recently, magnesium hydroxide has attracted attention as a harmless flame retardant for thermoplastic resins, and various proposals have been made regarding flame retardants for thermoplastic resins using the same magnesium hydroxide.

例えば、特開昭51-82334号公報には、メルトインデッ
クス10〜0.1g/10分の熱可塑性樹脂55〜25重量%と水酸
化マグネシウム45〜75重量%を配合した自消性樹脂組成
物の押出又は射出成形におけるシルバーストリークの発
生を防止するために45m2/g以下の比表面積を有する水酸
化マグネシウムを用いるという提案がなされている。
For example, JP-A-51-82334 discloses a self-extinguishing resin composition containing 55 to 25% by weight of a thermoplastic resin having a melt index of 10 to 0.1 g / 10 minutes and 45 to 75% by weight of magnesium hydroxide. It has been proposed to use magnesium hydroxide having a specific surface area of 45 m 2 / g or less in order to prevent occurrence of silver streaks in extrusion or injection molding.

また、特開昭52-59643号公報には、水酸化マグネシウ
ム粉末のかさ密度が0.35〜0.70g/ccで比表面積が10〜30
m2/gであり、かつ結晶格子における〔110〕面に垂直な
方向の結晶子の厚みと〔001〕面のそれとの比が1.7〜2.
7であるプラスチック充填剤の利用が提案されている。
Further, JP-A-52-59643 discloses that the bulk density of magnesium hydroxide powder is 0.35 to 0.70 g / cc and the specific surface area is 10 to 30.
m is 2 / g, and the ratio of its thickness and [001] face in the vertical direction of the crystallite in the [110] face in a crystal lattice from 1.7 to 2.
The use of 7 plastic fillers has been proposed.

更に、特公昭52-43663号公報には、平均粒径15μ以
下、吸油量50ml/g以下でかつ活性値30mg/g以下の水酸化
マグネシウムを熱可塑性樹脂に対して40重量%以上配合
した難燃熱可塑性組成物についての提案がある。
Furthermore, Japanese Patent Publication No. 52-43663 discloses that magnesium hydroxide having an average particle size of 15 μm or less, an oil absorption of 50 ml / g or less, and an activity value of 30 mg / g or less is compounded in an amount of 40% by weight or more based on the thermoplastic resin. There are proposals for flammable thermoplastic compositions.

また更に、特開昭54-83952号公報には、BET比表面積
が約20m2/g以下で且つBET比表面積/ブレーン法比表面
積の比が1〜約3の範囲にある水酸化マグネシウムにつ
いての提案がある。
Japanese Patent Application Laid-Open No. 54-83952 further discloses magnesium hydroxide having a BET specific surface area of about 20 m 2 / g or less and a BET specific surface area / Brain method specific surface area ratio of 1 to about 3. There are suggestions.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

水酸化マグネシウムを難燃剤として使用した熱可塑性
樹脂組成物に関して、最近、水酸化マグネシウムの炭酸
化による樹脂の劣化という問題が生じている。水酸化マ
グネシウムは、本来、炭酸ガスとの反応性が高く、希薄
な炭酸ガスとも反応して炭酸マグネシウムを生成する。
すなわち、難燃剤として樹脂中に充填された水酸化マグ
ネシウムが空気中の炭酸ガスと徐々に反応して、樹脂組
成物の表面部に炭酸マグネシウム(xMgCO3・yMg(OH)2
・zH2O)の結晶が析出する。そのため樹脂組成物の表
面が劣化し、外観が悪くなるとともに強度,絶縁性等の
樹脂物性が著しく低下して使用が不可能になる。
Recently, regarding a thermoplastic resin composition using magnesium hydroxide as a flame retardant, there has been a problem of deterioration of the resin due to carbonation of magnesium hydroxide. Magnesium hydroxide originally has high reactivity with carbon dioxide gas, and also reacts with dilute carbon dioxide gas to generate magnesium carbonate.
That is, magnesium hydroxide filled in the resin as a flame retardant gradually reacts with the carbon dioxide gas in the air, and magnesium carbonate (xMgCO 3 · yMg (OH) 2
Crystals of zH 2 O) precipitate. As a result, the surface of the resin composition is deteriorated, the appearance is deteriorated, and the resin properties such as strength and insulating properties are remarkably reduced, so that the resin composition cannot be used.

