JP2576867B2 - High toughness cubic boron nitride based sintered body - Google Patents

High toughness cubic boron nitride based sintered body

Info

Publication number
JP2576867B2
JP2576867B2 JP62137209A JP13720987A JP2576867B2 JP 2576867 B2 JP2576867 B2 JP 2576867B2 JP 62137209 A JP62137209 A JP 62137209A JP 13720987 A JP13720987 A JP 13720987A JP 2576867 B2 JP2576867 B2 JP 2576867B2
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
sintered body
based sintered
zirconium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62137209A
Other languages
Japanese (ja)
Other versions
JPS63303029A (en
Inventor
信一 河野
勉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dijet Industrial Co Ltd
Original Assignee
Dijet Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dijet Industrial Co Ltd filed Critical Dijet Industrial Co Ltd
Priority to JP62137209A priority Critical patent/JP2576867B2/en
Publication of JPS63303029A publication Critical patent/JPS63303029A/en
Application granted granted Critical
Publication of JP2576867B2 publication Critical patent/JP2576867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、主に難削材の切削に用いられている立方晶
窒化硼素基焼結体の改良に関するもので、さらに詳細に
は該焼結体の耐欠損性を向上させるように改良したもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement of a cubic boron nitride based sintered body mainly used for cutting difficult-to-cut materials. It is improved to improve the fracture resistance of the aggregate.

[従来技術] 従来、主に難削材の切削加工用工具として、立方晶窒
化硼素にチタンの炭化物や窒化物などのセラミックスま
たはコバルトなどの金属を結合材として添加し、超高圧
処理した立方晶窒化硼素基焼結体が広く用いられてい
る。
[Prior art] Conventionally, as a tool for cutting difficult-to-cut materials, a cubic crystal obtained by adding a metal such as ceramics or cobalt such as titanium carbide or nitride to cubic boron nitride as a binder and performing an ultra-high pressure treatment. Boron nitride-based sintered bodies are widely used.

[発明が解決しようとする問題点] しかし、セラミックスを結合材とした場合の焼結体は
高融点・高硬度でこれを切削工具として用いた場合、耐
熱性、耐摩耗性に優れるが耐欠損性に劣る。
[Problems to be Solved by the Invention] However, when a sintered body using a ceramic as a binder has a high melting point and high hardness and is used as a cutting tool, it has excellent heat resistance and abrasion resistance, but is resistant to chipping. Poor sex.

また、金属を結合材とした場合にも、焼結過程で立方
晶窒化硼素と反応して脆弱な窒化物や硼化物を形成し、
切削工具として用いた場合には、やはり十分な耐欠損性
が得られず、切削工具として用いる場合に最低条件とし
て要求される「破損しないでまず使える」という信頼性
の面で現在の立方晶窒化硼素基焼結体は、いずれもこの
要求を満たしているものとはいえないのが現状である。
Also, when a metal is used as a binder, it reacts with cubic boron nitride during the sintering process to form fragile nitride or boride,
When used as a cutting tool, sufficient fracture resistance cannot be obtained, and the current cubic nitriding is required in terms of reliability, which is the minimum requirement for use as a cutting tool, that it can be used without breaking. At present, none of the boron-based sintered bodies satisfy this requirement.

[問題を解決するための手段] 本発明における第1の高靱性立方晶窒化硼素基焼結体
においては、上記のような問題を解決するため、結晶型
が正方晶を主体とする酸化ジルコニウムが5〜40容量%
の範囲で含有されると共に、周期律表第4a、5a、6a族遷
移金属の炭化物・窒化物・硼化物および酸化アルミニウ
ムの1種または2種以上が10〜40容量%、鉄・コバルト
・ニッケル・アルミニウム・シリコンの1種または2種
以上が2〜15容量%の範囲で含有され、残部が立方晶窒
化硼素で構成されようにした。
[Means for Solving the Problems] In the first high toughness cubic boron nitride-based sintered body of the present invention, in order to solve the above-mentioned problems, zirconium oxide whose crystal type is mainly tetragonal is used. 5-40% by volume
And at least one of carbides, nitrides, borides and aluminum oxides of transition metals of Groups 4a, 5a and 6a of the Periodic Table is 10 to 40% by volume, iron, cobalt and nickel. One or more of aluminum and silicon are contained in the range of 2 to 15% by volume, and the rest is made of cubic boron nitride.

