JP2584389B2 - ECR plasma etching method - Google Patents

ECR plasma etching method

Info

Publication number
JP2584389B2
JP2584389B2 JP4150783A JP15078392A JP2584389B2 JP 2584389 B2 JP2584389 B2 JP 2584389B2 JP 4150783 A JP4150783 A JP 4150783A JP 15078392 A JP15078392 A JP 15078392A JP 2584389 B2 JP2584389 B2 JP 2584389B2
Authority
JP
Japan
Prior art keywords
plasma etching
ecr plasma
magnetic field
etching method
ecr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4150783A
Other languages
Japanese (ja)
Other versions
JPH05339760A (en
Inventor
和夫 大場
好範 嶋
章 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAE DENSHI KOGYO KK
Original Assignee
SAKAE DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAE DENSHI KOGYO KK filed Critical SAKAE DENSHI KOGYO KK
Priority to JP4150783A priority Critical patent/JP2584389B2/en
Publication of JPH05339760A publication Critical patent/JPH05339760A/en
Application granted granted Critical
Publication of JP2584389B2 publication Critical patent/JP2584389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、異方性ECRプラズマ
エッチング加工方法に関する。
The present invention relates to an anisotropic ECR plasma etching method.

【0002】[0002]

【従来の技術】従来のECRプラズマエッチング方法
は、永久磁石を使用して一定磁界0.0875T中で電
子が磁力線の周りで円運動をし、その角振動数ωCとマ
イクロ波の角振動数ωが一致してECR現象が生じ、こ
れをエッチング加工に応用している。
2. Description of the Related Art In a conventional ECR plasma etching method, electrons make a circular motion around a line of magnetic force in a constant magnetic field of 0.0875 T using a permanent magnet, and the angular frequency ω C and the angular frequency of a microwave are used. ω coincides with each other to cause an ECR phenomenon, which is applied to etching.

【0003】[0003]

【発明が解決しようとする課題】従来のECRプラズマ
エッチング方法では、一定磁界としているためイオン旋
回流が速く、図2に示すようにイオンが散乱して試料の
裏側に回り込み、角θが大きくなって異方性処理が困難
である。
In the conventional ECR plasma etching method, the ion swirling flow is fast due to the constant magnetic field. As shown in FIG. 2, the ions are scattered and go around the back side of the sample, and the angle θ becomes large. And anisotropic treatment is difficult.

【0004】[0004]

【課題を解決するための手段】本発明はECR現象を利
用したECRプラズマエッチング加工方法においてマイ
クロ波の進行方向と平行に0.08T以上のパルス磁界
を与えて、高電離プラズマを生成することを特徴とする
ECRプラズマエッチング加工方法である。上記パルス
磁界は0.01〜200msの範囲のパルス時間のみソ
レノイドコイルに電流を流して発生させるとよい。この
範囲とすることによりパルスオンタイムの時の瞬時には
平均して従来の一定磁界の0.0875Tを越える磁界
が生じ、電子、イオンの旋回曲率と速度は小さくなり、
方向が真直となって、異方性処理効果が大となり、試料
の裏面への回り込みがなく、正確な加工ができる。
SUMMARY OF THE INVENTION The present invention provides an ECR plasma etching method utilizing the ECR phenomenon, in which a pulse magnetic field of 0.08 T or more is applied in parallel with the direction of microwave propagation to generate highly ionized plasma. This is a characteristic ECR plasma etching processing method. The pulse magnetic field may be generated by applying a current to the solenoid coil only for a pulse time in the range of 0.01 to 200 ms. By setting it within this range, a magnetic field exceeding the conventional constant magnetic field of 0.0875 T is generated on average at the moment of the pulse on time, and the turning curvature and velocity of electrons and ions are reduced.
Since the direction is straight, the effect of the anisotropic treatment is large, and accurate processing can be performed without wrapping around the back surface of the sample.

【0005】[0005]

【実施例】以下実施例を図面に基づいて説明する。BRIEF DESCRIPTION OF THE DRAWINGS FIG.

【0006】図1において1は加工すべき試料である。
2はイオン源でECRイオン源である。3はパルス磁界
を発生させるためのソレノイドコイルで、6が2.45
GHzのマイクロ波の進行方向を示す。4は冷却水、5
はエッチング用ガス導入口である。
In FIG. 1, reference numeral 1 denotes a sample to be processed.
An ion source 2 is an ECR ion source. 3 is a solenoid coil for generating a pulse magnetic field, and 6 is 2.45.
3 shows the traveling direction of a microwave of GHz. 4 is cooling water, 5
Is an etching gas inlet.

【0007】試料としてSiO2を用いた場合、エッチ
ング用ガスとして、CF4+20%H2を用い、0.03
Torrの雰囲気とした。マイクロ波は上記のとおり
2.45GHzで350Wである。イオン源2の中で発
生した電子は2.45GHzのマイクロ波6によって極
めて速い(0.4nsec)スピードで振動し、この時
イオン源2にマイクロ波6の進行方向と平行なパルス磁
界を、ソレノイドコイル3にパルス電流を流すことによ
って発生させ、電子旋回力を与えた。このときのパルス
幅は0.01〜200msの範囲内で変化させて、エッ
チング速度並びに回り込み角(θ)について試験をし
た。又、磁界の電源波形が直流の場合を比較例として挙
げた。結果を表1に示す。
When SiO 2 is used as a sample, CF 4 + 20% H 2 is used as an etching gas,
The atmosphere was Torr. The microwave is 350 W at 2.45 GHz as described above. Electrons generated in the ion source 2 are vibrated at a very high speed (0.4 nsec) by the microwave 6 of 2.45 GHz, and a pulse magnetic field parallel to the traveling direction of the microwave 6 is applied to the ion source 2 at this time. It was generated by applying a pulse current to the coil 3 to give an electron turning force. At this time, the pulse width was changed within the range of 0.01 to 200 ms, and the etching rate and the wraparound angle (θ) were tested. Also, the case where the power supply waveform of the magnetic field is DC is described as a comparative example. Table 1 shows the results.

【0008】[0008]

【表1】 [Table 1]

【0009】上記表1において、例えばパルスτON0.
01ms、平均磁束密度0.0875Tの場合、試料の
SiO2エッチング速度は0.18μ/minと3倍以
上となり、回り込み角θは3.5°で直流電源の場合に
比べて約1/4となり、異方性処理効果が大きいことが
判った。
In Table 1, for example, the pulse τ ON 0.
In the case of 01 ms and an average magnetic flux density of 0.0875 T, the SiO 2 etching rate of the sample is 0.18 μ / min, which is three times or more, and the wraparound angle θ is 3.5 °, which is about 4 of that of a DC power supply. It was found that the anisotropic treatment effect was large.

【0010】さらに試料としてSi34、Al23を用
いた場合についても試験した。エッチング用ガス、雰囲
気、マイクロ波出力はSiO2の場合と同じである。た
だし、ソレノイドコイルに流すパルス電流のパルス幅は
0.02〜100msの範囲内でエッチング速度並びに
回り込み角度(θ)について調べた。結果を表2および
表3に示す。
Tests were also conducted on samples using Si 3 N 4 and Al 2 O 3 . The etching gas, atmosphere, and microwave output are the same as those for SiO 2 . However, the pulse width of the pulse current flowing through the solenoid coil was in the range of 0.02 to 100 ms, and the etching rate and the wraparound angle (θ) were examined. The results are shown in Tables 2 and 3.

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【発明の効果】本発明はECRプラズマエッチング加工
においてマイクロ波の進行方向と平行にパルス磁界を与
えて、電子に対して衝撃的旋回力を与えることにより、
異方性処理が効率良く行うことができる。
According to the present invention, in an ECR plasma etching process, a pulse magnetic field is applied in parallel to the traveling direction of a microwave to give an impact swirling force to electrons.
Anisotropic treatment can be performed efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】プラズマエッチング加工により回り込み角の説
明図である。
FIG. 2 is an explanatory diagram of a wraparound angle due to plasma etching.

フロントページの続き (73)特許権者 999999999 大場 章 埼玉県朝霞市宮戸3丁目12番89号 (72)発明者 大場 和夫 埼玉県東村山市松葉町4丁目2番3号 (72)発明者 嶋 好範 神奈川県川崎市麻生区王禅寺768番地15 (72)発明者 大場 章 埼玉県朝霧市浜崎1丁目9番地の3− 205 (56)参考文献 特開 平4−48726(JP,A) 特開 平2−77123(JP,A) 特開 平2−312227(JP,A) 特公 昭60−2388(JP,B2)Continued on the front page (73) Patent holder 999999999 Akira Oba 3-12-89 Miyado, Asaka-shi, Saitama (72) Inventor Kazuo Oba 4- 2-3 Matsuba-cho, Higashimurayama-shi, Saitama (72) Inventor Yoshi Shima No. 768-15, Ozenji, Aso-ku, Kawasaki City, Kanagawa Prefecture (72) Inventor Akira Oba 3-205, 1-9-9 Hamasaki, Asagiri-shi, Saitama Prefecture (56) References JP-A-4-48726 (JP, A) 2-77123 (JP, A) JP-A-2-312227 (JP, A) JP-B-60-2388 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電子サイクロトロン共鳴(ECR)現象
を利用したECRプラズマエッチング加工方法におい
て、マイクロ波の進行方向と平行に0.08T以上のパ
ルス磁界を与えて高電離プラズマを生成することを特徴
とするECRプラズマエッチング加工方法。
1. An ECR plasma etching method utilizing an electron cyclotron resonance (ECR) phenomenon, wherein a highly ionized plasma is generated by applying a pulse magnetic field of 0.08 T or more in parallel with a traveling direction of a microwave. ECR plasma etching processing method.
【請求項2】 パルス磁界は0.01〜200msの範
囲のパルス時間のみソレノイドコイルに電流を流して発
生させるものである請求項1記載のECRプラズマエッ
チング加工方法。
2. The ECR plasma etching method according to claim 1, wherein the pulse magnetic field is generated by applying a current to the solenoid coil only for a pulse time in a range of 0.01 to 200 ms.
JP4150783A 1992-06-10 1992-06-10 ECR plasma etching method Expired - Lifetime JP2584389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4150783A JP2584389B2 (en) 1992-06-10 1992-06-10 ECR plasma etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4150783A JP2584389B2 (en) 1992-06-10 1992-06-10 ECR plasma etching method

Publications (2)

Publication Number Publication Date
JPH05339760A JPH05339760A (en) 1993-12-21
JP2584389B2 true JP2584389B2 (en) 1997-02-26

Family

ID=15504341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4150783A Expired - Lifetime JP2584389B2 (en) 1992-06-10 1992-06-10 ECR plasma etching method

Country Status (1)

Country Link
JP (1) JP2584389B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306894A (en) * 1999-04-23 2000-11-02 Nec Corp Method of plasma treatment of wafer
US6566272B2 (en) 1999-07-23 2003-05-20 Applied Materials Inc. Method for providing pulsed plasma during a portion of a semiconductor wafer process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602388A (en) * 1983-06-21 1985-01-08 Fuji Xerox Co Ltd Transfer-type thermal recorder
JP2679816B2 (en) * 1988-06-24 1997-11-19 東京エレクトロン株式会社 Plasma processing method
JP2972227B2 (en) * 1989-05-29 1999-11-08 株式会社日立製作所 Plasma processing method and apparatus
KR930004713B1 (en) * 1990-06-18 1993-06-03 삼성전자 주식회사 Plasma exciting apparatus using modulation step and its method

Also Published As

Publication number Publication date
JPH05339760A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
Chandran Weak compressible magnetohydrodynamic turbulence in the solar corona
JPH0426208B2 (en)
WO1999019527A3 (en) Apparatus and method for utilizing a plasma density gradient to produce a flow of particles
US5162633A (en) Microwave-excited plasma processing apparatus
Baule et al. Singular features in noise-induced transport with dry friction
JP2584389B2 (en) ECR plasma etching method
JP2584396B2 (en) ECR plasma processing method
JP2590393B2 (en) ECR plasma etching method
KR960005803A (en) Sputtering method and apparatus used therefor
Pécseli et al. Evolution of externally excited convective cells in plasmas
Imke et al. A study of dissociative attachment in H2+− Al (110) surface scattering at low ion energies (300–900 eV)
JP2706022B2 (en) ECR plasma processing method
JPS6365623A (en) Plasma processor
JP2006100628A5 (en)
JPH01230770A (en) Plasma treating device
Shindo et al. Estimate of the negative-ion density in O2/Ar ECR plasma utilizing ion acoustic waves
JPH03277775A (en) Plasma treatment
JPH05290994A (en) Plasma generator
JPH10149897A (en) Plasma processing method
JP2749264B2 (en) Plasma processing equipment
SU759245A1 (en) Rolled stock separating method
JP2827660B2 (en) Microwave plasma processing method
JPS63140089A (en) Method and device for etching aluminum alloy film
JPH0799160A (en) Method and apparatus for working of neutral particles
JP2005166458A (en) Plasma surface treatment method and its device