従来行われている種々の提案は、前述の如く難燃剤と
して熱可塑性樹脂に使用する水酸化マグネシウムの性状
を限定して樹脂組成物の諸性質を向上させる目的でなさ
れたものであり、水酸化マグネシウムの炭酸化による樹
脂組成物の劣化という問題に対しては、いずれも考慮さ
れていなかった。
Conventionally, various proposals have been made for the purpose of improving the properties of a resin composition by limiting the properties of magnesium hydroxide used in a thermoplastic resin as a flame retardant as described above. Neither was considered the problem of deterioration of the resin composition due to the carbonation of magnesium.

また、難燃剤として使用される水酸化マグネシウム
は、樹脂との相溶性を向上させるために、通常アニオン
系界面活性剤等で表面改質するが、このような表面改質
は、水酸化マグネシウムの炭酸化による樹脂の劣化防止
には、みるべき効果を示さない。さらに、樹脂中に水酸
化マグネシウムを混練する工程で、水酸化マグネシウム
の炭酸化を防止すべく添加剤を使用する方法も考えられ
るが、均一な分散を行うことが困難であり、水酸化マグ
ネシウムの炭酸化による樹脂組成物の劣化を完全に防止
するのは難しい。また更に、水酸化マグネシウムの耐炭
酸化性を向上させるべく、特開昭52-128899号公報にはp
H≧3の水に両性の性質を有する水酸化物を溶解させた
溶液で水酸化マグネシウムを処理する方法、また特開昭
52-65538号公報にはP−ニトロベンゼンアゾオルシノー
ルで水酸化カルシウムを処理する方法、さらに特開昭52
-65539号公報にはP−ニトロベンゼンアゾ−α−ナフト
ールで水酸化マグネシウムを処理する方法が提案されて
いるが、いずれも軽度の耐炭酸化性を目的としたもので
あり、厳しい炭酸化条件下では十分な耐炭酸化性を発揮
し得なかった。
In addition, magnesium hydroxide used as a flame retardant is usually surface-modified with an anionic surfactant or the like in order to improve compatibility with a resin. It does not show any significant effect in preventing the deterioration of the resin due to carbonation. Further, in the step of kneading magnesium hydroxide in the resin, a method of using an additive to prevent carbonation of magnesium hydroxide can be considered, but it is difficult to perform uniform dispersion, It is difficult to completely prevent deterioration of the resin composition due to carbonation. Further, in order to improve the carbonation resistance of magnesium hydroxide, JP-A-52-128899 discloses p.
A method of treating magnesium hydroxide with a solution of an amphoteric hydroxide in water of H ≧ 3;
JP-A-52-65538 discloses a method of treating calcium hydroxide with P-nitrobenzeneazoorcinol.
JP-65539 proposes a method of treating magnesium hydroxide with P-nitrobenzeneazo-α-naphthol, all of which aim at mild carbonation resistance and under severe carbonation conditions. Did not exhibit sufficient carbonation resistance.

本発明は、上記の如き問題点を解決し、耐炭酸化性に
優れた水酸化マグネシウム型の熱可塑性樹脂用無機難燃
剤を提供せんとするものである。
An object of the present invention is to provide a magnesium hydroxide-type inorganic flame retardant for a thermoplastic resin, which solves the above problems and has excellent carbonation resistance.