また、本発明における第2の高靱性立方晶窒化硼素基
焼結体においては、上記のような問題を解決するため、
結晶型が正方晶を主体とする酸化ジルコニウムと共に繊
維状炭化硅素が含有され、酸化ジルコニウムと繊維状炭
化硅素とが合わせて5〜40容量%の範囲で含有されると
共に、周期律表第4a、5a、6a族遷移金属の炭化物・窒化
物・硼化物および酸化アルムニウムの1種または2種以
上が10〜40容量%、鉄・コバルト・ニッケル・アルミニ
ウム・シリコンの1種または2種以上が2〜15容量%の
範囲で含有され、残部が構成されようにした。
In the second high toughness cubic boron nitride-based sintered body according to the present invention, in order to solve the above-described problems,
Fibrous silicon carbide is contained together with zirconium oxide whose crystal form is mainly tetragonal, and zirconium oxide and fibrous silicon carbide are contained in a total range of 5 to 40% by volume, and the periodic table 4a, One or more of carbides, nitrides, borides and aluminum oxides of 5a, 6a transition metals are 10 to 40% by volume, and one or more of iron, cobalt, nickel, aluminum, silicon is two to two. It was contained in the range of 15% by volume, and the balance was constituted.

ここで、上記の第1及び第2の高靱性立方晶窒化硼素
基焼結体において、結晶型が正方晶を主体とする酸化ジ
ルコニウムを得るにあたっては、酸化ジルコニウムに対
してY2O3が1.0〜4.0%モル比含有させることが好まし
い。
Here, in the first and second high toughness cubic boron nitride-based sintered bodies, when obtaining zirconium oxide whose crystal form is mainly tetragonal, Y 2 O 3 is 1.0 to zirconium oxide. It is preferred that the content be contained in a molar ratio of 4.04.0%.

また、上記の第2の高靱性立方晶窒化硼素基焼結体に
おいて、結晶型が正方晶を主体とする酸化ジルコニウム
と共に含有させる繊維状炭化硅素としては、長さが10〜
200μm、太さが0.05〜5μmのウイスカーを主体とし
たものを含有させることが好ましい。
In the second high toughness cubic boron nitride-based sintered body, the length of the fibrous silicon carbide to be contained together with the zirconium oxide whose crystal form is mainly tetragonal is 10 to 10 mm.
It is preferable to include those mainly composed of whiskers having a thickness of 200 μm and a thickness of 0.05 to 5 μm.

[発明の作用] 本発明における第1の高靱性立方晶窒化硼素基焼結体
のように、結晶型が正方晶を主体とする酸化ジルコニウ
ムを含有させると、クラック先端の応力集中領域でこの
酸化ジルコニウムの結晶が正方晶から単斜晶へ変態し、
その結果、変態領域に体積膨張と複雑な双晶ひずみが生
じて、それらがクラックの伝播エネルギーを吸収してク
ラックの伸展が防止されるようになり、これにより焼結
体の耐欠損性が向上する。
[Operation of the Invention] When zirconium oxide mainly composed of tetragonal crystal is contained as in the first high-toughness cubic boron nitride-based sintered body of the present invention, this oxidation occurs in the stress concentration region at the crack tip. The zirconium crystal transforms from tetragonal to monoclinic,
As a result, volume expansion and complex twin strain occur in the transformation region, which absorb the propagation energy of the cracks and prevent the cracks from spreading, thereby improving the fracture resistance of the sintered body. I do.