〔課題を解決するための手段〕〔作用〕 すなわち、本発明は、水酸化マグネシウム粒子粉末
を、ポリ塩化アルミニウム、ケイ酸ソーダおよびヘキサ
メタリン酸ソーダから選ばれたる1種又は2種以上の無
機高分子組成物を水に溶解した水溶液に加え、混合した
後、脱水し、乾燥することによって、前記水酸化マグネ
シウム粒子粉末の粒子表面部を前記無機高分子組成物と
の複合物にすると共に、該複合物中の前記無機高分子組
成物の量をAl23,SiO2、P25として合計で1〜10wt
%とすることを特徴とする水酸化マグネシウム型の熱可
塑性樹脂用無機難燃剤の製造法である。
[Means for Solving the Problems] [Action] That is, the present invention relates to a method for preparing a magnesium hydroxide particle powder by using one or more inorganic polymers selected from polyaluminum chloride, sodium silicate and sodium hexametaphosphate. The composition is added to an aqueous solution dissolved in water, mixed, dehydrated, and dried to form a particle surface portion of the magnesium hydroxide particle powder into a composite with the inorganic polymer composition. The amount of the inorganic polymer composition in the product is 1 to 10 wt.% As Al 2 O 3 , SiO 2 and P 2 O 5
% Of a magnesium hydroxide-type inorganic flame retardant for a thermoplastic resin.

本発明で使用する水酸化マグネシウムは、通常のいず
れの製造方法によるものでも良い。例えば、海水または
苦汁に消石灰などのアルカリ性物質を添加して水酸化マ
グネシウムを得る方法、あるいは特開昭52-115799号公
報に示される如く、塩基性塩化−もしくは硝酸−マグネ
シウムを水性媒体中において加圧条件下に加熱して水酸
化マグネシウムを得る方法、更に特開昭56-109820号公
報に示される如く、1400℃以上で焼成した酸化マグネシ
ウムを酸またはマグネシウム塩の水懸濁スラリー中に水
和して水酸化マグネシウムを得る方法、また更に特開昭
60-15529号公報に示される如く、合成苦汁にアンモニア
ガスを吹き込んで反応させ水酸化マグネシウムを得る方
法など、いずれの方法によるものも採用できる。
The magnesium hydroxide used in the present invention may be produced by any of the usual production methods. For example, a method of obtaining magnesium hydroxide by adding an alkaline substance such as slaked lime to seawater or bitterness, or adding basic magnesium chloride or nitrate-magnesium in an aqueous medium as shown in JP-A-52-115799. A method of obtaining magnesium hydroxide by heating under pressure conditions, and further, as shown in JP-A-56-109820, hydrate magnesium oxide calcined at 1400 ° C. or higher in an aqueous suspension slurry of an acid or a magnesium salt. To obtain magnesium hydroxide by
As disclosed in JP-A-60-15529, any method such as a method in which ammonia gas is blown into synthetic bitter to react it to obtain magnesium hydroxide can be employed.

本発明の特徴とするところは上記のような方法によっ
て得られた水酸化マグネシウムの粒子表面部をポリ塩化
アルミニウム、ケイ酸ソーダおよびヘキサメタリン酸ソ
ーダから選ばれる1種又は2種以上の無機高分子組成物
を用いて処理して複合物とするところにある。
The feature of the present invention is that the surface portion of the magnesium hydroxide particles obtained by the above method is composed of one or more inorganic polymer compositions selected from polyaluminum chloride, sodium silicate and sodium hexametaphosphate. The compound is processed into a composite.

前記無機高分子組成物としては、〔Al2(OH)nC
l6-nm(ただし1<n<5,m<10)の化学式で閉められ
るポリ塩化アルミニウム、NaO・nSiO2・mH2O(ただし
nは約2〜3)の化学式で示されるケイ酸ソーダ、およ
び(NaPO3)nP25(ただしnは約10〜35)の化学式で
示されるヘキサメタリン酸ソーダが適切である。上記と
同様な化学成分を有する、例えば塩化アルミニウム(Al
Cl3)や第一リン酸ソーダ(NaH2PO4・2H2O)を用い
て、水酸化マグネシウムの処理を行っても本発明の効果
は得られない。
Examples of the inorganic polymer composition include [Al 2 (OH) n C
l 6-n ] m (where 1 <n <5, m <10), polyaluminum chloride, and silicon represented by the chemical formula of NaO.nSiO 2 .mH 2 O (where n is about 2-3) sodium, and (NaPO 3) nP 2 O 5 ( where n is about 10 to 35) of sodium hexametaphosphate represented by the chemical formula is appropriate. Having the same chemical composition as above, for example, aluminum chloride (Al
The effect of the present invention cannot be obtained even if the treatment of magnesium hydroxide is performed using Cl 3 ) or sodium phosphate monobasic (NaH 2 PO 4 .2H 2 O).

水酸化マグネシウムの粒子表面部を前記無機高分子組
成物との複合物にするには、前記無機高分子組成物を水
に溶解させ、この水溶液に水酸化マグネシウム粒子粉末
又はその懸濁液を加え、混合した後、脱水し、場合によ
りCl,Na等を除去するため水洗して、乾燥すればよい。
In order to make the particle surface portion of magnesium hydroxide a composite with the inorganic polymer composition, the inorganic polymer composition is dissolved in water, and a magnesium hydroxide particle powder or a suspension thereof is added to the aqueous solution. After mixing, the mixture may be dehydrated, washed with water to remove Cl, Na, and the like in some cases, and then dried.

複合物中の前記無機高分子組成物の量は、Al23,SiO
2,P25として合計で1〜10wt%、好ましくは、いずれ
の場合にも、1.5〜5wt%とすべきであり、1wt%より少
ない場合には複合物の耐炭酸化性が十分でなく、10wt%
を越えると難燃剤としての効果が弱くなってしまう。
The amount of the inorganic polymer composition in the composite is Al 2 O 3 , SiO
2, P 110 wt.% In total as 2 O 5, preferably, in any case, it should be a 1.5~5Wt%, if less than 1 wt% may have sufficient耐炭oxidizing composite No, 10wt%
If it exceeds, the effect as a flame retardant will be weakened.

本発明の実施に当っては、前記工程終了後の粉末を難
燃剤として、そのまま利用できるが、樹脂との相溶性を
向上させるため、さらに有機物で表面改質して利用して
も良い。表面改質に使用する有機物としては、アニオン
系界面活性剤、例えばステアリン酸ソーダ,ステアリン
酸カリ,オレイン酸ソーダ,オレイン酸カリ,ラウリン
酸ソーダ,ラウリン酸カリ、ベヘニン酸ソーダ,ベヘニ
ン酸カリ,ラウリルベンゼンスルホン酸ソーダなど、ま
た、カップリング剤、例えばビニルトリエトキシシラ
ン,γ−グリシドキシプロピルトリメトキシシラン,γ
−アミノプロピルトリエトキシシラン,γ−メタシクロ
キシプロピルトリメトキシシラン,イソプロピルトリイ
ソステアロイルチタネート,ビスジオクチルパイロホス
フェートオキシアセテートチタネート等を挙げることが
できる。
In the practice of the present invention, the powder after the above-mentioned step can be used as it is as a flame retardant, but it may be used after further modifying the surface with an organic substance in order to improve the compatibility with the resin. Organic substances used for surface modification include anionic surfactants such as sodium stearate, potassium stearate, sodium oleate, potassium oleate, sodium laurate, potassium laurate, sodium behenate, potassium behenate, lauryl. Sodium benzenesulfonate and the like; and coupling agents such as vinyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ
-Aminopropyltriethoxysilane, γ-metacycloxypropyltrimethoxysilane, isopropyltriisostearoyl titanate, bisdioctyl pyrophosphate oxyacetate titanate, and the like.

〔実施例〕〔Example〕

以下に本発明を実施例、比較例により具体的に説明す
る。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

実施例1〜9および比較例1〜6 BET比表面積約10m2/gの水酸化マグネシウム粉末200g
をポリ塩化アルミニウムまたはケイ酸ソーダあるいはヘ
キサメタリン酸ソーダを溶解した水溶液2lに加え、1時
間混合した後に脱水,水洗,乾燥して粉砕した。得られ
た粉末の化学分析結果を表1に示すようであった。得ら
れた粉末をEVA樹脂100部に対して130部配合してロール
成形した。成形シートを用いて耐炭酸化性テストおよび
燃焼性テストを行った。その結果を表1に示す。
Examples 1 to 9 and Comparative Examples 1 to 6 200 g of magnesium hydroxide powder having a BET specific surface area of about 10 m 2 / g
Was added to 2 l of an aqueous solution in which polyaluminum chloride, sodium silicate, or sodium hexametaphosphate was dissolved, mixed for 1 hour, dehydrated, washed with water, dried and pulverized. Table 1 shows the results of chemical analysis of the obtained powder. The obtained powder was compounded into 130 parts with respect to 100 parts of EVA resin and roll-molded. A carbonation resistance test and a flammability test were performed using the molded sheet. Table 1 shows the results.