また、本発明における第2の高靱性立方晶窒化硼素基
焼結体のように、結晶型が正方晶を主体とする酸化ジル
コニウムと共に繊維状炭化硅素を含有させると、結晶型
が正方晶を主体とする酸化ジルコニウムによる上記の作
用と共に、クラックの伝播エネルギーがこの繊維晶炭化
硅素の部分で抑止されるようになり、これにより結晶体
の耐欠損性が向上する。
Further, when the fibrous silicon carbide is contained together with the zirconium oxide mainly composed of tetragonal crystals as in the second high toughness cubic boron nitride-based sintered body in the present invention, the crystal form mainly comprises tetragonal crystals. In addition to the above-described action of the zirconium oxide, the propagation energy of cracks is suppressed at the portion of the fibrous silicon carbide, thereby improving the fracture resistance of the crystal.

ここで、結晶型が正方晶を主体とする酸化ジルコニウ
ムや繊維状炭化硅素を含有させるにあたり、これらの添
加量が5容量%を下廻ると、上記のような作用が得られ
ず、靱性の向上効果が十分でなくなる一方、これらの添
加量が40%容量%を越えると、焼結体における耐摩耗性
が低下するため、これらの含有量が5〜40容量%になる
ようにする。
Here, when the content of zirconium oxide or fibrous silicon carbide whose crystal type is mainly tetragonal is less than 5% by volume, the above effects cannot be obtained and the toughness is improved. On the other hand, if the effect is not sufficient, if the added amount exceeds 40% by volume, the wear resistance of the sintered body is reduced. Therefore, the content of these should be 5 to 40% by volume.

また、酸化ジルコニウムに対してY2O3を1.0〜4.0%モ
ル比で含有させると、正方晶の酸化ジルコニウムが安定
し、上記のようなクラックに対する作用が安定する。
Further, when Y 2 O 3 is contained in a molar ratio of 1.0 to 4.0% with respect to zirconium oxide, tetragonal zirconium oxide is stabilized, and the action against cracks as described above is stabilized.

さらに、上記の繊維状炭化硅素として、長さが10〜20
0μm、太さが0.05〜5μmのウイスカーが主体になる
ようにすると、この繊維状炭化硅素における弾性,強度
が高くなって、クラックの伝播阻止効果が大きくなる。
なお、ウイスカーの長さが10μmより短くなると、クラ
ックの伝播を阻止する効果が十分でない一方、200μm
より長くなると、焼結による緻密化が困難となる。ま
た、このウイスカーの太さが0.05μmより細くなると、
焼結中の他成分との反応性が高くなり繊維形状が維持で
きなくなる一方、5μmより太くなると、焼結による緻
密化が困難となる。
Further, as the above fibrous silicon carbide, a length of 10 to 20
When whiskers having a thickness of 0 μm and a thickness of 0.05 to 5 μm are mainly used, the elasticity and strength of the fibrous silicon carbide are increased, and the effect of preventing crack propagation is increased.
If the whisker length is shorter than 10 μm, the effect of preventing crack propagation is not sufficient,
If the length is longer, densification by sintering becomes difficult. Also, when the thickness of this whisker becomes thinner than 0.05 μm,
The reactivity with other components during sintering increases, and the fiber shape cannot be maintained. On the other hand, when the thickness is larger than 5 μm, it becomes difficult to densify by sintering.

また、この焼結体における耐熱性・耐摩耗性を低下さ
せないために、高融点,高強度のセラミックスとして、
周期律表第4a、5a、6a族遷移金属の炭化物・窒化物・硼
化物及びアルミニウムの1種または2種以上を10〜40容
量%添加する必要がある。この量が10容量%未満では耐
熱性・耐摩耗性の点で不十分であり、40容量%を越えて
添加すると耐欠損性が大きく低下する。
In order to keep the heat resistance and abrasion resistance of this sintered body from deteriorating, high melting point and high strength ceramics are used.
It is necessary to add 10 to 40% by volume of one or more of carbides, nitrides, borides and aluminum of transition metals of Groups 4a, 5a and 6a of the periodic table. If the amount is less than 10% by volume, the heat resistance and abrasion resistance are insufficient, and if it exceeds 40% by volume, the fracture resistance is greatly reduced.

さらに、この焼結体における焼結を容易にするために
は、鉄・コバルト・ニッケル・アルミニウム・シリコン
の1種または2種以上を2〜15容量%の範囲で添加する
必要がある。この量が2容量%未満では焼結が不十分で
あり、15容量%を越えると耐熱性・耐摩耗性が低下す
る。
Further, in order to facilitate sintering in this sintered body, it is necessary to add one or more of iron, cobalt, nickel, aluminum and silicon in a range of 2 to 15% by volume. If the amount is less than 2% by volume, sintering is insufficient, and if it exceeds 15% by volume, heat resistance and abrasion resistance decrease.

[実施例] 以下、この発明に係る高靱性立方晶窒化硼素基焼結体
の実施例について具体的に説明する。
EXAMPLES Examples of the high toughness cubic boron nitride-based sintered body according to the present invention will be specifically described below.

ここで、この発明の実施例に係る高靱性立方晶窒化硼
素基焼結体を製造するにあたっては、一般に、所定の配
合粉末をボールミルにて混合したのち、この混合粉末を
台座として用いる超硬合金製円板もしくは同混合粉末と
共に、金属製円筒容器内に充填し、これを超高圧発生装
置により圧力3〜6GPa、温度1273〜1873Kの条件下で、
数分から10数分間焼結することによって製造することが
できる。
Here, in manufacturing the high toughness cubic boron nitride-based sintered body according to the embodiment of the present invention, generally, after mixing a predetermined compounding powder with a ball mill, the cemented carbide using the mixed powder as a pedestal Along with the disc or the mixed powder, it is filled into a metal cylindrical container, and this is charged with an ultrahigh pressure generator under the conditions of a pressure of 3 to 6 GPa and a temperature of 1273 to 1873 K.
It can be manufactured by sintering for several minutes to several tens of minutes.

(実験例1) 表1に示す組成の所定量の炭化硅素ウイスカーを水ま
たはアルコール等の溶媒中に投入し、機械的かく拌や超
音波かく拌等により十分に分散させ、これに粒度0.2〜
4μmの残りの各粉末を所定量添加し、ボールミルにて
十分に混合したものを原料粉末とした。また、比較例と
して、炭化硅素ウイスカーを添加しない原料粉末もあわ
せて作製した。
(Experimental Example 1) A predetermined amount of silicon carbide whiskers having the composition shown in Table 1 was charged into a solvent such as water or alcohol, and sufficiently dispersed by mechanical stirring or ultrasonic stirring, and the particle size was reduced to 0.2 to 0.2%.
A predetermined amount of each of the remaining powders of 4 μm was added, and the mixture was sufficiently mixed by a ball mill to obtain a raw material powder. As a comparative example, a raw material powder to which no silicon carbide whisker was added was also prepared.

そして、上記の各粉末を超硬合金製円板と共にチタン
製円筒容器に充填し、それぞれ表1に示す焼結条件で焼
結を行なって各焼結試料を得た。
Then, each of the above powders was filled in a titanium cylindrical container together with a cemented carbide disk, and each was sintered under the sintering conditions shown in Table 1 to obtain each sintered sample.

次に、上記のようにして得た各焼結試料のビツカース
硬さ、破壊靱性値(圧痕破壊法)を調べると共に切削テ
ストを行なってその結果を下記の表2に示した。
Next, the Vickers hardness and fracture toughness (indentation fracture method) of each sintered sample obtained as described above were examined, and a cutting test was performed. The results are shown in Table 2 below.

なお、切削テストは上記の各焼結試料をSNGN120408の
超硬スローアウェイインサートのコーナーにロー付け
し、このインサートを用いて旋削による断続テストで行
なった。
The cutting test was performed by brazing each sintered sample to the corner of a cemented carbide throwaway insert of SNGN120408, and performing an intermittent test by turning using this insert.

ここで、被削材としては、SKD11(HRC50)で直径150m
m、長さ350mmのものに、長さ方向に巾10mmの溝を外周に
4ヶ所設けたものを用いた。そして、切削速度を100m/m
in、切込み深さを1mmにし、送り速度0.05mm/revから始
め、毎送り速度ごとに100回衝撃を加えて欠損していな
ければ、さらに0.03mm/revずつ速度を上げて欠損に到る
までの総衝撃回数を求めた。また、テストは各試料につ
き10回行ないその平均値で評価した。
Here, the work material is SKD11 (HRC50) with a diameter of 150m.
m, having a length of 350 mm and four grooves each having a width of 10 mm on the outer periphery in the length direction were used. And the cutting speed is 100m / m
in, depth of cut to 1 mm, starting from feed rate 0.05 mm / rev, apply impact 100 times at each feed rate, and if there is no defect, increase the speed by 0.03 mm / rev further until reaching the defect The total number of impacts was determined. The test was performed 10 times for each sample, and the average value was evaluated.

この結果、炭化硅素ウイスカーを含有させた各焼結試
料(No.1〜7)は、比較試料(No.101〜103)に比べて
破壊靱性値及び切削テストにおける衝撃回数が著しく向
上していた。
As a result, each of the sintered samples (Nos. 1 to 7) containing the silicon carbide whiskers had significantly improved fracture toughness values and the number of impacts in the cutting test as compared with the comparative samples (Nos. 101 to 103). .

(実施例2) 表3に示す組成で粒度0.2〜4μmの各原料粉末をボ
ールミルにて十分混合し、上記の実施例1の場合と同様
に、これらを超硬合金製円板と共にチタン製円筒容器に
充填し、表3に示す焼結条件で焼結を行なって各焼結試
料を得た。
(Example 2) Each raw material powder having a composition shown in Table 3 and a particle size of 0.2 to 4 µm was sufficiently mixed by a ball mill, and as in the case of Example 1 above, these were mixed together with a hard metal disc and a titanium cylinder Each container was filled and sintered under the sintering conditions shown in Table 3 to obtain each sintered sample.

そして、上記のようにして得た各焼結試料について
も、上記の実施例1と同様に、ビッカース硬さ、破壊靱
性値を調べると共に切削テストを行い、その結果を下記
の表4に示した。
For each of the sintered samples obtained as described above, the Vickers hardness and the fracture toughness were examined and a cutting test was performed in the same manner as in Example 1 described above, and the results are shown in Table 4 below. .

この結果、Y2O3が含有されて結晶型が正方晶を主体と
したものからなる酸化ジルコニウムを含有させた各焼結
試料(No.8〜14)は、前記の比較試料(No.101〜103)
に比べて破壊靱性値及び切削テストにおける衝撃回数が
著しく向上していた。
As a result, each of the sintered samples (Nos. 8 to 14) containing Y 2 O 3 and containing zirconium oxide composed mainly of a tetragonal crystal was the comparative sample (No. 101). ~ 103)
The fracture toughness value and the number of impacts in the cutting test were remarkably improved as compared to

(実施例3) 表5に示す組成の所定量の炭化硅素ウイスカーを水ま
たはアルコール等の溶媒中に投入し、機械的かく拌や超
音波かく拌等により十分に分散させ、これに粒度0.2〜
4μmの残りの各粉末を所定量添加し、ボールミルにて
十分に混合したものを原料粉末とした。
(Example 3) A predetermined amount of silicon carbide whiskers having the composition shown in Table 5 was charged into a solvent such as water or alcohol, and sufficiently dispersed by mechanical stirring, ultrasonic stirring, or the like.
A predetermined amount of each of the remaining powders of 4 μm was added, and the mixture was sufficiently mixed by a ball mill to obtain a raw material powder.

そして、これらの各原料粉末と台座となる超硬合金粉
末とを積層させて、それぞれジルコニウム製円筒容器に
充填し、表5に示す焼結条件で焼結を行なって各焼結試
料を得た。
Then, each of these raw material powders and the cemented carbide powder serving as a pedestal were laminated, each was filled in a cylindrical container made of zirconium, and sintered under the sintering conditions shown in Table 5 to obtain each sintered sample. .

次に、上記のようにして得た各焼結試料についても、
ビッカース硬さ、破壊靱性値(圧痕破壊法)を調べ、そ
の結果を下記の表6に示した。
Next, for each of the sintered samples obtained as described above,
The Vickers hardness and fracture toughness (indentation fracture method) were examined, and the results are shown in Table 6 below.

この結果、Y2O3が含有されて結晶型が正方晶を主体と
したものからなる酸化ジルコニウムと共に炭化硅素ウイ
スカーを含有させた各焼結試料(No.15〜18)は、前記
の比較試料(No.101〜103)に比べて破壊靱性値が著し
く向上していた。
As a result, each of the sintered samples (No. 15 to 18) containing silicon carbide whiskers together with zirconium oxide containing Y 2 O 3 and having a crystal form mainly composed of tetragonal crystals was the comparative sample. (No. 101-103), the fracture toughness value was remarkably improved.

また、上記の各焼結試料をSNGN120408の超硬スローア
ウェイチップのコーナーにロー付けし、このチップを用
いてフライスによる切削テストで行なった。
Further, each of the above sintered samples was brazed to the corner of a cemented carbide throwaway tip of SNGN120408, and a cutting test using a milling cutter was performed using this tip.

ここで、被削材としては、SKD61(HRC50)で切削巾80
mm、長さ200mmのものを用いた。そして、切削速度100m/
min、切込み深さ0.5mm、送り速度0.2mm/tooth一定で、
それぞれ10バスずつ切削したが、これらの各焼結試料を
用いたチップにおいては、何れも欠け、チッピングがな
く正常な摩耗を示した。
Here, the work material is SKD61 (HRC50) with a cutting width of 80
mm and a length of 200 mm were used. And cutting speed 100m /
min, depth of cut 0.5mm, feed rate 0.2mm / tooth constant,
Each of the chips was cut by 10 baths, but the chips using each of these sintered samples were chipped without chipping and showed normal wear without chipping.

これに対して、前記の比較試料(No.101〜103)を用
いたチップの場合、各々1、3、7パス目で欠損した。
On the other hand, in the case of the chips using the comparative samples (Nos. 101 to 103), the chips were lost at the first, third, and seventh passes, respectively.

[発明の効果] 以上のように、立方晶窒化硼素基焼結体に結晶型が正
方晶を主体としたものからなる酸化ジルコニウムを含有
させ、或はこの酸化ジルコニウムと共に繊維状炭化硅素
を含有させた場合、この立方晶窒化硼素基焼結体の破壊
靱性値が向上し、その結果、欠損に至るまでの衝撃回数
が増大して耐欠損性が著しく改善された。
[Effects of the Invention] As described above, a cubic boron nitride-based sintered body is made to contain zirconium oxide composed mainly of a tetragonal crystal, or to contain fibrous silicon carbide together with this zirconium oxide. In this case, the fracture toughness value of the cubic boron nitride-based sintered body was improved, and as a result, the number of impacts up to fracture was increased, and the fracture resistance was significantly improved.

したがって、本発明における立方晶窒化硼素基焼結体
は、その靱性が強化され、これにより工具材料としての
信頼性を大きく改善したものである。
Therefore, the cubic boron nitride-based sintered body in the present invention has enhanced toughness, thereby greatly improving the reliability as a tool material.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結晶型が正方晶を主体とする酸化ジルコニ
ウムが5〜40容量%の範囲で含有されると共に、周期律
表第4a、5a、6a族遷移金属の炭化物・窒化物・硼化物お
よび酸化アルミニウムの1種または2種以上が10〜40容
量%、鉄・コバルト・ニッケル・アルミニウム・シリコ
ンの1種または2種以上が2〜15容量%の範囲で含有さ
れ、残部が立方晶窒化硼素であることを特徴とする高靱
性立方晶窒化硼素基焼結体。
1. A zirconium oxide having a crystal form of mainly tetragonal in a range of 5 to 40% by volume, and a carbide, nitride or boride of a transition metal belonging to Groups 4a, 5a or 6a of the periodic table. One or more of aluminum oxide in the range of 10 to 40% by volume, and one or more of iron, cobalt, nickel, aluminum and silicon in the range of 2 to 15% by volume, and the rest being cubic nitride A high toughness cubic boron nitride-based sintered body characterized by being boron.
【請求項2】特許請求の範囲第1項に記載の高靱性立方
晶窒化硼素基焼結体において、酸化ジルコニウムに対し
てY2O3が1.0〜4.0%モル比で含有されて、結晶型が正方
晶を主体としたものからなる酸化ジルコニウムが含有さ
れていることを特徴とする高靱性立方晶窒化硼素基焼結
体。
2. A high-toughness cubic boron nitride-based sintered body according to claim 1, wherein Y 2 O 3 is contained in a molar ratio of 1.0 to 4.0% with respect to zirconium oxide to form a crystal. Characterized in that it contains zirconium oxide mainly composed of tetragonal crystals.
【請求項3】結晶型が正方晶を主体とする酸化ジルコニ
ウムと共に繊維状炭化硅素が含有され、酸化ジルコニウ
ムと繊維炭化硅素とが合わせて5〜40容量%の範囲で含
有されると共に、周期律表第4a、5a、6a族遷移金属の炭
化物・窒化物・硼化物および酸化アルミニウムの1種ま
たは2種以上が10〜40容量%、鉄・コバルト・ニッケル
・アルミニウム・シリコンの1種または2種以上が2〜
15容量%の範囲で含有され、残部が立方晶窒化硼素であ
ることを特徴とする高靱性立方晶窒化硼素基焼結体。
3. A fibrous silicon carbide is contained together with zirconium oxide whose crystal form is mainly tetragonal, and a total content of zirconium oxide and fibrous silicon carbide is in the range of 5 to 40% by volume, and periodicity is controlled. One or more of carbides, nitrides, borides and aluminum oxides of transition metals of Tables 4a, 5a, 6a are 10 to 40% by volume, and one or two of iron, cobalt, nickel, aluminum, silicon Above is 2
A high-toughness cubic boron nitride-based sintered body containing 15% by volume and the balance being cubic boron nitride.
【請求項4】特許請求の範囲第3項に記載の高靱性立方
晶窒化硼素基焼結体において、酸化ジルコニウムに対し
てY2O3が1.0〜4.0%モル比で含有されて、結晶型が正方
晶を主体としたものからなる酸化ジルコニウムが含有さ
れていることを特徴とする高靱性立方晶窒化硼素基焼結
体。
4. A high-toughness cubic boron nitride-based sintered body according to claim 3, wherein Y 2 O 3 is contained in a molar ratio of 1.0 to 4.0% with respect to zirconium oxide to form a crystal. Characterized in that it contains zirconium oxide mainly composed of tetragonal crystals.
【請求項5】特許請求の範囲第3項又は第4項に記載の
高靱性立方晶窒化硼素基焼結体において、上記の繊維状
炭化硅素が、長さ10〜20μm、太さ0.05〜5μmのウイ
スカーを主体としたものからなることを特徴とする高靱
性立方晶窒化硼素基焼結体。
5. The high-toughness cubic boron nitride-based sintered body according to claim 3 or 4, wherein the fibrous silicon carbide has a length of 10 to 20 μm and a thickness of 0.05 to 5 μm. A high toughness cubic boron nitride-based sintered body characterized by being mainly composed of whiskers.
JP62137209A 1987-05-30 1987-05-30 High toughness cubic boron nitride based sintered body Expired - Lifetime JP2576867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137209A JP2576867B2 (en) 1987-05-30 1987-05-30 High toughness cubic boron nitride based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137209A JP2576867B2 (en) 1987-05-30 1987-05-30 High toughness cubic boron nitride based sintered body

Publications (2)

Publication Number Publication Date
JPS63303029A JPS63303029A (en) 1988-12-09
JP2576867B2 true JP2576867B2 (en) 1997-01-29

Family

ID=15193339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137209A Expired - Lifetime JP2576867B2 (en) 1987-05-30 1987-05-30 High toughness cubic boron nitride based sintered body

Country Status (1)

Country Link
JP (1) JP2576867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103158287A (en) * 2011-12-09 2013-06-19 郑州博特硬质材料有限公司 Glomerocryst cubic boron nitride composite sheet and preparation method for same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0823328D0 (en) 2008-12-22 2009-01-28 Element Six Production Pty Ltd Ultra hard/hard composite materials
GB201002372D0 (en) * 2010-02-12 2010-03-31 Element Six Production Pty Ltd A superhard multiphase material and method of using same
CA2836778C (en) * 2011-06-21 2020-11-17 Diamond Innovations, Inc. Composite compacts formed of ceramics and low-volume cubic boron nitride and method of manufacture
CN108017393A (en) * 2017-10-31 2018-05-11 江西纳朴实业有限公司 A kind of normal pressure-sintered hexagonal boron nitride ceramic preparation
CN111996474A (en) * 2020-08-06 2020-11-27 郑州利孚新材料有限公司 Metal ceramic part and preparation method thereof
CN113186441B (en) * 2021-04-27 2022-02-22 湖北中烟工业有限责任公司 Nickel-zirconia cermets and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855108A (en) * 1971-11-12 1973-08-02

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103158287A (en) * 2011-12-09 2013-06-19 郑州博特硬质材料有限公司 Glomerocryst cubic boron nitride composite sheet and preparation method for same
CN103158287B (en) * 2011-12-09 2015-06-10 郑州博特硬质材料有限公司 Glomerocryst cubic boron nitride composite sheet and preparation method for same

Also Published As

Publication number Publication date
JPS63303029A (en) 1988-12-09

Similar Documents

Publication Publication Date Title
JP5428118B2 (en) cBN sintered body and cBN sintered body tool
CA1291878C (en) Ceramic cutting tool inserts
US4852999A (en) Cutting tool
JPS6227033B2 (en)
EP0476068B1 (en) Alumina-titanium carbide-silicon carbide composition for cutting tools
JP2576867B2 (en) High toughness cubic boron nitride based sintered body
EP0262654A1 (en) Silicon nitride sintered material for cutting tools and process for making the same
JP2523452B2 (en) High strength cubic boron nitride sintered body
US5326731A (en) Ceramic compositions for wear resistant applications
US4925458A (en) Cutting tool
JP2540662B2 (en) Whisker-reinforced ceramic cutting tool material
US5106788A (en) Process for producing highly tough ceramics
JPH0881270A (en) Ceramic sintered compact containing cubic boron nitride and cutting tool
US5053363A (en) Ceramic cutting material reinforced by whiskers
JP3094412B2 (en) Ceramic cutting tool and its manufacturing method
JPH1110409A (en) Ceramics cutting tool and manufacture thereof
JP2604155B2 (en) Ceramic tool with coating layer
JPH0531514B2 (en)
JP4889226B2 (en) Composite sintered body and cutting tool
JPS59217676A (en) Silicon nitride-base sintering material for cutting tool
JPH01215754A (en) Sintered material based on aluminum oxide and its production
JPH03126659A (en) Superhard ceramics
JP2002192405A (en) Cutting tool
JP2001253767A (en) Alumina-based composite sintered compact, wear-resistant member and method for manufacturing the same sintered compact
JPH04304903A (en) Ceramic cutting tool

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 11