実施例10〜11 実施例5で得られた粉末を有機物にて表面改質し、上
記と同様に成形して、耐炭酸化性テストおよび燃焼性テ
ストを行った。その結果を表1に示す。
Examples 10 to 11 The powder obtained in Example 5 was surface-modified with an organic substance, molded as described above, and subjected to a carbonation resistance test and a flammability test. Table 1 shows the results.

実施例12〜13 比表面積の異なる水酸化マグネシウムを用いて、実施
例5と同様に処理を行った。得られた粉末を上記と同様
に成形して耐炭酸化性テストおよび燃焼性テストを行っ
た。その結果を表1に示す。
Examples 12 to 13 The same treatment as in Example 5 was performed using magnesium hydroxide having different specific surface areas. The obtained powder was molded in the same manner as described above, and subjected to a carbonation resistance test and a flammability test. Table 1 shows the results.

比較例7 実施例8のヘキサメタリン酸ソーダに換えて第一リン
酸ソーダにて処理を行い、得られた粉末を同様に成形し
て、耐炭酸化性テストおよび燃焼性テストを行った。結
果を表1に示す。
Comparative Example 7 A treatment with sodium phosphate monobasic was performed in place of the sodium hexametaphosphate of Example 8, and the obtained powder was similarly molded and subjected to a carbonation resistance test and a flammability test. Table 1 shows the results.

比較例8〜9 実施例1〜9で用いたBET比表面積10m2/gの水酸化マ
グネシウムを有機物にて表面改質し、同様に成形して耐
炭酸化性テストおよび燃焼性テストを行った。その結果
を表1に示す。
Comparative Examples 8 to 9 The magnesium hydroxide having a BET specific surface area of 10 m 2 / g used in Examples 1 to 9 was surface-modified with an organic substance, and molded in the same manner, and subjected to a carbonation resistance test and a flammability test. . Table 1 shows the results.

〔発明の効果〕 以上説明した通りの本発明によって製造される水酸化
マグネシウム型の熱可塑性樹脂用無機難燃剤を用いれ
ば、実施例に見られるように、従来の水酸化マグネシウ
ムを使用した難燃剤ではなし得なかった耐炭酸化性に優
れた難燃性樹脂を製造し得ることとなり、その効果は大
きい。
[Effect of the Invention] By using the inorganic flame retardant for a magnesium hydroxide type thermoplastic resin produced by the present invention as described above, as seen in the examples, a flame retardant using conventional magnesium hydroxide Thus, a flame-retardant resin excellent in carbonation resistance, which could not be obtained, can be produced, and the effect is great.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−278966(JP,A) 特開 昭60−162604(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-278966 (JP, A) JP-A-60-162604 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水酸化マグネシウム粒子粉末を、ポリ塩化
アルミニウム、ケイ酸ソーダおよびヘキサメタリン酸ソ
ーダから選ばれる1種又は2種以上の無機高分子組成物
を水に溶解した水溶液に加え、混合した後、脱水し、乾
燥することによって、前記水酸化マグネシウム粒子粉末
の粒子表面部を前記無機高分子組成物との混合物にする
と共に、該複合物中の前記無機高分子組成物の量をAl2
3,SiO2,P25として合計で1〜10wt%とすることを特
徴とする水酸化マグネシウム型の熱可塑性樹脂用無機難
燃剤の製造法。
1. A method of adding magnesium hydroxide particles to an aqueous solution in which one or more inorganic polymer compositions selected from polyaluminum chloride, sodium silicate and sodium hexametaphosphate are dissolved in water, and mixed. By dehydrating and drying, the particle surface portion of the magnesium hydroxide particle powder is made into a mixture with the inorganic polymer composition, and the amount of the inorganic polymer composition in the composite is reduced to Al 2
A method for producing an inorganic flame retardant for a thermoplastic resin of a magnesium hydroxide type, wherein a total of O 3 , SiO 2 and P 2 O 5 is 1 to 10% by weight.
JP63059580A 1988-03-14 1988-03-14 Manufacturing method of inorganic flame retardant for thermoplastic resin Expired - Fee Related JP2585052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63059580A JP2585052B2 (en) 1988-03-14 1988-03-14 Manufacturing method of inorganic flame retardant for thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63059580A JP2585052B2 (en) 1988-03-14 1988-03-14 Manufacturing method of inorganic flame retardant for thermoplastic resin

Publications (2)

Publication Number Publication Date
JPH01234493A JPH01234493A (en) 1989-09-19
JP2585052B2 true JP2585052B2 (en) 1997-02-26

Family

ID=13117310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63059580A Expired - Fee Related JP2585052B2 (en) 1988-03-14 1988-03-14 Manufacturing method of inorganic flame retardant for thermoplastic resin

Country Status (1)

Country Link
JP (1) JP2585052B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803557B2 (en) * 2001-03-27 2006-08-02 協和化学工業株式会社 Flame retardant, method for producing the same, and flame retardant resin composition
CN1166749C (en) * 2002-01-29 2004-09-15 北京化工大学 Super-fine high smoke-suppressing flame retardant and preparing method thereof
KR100865177B1 (en) * 2007-03-22 2008-10-24 리머스(주) Incombustible coating material for styrofoam, method for preparing the same, and flameproof process using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278966A (en) * 1987-05-11 1988-11-16 Sumitomo Electric Ind Ltd Flame-retarding composition

Also Published As

Publication number Publication date
JPH01234493A (en) 1989-09-19

Similar Documents

Publication Publication Date Title
US5876494A (en) Process for the preparation of precipitated silica, new percipitated silicas containing aluminum and their use for the reinforcement of elastomers
US4883533A (en) Modified synthetic hydrotalcite
JP2016527170A (en) Mineral compositions based on mixed solid phases of calcium carbonate and magnesium carbonate and methods for preparing such compositions
TWI593787B (en) Flame retardant, flame retardant composition and compact
WO2011111487A1 (en) Filler for synthetic resin, synthetic resin composition, manufacturing method therefor, and molded object made therefrom
JPH085990B2 (en) Flame retardant, and flame retardant resin and / or rubber composition
JPH11507976A (en) Flame retardant products
US20190218359A1 (en) Use of geopolymeric additive in combination with non-brominated flame retardant in polymer foams
JP3107926B2 (en) Flame retardant and flame retardant resin composition
JP2585052B2 (en) Manufacturing method of inorganic flame retardant for thermoplastic resin
WO2016031803A1 (en) Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
JP2826973B2 (en) Composite metal hydroxide
JPH031350B2 (en)
JPS6348809B2 (en)
JP3154535B2 (en) Composite metal hydroxide and use thereof
JP2585026B2 (en) Inorganic flame retardant for thermoplastic resin
JPWO2018047841A1 (en) Fine particle composite metal hydroxide, calcined product thereof, method for producing the same, and resin composition therefor
CN108314844B (en) Preparation method of modified zinc borate whisker reinforced flame-retardant waterproof breathable film
JPS60243155A (en) Flame-retardant thermoplastic resin composition
JP3444732B2 (en) Flame retardant composition for chlorine-containing polymer and resin composition containing the same
KR100923903B1 (en) Surface Modified Calcium Carbonate, Method for Preparing the Same and Flame Retardant High Molecular Resin Composition Including the Same
US2794783A (en) Colloidal silica products
JPH06102542B2 (en) Method for producing spherical particle calcium carbonate
JPH11193336A (en) Hydrogen halide trapping agent for use in halogen-containing resin and halogen-containing resin composition containing same
JP3167261B2 (en) Method for producing precipitated synthetic calcium carbonate

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees