JP2573284B2 - Operation method of reactor well pool cooling system - Google Patents

Operation method of reactor well pool cooling system

Info

Publication number
JP2573284B2
JP2573284B2 JP63037431A JP3743188A JP2573284B2 JP 2573284 B2 JP2573284 B2 JP 2573284B2 JP 63037431 A JP63037431 A JP 63037431A JP 3743188 A JP3743188 A JP 3743188A JP 2573284 B2 JP2573284 B2 JP 2573284B2
Authority
JP
Japan
Prior art keywords
pool
reactor
water
residual heat
heat removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63037431A
Other languages
Japanese (ja)
Other versions
JPH01213596A (en
Inventor
隆久 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP63037431A priority Critical patent/JP2573284B2/en
Publication of JPH01213596A publication Critical patent/JPH01213596A/en
Application granted granted Critical
Publication of JP2573284B2 publication Critical patent/JP2573284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子炉圧力容器を内蔵する原子炉ウエルプー
ルと燃料プールのプール水を冷却する原子炉ウエルプー
ル冷却設備の運転方法に係り、特に、定期検査時の作業
環境の改善を図ることができる原子炉ウエルプール冷却
設備の運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention is an operation of a reactor well pool cooling system for cooling a reactor well pool containing a reactor pressure vessel and a pool water of a fuel pool. In particular, the present invention relates to an operation method of a reactor well pool cooling facility capable of improving a working environment at the time of a periodic inspection.

(従来の技術) 一般に原子力プラントでは例えば約1年に1回程度の
割合で定期検査および燃料の交換が行なわれ、その際に
は原子炉ウエルプールと機器仮置プールに水張りが行な
われる。
(Prior Art) Generally, in a nuclear power plant, periodic inspection and fuel exchange are performed, for example, about once a year, and at that time, the reactor well pool and the equipment temporary storage pool are filled with water.

また、燃料交換時等では原子炉圧力容器内の使用済燃
料等を燃料プール等の水中にて移動するために燃料プー
ルゲートが開放される。
Further, at the time of refueling or the like, the fuel pool gate is opened in order to move spent fuel and the like in the reactor pressure vessel underwater in the fuel pool and the like.

したがって、この場合には原子炉圧力容器、原子炉ウ
エルプール、機器仮置プールおよび燃料プールが相互に
連通し、一つの大きなプールを形成する。
Therefore, in this case, the reactor pressure vessel, the reactor well pool, the equipment temporary pool, and the fuel pool communicate with each other to form one large pool.

ところで、原子炉圧力容器には炉心燃料が、燃料プー
ルには使用済燃料がそれぞれ収容され、各々崩破熱を発
生させているので、これを残留熱除去系と燃料プール冷
却系とを有する原子炉ウエルプール冷却設備によりプー
ル水の冷却と浄化とを行なう。
By the way, core fuel is stored in the reactor pressure vessel, and spent fuel is stored in the fuel pool, respectively, and each of them generates rupture heat. Therefore, the reactor has a residual heat removal system and a fuel pool cooling system. Cooling and purification of pool water is performed by a furnace well pool cooling system.

原子炉ウエルプール冷却設備の一例は第5図に示すよ
うに構成され、例えば1系統を予備とする2系統Aa,Ab
の残留熱除去系Aと1系統の燃料プール冷却系Bとを有
する。
An example of the reactor well pool cooling system is configured as shown in FIG. 5, for example, two systems Aa and Ab with one system as spare
And a single fuel pool cooling system B.

各残留熱除去系Aa,Abは原子炉ウエルプール1内に内
蔵された原子炉圧力容器2の炉心3の下方より取水した
炉水の一部を、残留熱除去ポンプ4a,4bにより昇圧し、
さらに、残留熱除去熱交換器5a,5bにより冷却した後、
再び原子炉圧力容器2に、その炉心3の上方にて戻すよ
うに構成されており、残留熱除去ポンプ4a,4bに分解点
検を行なうために燃料の崩壊熱の減衰を持って1系統運
転に切換えられる。
Each of the residual heat removal systems Aa and Ab pressurizes a part of the reactor water taken from below the core 3 of the reactor pressure vessel 2 incorporated in the reactor well pool 1 by the residual heat removal pumps 4a and 4b.
Furthermore, after cooling by the residual heat removal heat exchangers 5a and 5b,
It is configured to return to the reactor pressure vessel 2 above the core 3 again, so that the residual heat removal pumps 4a and 4b can be disassembled and inspected to reduce the decay heat of the fuel to one-system operation. Is switched.

また、各残留熱除去系Aa,Abはサプレッションプール
6のプール水を上記残留熱除去ポンプ4a,4b、残留熱除
去熱交換器5a,5bをそれぞれ通水し、両系Aa,Abの合流点
で合流させてから移送ライン7を通して廃棄物処理系8
へ移送するようになっている。
Each of the residual heat removal systems Aa and Ab passes the pool water of the suppression pool 6 through the residual heat removal pumps 4a and 4b and the residual heat removal heat exchangers 5a and 5b, respectively. And then through the transfer line 7 to the waste treatment system 8
To be transferred to

また、移送ライン7の途中は接続ライン9を介してサ
プレッションプール6に接続されており、残留熱除去系
Aの起動準備として行なわれる系統暖機に、使用した炉
水の一部をサプレッションプール6や廃棄物処理系8へ
排出するためにも用いられる。
A part of the transfer water 7 is connected to the suppression pool 6 via a connection line 9 and connected to the suppression pool 6. And discharged to the waste treatment system 8.

一方、燃料プール冷却系Bは使用済燃料21をプール水
中で保管する燃料プール22のプール水の一部を一旦サー
ジタンク23により貯蔵してから燃料プール冷却ポンプ24
により昇圧し、燃料プール冷却用熱交換器25により冷却
してから、さらにろ過脱塩装置26によりろ過脱塩し、再
び燃料プール22、もしくは原子炉ウエルプール1に戻す
ようになっている。
On the other hand, the fuel pool cooling system B temporarily stores a part of the pool water of the fuel pool 22 for storing the spent fuel 21 in the pool water by the surge tank 23 and then stores the fuel pool cooling pump 24 in the pool.
After cooling by the heat exchanger 25 for cooling the fuel pool, the water is further filtered and desalinated by the filter and desalination unit 26 and returned to the fuel pool 22 or the reactor well pool 1 again.

そして、燃料プール22が単独で水張りされていて、原
子炉ウエルプール1とは連通していない時に、地震等が
発生した時等の非常時に、サプレッションプール6のプ
ール水を燃料プール22に給水し、あるいは、燃料プール
22のプール水を残留熱除去系Aa,Abによっても冷却する
ために残留熱除去系Aa,Abと燃料プール冷却系Bとを吸
込側・出口側連絡ラインにより連絡している。
Then, when the fuel pool 22 is solely filled with water and is not in communication with the reactor well pool 1, the pool water of the suppression pool 6 is supplied to the fuel pool 22 in an emergency such as when an earthquake occurs. Or the fuel pool
In order to cool the pool water of 22 also by the residual heat removal systems Aa and Ab, the residual heat removal systems Aa and Ab and the fuel pool cooling system B are connected by a suction side / outlet side connection line.

すなわち、燃料プール冷却ポンプ24の上流側は例えば
2系統の吸込側練絡ライン27a,27bを介して2系統の残
留熱除去ポンプ4a,4bの各吸込側にそれぞれ練絡され、
しかも、残留熱除去熱交換器5a,5bの出口側が2系統の
出口側連絡ライン28a,28bを介して燃料プール冷却系の
ろ過脱塩器26の出口側に練絡されている。
That is, the upstream side of the fuel pool cooling pump 24 is kneaded to each suction side of the two systems of residual heat removal pumps 4a and 4b via, for example, two systems of suction side kneading lines 27a and 27b,
In addition, the outlet sides of the residual heat removal heat exchangers 5a and 5b are knitted to the outlet side of the filter desalter 26 of the fuel pool cooling system via two outlet side connection lines 28a and 28b.

したがって、サプレッションプール6のプール水の一
部は例えば2系統の給水ライン29a,29bを介して残留熱
除去ポンプ4a,4bに吸込まれ、ここで昇圧されてから残
留熱除去熱交換器5a,5bにて冷却され、さらに、出口側
連絡ライン28a,28bを通して燃料プール冷却系Bのろ過
脱塩装置26の下流側に供給され、燃料プール22に供給さ
れる。
Therefore, a part of the pool water of the suppression pool 6 is sucked into the residual heat removal pumps 4a and 4b through, for example, two water supply lines 29a and 29b, and is pressurized here, and then the residual heat removal heat exchangers 5a and 5b. At the downstream side of the filtration and desalination unit 26 of the fuel pool cooling system B through the outlet side connection lines 28a and 28b.

また、燃料プール22のプール水の一部はサージタンク
23および吸込側連絡ライン27a,27bをそれぞれ経て残留
熱除去ポンプ4a,4bの吸込側に吸込まれ、ここで昇圧さ
れてから残留熱除去熱交換器5a,5bにより冷却され、出
口側連絡ライン28a,28bにより再び燃料プール22のろ過
脱塩装置26の下流側へ戻される。
A part of the pool water of the fuel pool 22 is a surge tank.
23 and the suction side communication lines 27a and 27b, respectively, are sucked into the suction side of the residual heat removal pumps 4a and 4b, where the pressure is increased and then cooled by the residual heat removal heat exchangers 5a and 5b, and the outlet side communication line 28a , 28b returns the fuel pool 22 to the downstream side of the filtration and desalination unit 26 again.

なお、第5図中、残留熱除去系Aa,Abの残留熱除去ポ
ンプ4a,4bの吸込側の吸込ラインには吸込弁10a,10bが介
装され、残留熱除去熱交換器5a,5bの前後には入口弁11
a,11bと出口弁12a,12bとがそれぞれ配設され、残留熱除
去熱交換器5a,5bをそれぞれバイパスするバイパスライ
ン13a,13bにはバイパス弁14a,14bがそれぞれ介装されて
いる。
In FIG. 5, suction valves 10a and 10b are interposed in the suction lines on the suction side of the residual heat removal pumps 4a and 4b of the residual heat removal systems Aa and Ab, and the residual heat removal heat exchangers 5a and 5b are provided. Front and rear inlet valves 11
a, 11b and outlet valves 12a, 12b are provided respectively, and bypass valves 14a, 14b are interposed in bypass lines 13a, 13b respectively bypassing the residual heat removal heat exchangers 5a, 5b.

また、残留熱除去熱交換器5a,5bにより冷却された炉
水の一部を再び原子炉圧力容器2に戻す注入ライン15a,
15bには注入弁16a,16bがそれぞれ介装されている。
Further, an injection line 15a, which returns a part of the reactor water cooled by the residual heat removal heat exchangers 5a, 5b to the reactor pressure vessel 2 again.
Injection valves 16a and 16b are interposed in 15b, respectively.

さらに、吸込側連絡ライン27a,27bには吸込側連絡弁29
a,29bが、出口側連絡ライン28a,28bには出口側連絡弁30
a,30bがそれぞれ介装され、第5図中、符号31a,31bは廃
棄物系連絡弁、32は給水弁である。
In addition, the suction side communication lines 29a and 27b are connected to the suction side communication valve 29.
a, 29b are provided on the outlet side communication line 28a, 28b with the outlet side communication valve 30.
In FIG. 5, reference numerals 31a and 31b denote waste-based communication valves, and reference numeral 32 denotes a water supply valve.

(発明が解決しようとする課題) ところで、近年では原子力プラントの稼働率の向上を
図るために、定検期間の短縮と、定検の作業環境の改善
を図ることが重要な設計目標の一つとなっている。
(Problems to be Solved by the Invention) In recent years, in order to improve the operation rate of a nuclear power plant, it is one of the important design goals to shorten the periodic inspection period and to improve the work environment for the periodic inspection. Has become.

定検時の原子炉ウエルプール1と燃料プール22のプー
ル水温は上限を例えば約50℃に抑えるように各設備の設
計が行なわれているが、これらプール1,22のプール水面
近傍での作業性を考慮すると、プール水温は低い程望ま
しい。
Each facility is designed to keep the upper limit of the pool water temperature of the reactor well pool 1 and the fuel pool 22 at the time of regular inspection to, for example, about 50 ° C. Considering the nature, the lower the pool water temperature is, the better.

しかしながら、定検時における原子炉ウェルプール冷
却設備の従来の運転方法では、原子炉圧力容器2の下部
から取水した炉水の一部が再び原子炉圧力容器2へ、ま
た、燃料プール22から取水したプール水の一部が再び燃
料プール22、もしくは原子炉ウエルプール1へ注入する
ように運転されるので、原子炉圧力容器2内の炉心3に
より核加熱されて昇温した炉水は炉心3の上方と下方と
の温度差により自然対流を生じて上方に上昇し、原子炉
ウエルプール1の水面に達し、その水面付近の水温を平
均温度より高くし、定検時の作業環境を好ましくないも
のとするという課題がある。
However, in the conventional operation method of the reactor well pool cooling system at the time of the regular inspection, a part of the reactor water withdrawn from the lower part of the reactor pressure vessel 2 is again returned to the reactor pressure vessel 2 and the fuel pool 22 is withdrawn. A part of the pool water is operated so as to be injected again into the fuel pool 22 or the reactor well pool 1, and the reactor water heated by nuclear heating by the core 3 in the reactor pressure vessel 2 is heated by the reactor core 3. Due to the temperature difference between the upper part and the lower part, natural convection occurs and rises upward, reaches the water surface of the reactor well pool 1, raises the water temperature near the water surface above the average temperature, and the working environment at the time of regular inspection is unfavorable. There is a problem to be taken.

そこで本発明は上記事情を考慮してなされたもので、
その目的は原子炉ウエルプールの水面近傍の水温の上昇
を防止し、原子炉ウエルプールの水面近傍での作業環状
の改善を図ることができる原子炉ウエルプール冷却設備
の運転方法を提供することにある。
Therefore, the present invention has been made in consideration of the above circumstances,
The purpose is to provide a method of operating a reactor well pool cooling system capable of preventing a rise in water temperature near the water surface of a reactor well pool and improving a working loop near the water surface of the reactor well pool. is there.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は、原子炉圧力容器から取水した炉水の一部
を、残留熱除去系により冷却浄化した後に、燃料プール
冷却系の一部を通して、再び原子炉ウエルプールおよび
燃料プールへ注入し、原子炉ウエルプール内における原
子炉圧力容器の炉心周りの炉水に下向きの流れを与える
ことにより、炉心にて核加熱されて昇温する炉水の昇流
を抑え、原子炉ウエルプールの水面近傍におけるプール
水温の上昇防止を図ったものである。
(Means for Solving the Problems) In the present invention, after a part of reactor water taken from a reactor pressure vessel is cooled and purified by a residual heat removal system, the reactor well is again passed through a part of a fuel pool cooling system. By injecting into the pool and fuel pool and giving a downward flow to the reactor water around the core of the reactor pressure vessel in the reactor well pool, the upflow of reactor water that is heated by nuclear heating in the reactor core is suppressed. The purpose of the present invention is to prevent a rise in pool water temperature near the water surface of a reactor well pool.

すなわち本発明は、原子炉圧力容器内の炉水の一部を
その下部より取水して残留熱除去用熱交換器により冷却
し、再び原子炉圧力容器に戻す残留熱除去系と、燃料プ
ールのプール水の一部を取水して燃料プール冷却用熱交
換器により冷却してからろ過脱塩装置によりろ過脱塩
し、再び燃料プールと上記原子炉圧力容器に連通する原
子炉ウエルプールとに戻す燃料プール冷却系とを有し、
上記残留熱除去用熱交換器の出口側を上記ろ過脱塩装置
の出口側に出口側連絡ラインにより連絡させる原子炉ウ
エルプール冷却設備の運転方法において、上記残留熱除
去用熱交換器により冷却した冷却水の一部を上記出口側
連略ラインと上記燃料プール冷却系の一部とを通して、
上記原子炉ウエルプールおよび燃料プールに注入するこ
とを特徴とする。
That is, the present invention provides a residual heat removal system that takes in a part of the reactor water in the reactor pressure vessel from the lower part, cools the water by the residual heat removal heat exchanger, and returns it to the reactor pressure vessel again. A part of the pool water is taken, cooled by the heat exchanger for cooling the fuel pool, filtered and desalted by the filter desalination apparatus, and returned to the fuel pool and the reactor well pool communicating with the reactor pressure vessel again. A fuel pool cooling system,
In the method for operating a reactor well pool cooling system in which an outlet side of the heat exchanger for removing residual heat is connected to an outlet side of the filtration and desalination apparatus by an outlet-side connection line, cooling is performed by the heat exchanger for removing residual heat. Pass a part of the cooling water through the outlet side schematic line and a part of the fuel pool cooling system,
The fuel is injected into the reactor well pool and the fuel pool.

(作用) 原子炉圧力容器から取水された炉水の一部は残留熱除
去系により冷却浄化されてから、出口側連絡ラインを通
して燃料プール冷却系に供給され、ここの一部を通っ
て、再び原子炉ウエルプールおよび燃料プールへ戻され
る。
(Action) A part of the reactor water taken from the reactor pressure vessel is cooled and purified by the residual heat removal system, and then supplied to the fuel pool cooling system through the outlet side connection line. It is returned to the reactor well pool and fuel pool.

したがって、原子炉ウエルプールの底部に連通する原
子炉圧力容器内の炉心周りの炉水には、原子炉ウエルプ
ールからの冷却水により下向きの流れが生じ、これが炉
心により核加熱されて昇温する炉水の昇流を阻止するよ
うに作用する。
Therefore, in the reactor water around the core in the reactor pressure vessel communicating with the bottom of the reactor well pool, a downward flow is generated by the cooling water from the reactor well pool, which is nuclear-heated by the reactor core and heated. It acts to prevent the upflow of reactor water.

このために、原子炉圧力容器の炉心により核加熱され
た高温の炉水が原子炉ウエルプールの水面に向けて上昇
しようとするのを防止し、原子炉ウエルプールの水面近
傍におけるプール水の温度上昇を抑制することができ
る。
This prevents high-temperature reactor water, which has been nuclear-heated by the core of the reactor pressure vessel, from rising toward the water surface of the reactor well pool, and reduces the temperature of the pool water near the water surface of the reactor well pool. The rise can be suppressed.

したがって、原子炉ウエルプールの水面周りにおける
定検作業等の作業環境の改善を図ることができる。
Therefore, it is possible to improve the working environment such as the periodic inspection work around the water surface of the reactor well pool.

(実施例) 以下本発明の実施例を第1図〜第4図に基づいて説明
する。なお、第1図〜第4図中、第5図と共通する部分
には同一符号を付している。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. In FIGS. 1 to 4, parts common to those in FIG. 5 are denoted by the same reference numerals.

第1図は本発明の第1実施例を説明するための原子炉
ウェルプール冷却設備の系統図であり、本実施例が適用
される原子炉ウェルプール冷却設備の構成は第5図で示
すものとほぼ同様であるが、これと異なる点は、一対の
出口側連絡ライン28a,28bを集合させる集合ライン28に
連絡止め弁33を介装すると共に、この連絡止め弁33の上
流側に排水ライン50を介して建屋内排水系51を連絡さ
せ、この排水ライン50に排水弁52を介装させ、吸込側連
絡ライン27a,27bと吸込側連絡弁29a,29bとを省略したこ
とにある。
FIG. 1 is a system diagram of a reactor well pool cooling system for explaining a first embodiment of the present invention, and the configuration of a reactor well pool cooling system to which the present embodiment is applied is shown in FIG. However, the difference is that a stop valve 33 is interposed in a collecting line 28 for collecting a pair of outlet side connecting lines 28a and 28b, and a drain line is provided upstream of the stop valve 33. The drainage system 51 in the building is communicated via 50, the drainage line 52 is interposed in the drainage line 50, and the suction side communication lines 27a, 27b and the suction side communication valves 29a, 29b are omitted.

すなわち、第1実施例は定検時に第1図に示すよう
に、一方の残留熱除去系Abの例えば吸込弁10b、入口弁1
1b、出口弁12bおよび注入弁16bをそれぞれ開放する一
方、バイパス弁14bを閉じ、原子炉圧力容器2の下部か
ら炉水の一部を吸込み、残留熱除去ポンプ4bにより昇圧
してから残留熱除去熱交換器5bにより冷却し、さらに、
注入ライン15bを介して原子炉圧力容器2に再び戻す。
That is, in the first embodiment, as shown in FIG. 1 at the time of regular inspection, for example, the suction valve 10b and the inlet valve 1 of one of the residual heat removal systems Ab are used.
1b, the outlet valve 12b and the injection valve 16b are respectively opened, the bypass valve 14b is closed, a part of the reactor water is sucked from the lower part of the reactor pressure vessel 2, and the residual heat is removed by raising the pressure by the residual heat removal pump 4b. Cooled by the heat exchanger 5b,
It is returned to the reactor pressure vessel 2 again via the injection line 15b.

また、一対の廃棄物系連絡弁31a,31b、他方の残留熱
除去系Aaの入口弁11a、バイパス弁14a、一対の出口側連
絡弁30a,30b、連絡止め弁33、給水弁32をそれぞれ開放
する一方、他の残留熱除去系Aaの出口弁12a、注入弁16a
をそれぞれ閉じる。
In addition, the pair of waste communication valves 31a and 31b, the other residual heat removal system Aa, the inlet valve 11a, the bypass valve 14a, the pair of outlet communication valves 30a and 30b, the communication stop valve 33, and the water supply valve 32 are opened. On the other hand, the outlet valve 12a and the injection valve 16a of the other residual heat removal system Aa
Close each.

このために、原子炉圧力容器2の下部より一方の残留
熱除去系Abの吸込弁10bより吸込まれた炉水の一部は、
一方の残留熱除去系Abの残留熱除去ポンプ4bにより昇圧
されてから、残留熱除去熱交換器5bにより冷却され、さ
らに、その一部は注入ライン15bへ、残りの冷却水は廃
棄物処理系連絡弁31b,31aを介して他の残留熱除去系Aa
の残留熱除去熱交換器5aへそれぞれ分流し、さらに、こ
の注入ライン15bへ案内された炉水の一部は一方の出口
側連絡ライン28へ分流し、その残りは注入ライン15bを
通って再び原子炉圧力容器2へ炉心3の上方にて戻され
る。
For this reason, part of the reactor water sucked from the suction valve 10b of one of the residual heat removal systems Ab from the lower part of the reactor pressure vessel 2 is:
The pressure is increased by the residual heat removal pump 4b of one of the residual heat removal systems Ab, and then cooled by the residual heat removal heat exchanger 5b, a part of which is further supplied to the injection line 15b, and the remaining cooling water is supplied to the waste treatment system. Other residual heat removal system Aa via communication valves 31b, 31a
And the part of the reactor water guided to the injection line 15b is diverted to one outlet side connection line 28, and the rest is again passed through the injection line 15b. It is returned to the reactor pressure vessel 2 above the core 3.

他方の残留熱除去熱交換器5aへ分流した炉水はここで
冷却されてから、バイパスライン13aを経て他方の出口
側連絡ライン28aへ案内される。
The reactor water diverted to the other residual heat removal heat exchanger 5a is cooled here, and then guided to the other outlet side connection line 28a via the bypass line 13a.

したがって、残留熱除去系Aからの炉水の一部はその
一方Abの注入ライン15aを介して再び原子炉圧力容器2
に戻されると共に、一対の出口側連絡ライン28a,28bを
介して燃料プール冷却系Bのろ過脱塩装置26の下流側に
注入され、さらに、その配管の一部を通って燃料プール
22と原子炉ウエルプール1とに冷却水としてそれぞれ注
入される。
Therefore, a part of the reactor water from the residual heat removal system A is again supplied to the reactor pressure vessel 2 through the Ab injection line 15a.
And is injected downstream of the filtration and desalination device 26 of the fuel pool cooling system B through a pair of outlet side connection lines 28a and 28b,
Cooling water is injected into the reactor well 22 and the reactor well pool 1, respectively.

原子炉ウエルプール1はその底部下方の原子炉圧力容
器2と上下方向に連通しているので、この原子炉ウエル
プール1に冷却水が注入されると、原子炉圧力容器2の
炉心3周りの炉水に図中矢印に示すように下向きの流れ
が生ずる。
Since the reactor well pool 1 is vertically communicated with the reactor pressure vessel 2 below the bottom thereof, when the cooling water is injected into the reactor well pool 1, the reactor well pool 1 around the core 3 of the reactor pressure vessel 2 is formed. A downward flow occurs in the reactor water as indicated by the arrow in the figure.

したがって、この下向きの炉水の流れが炉心3により
核加熱されて上方に向けて昇流しようとする炉水の昇流
を阻止するので、高温水が原子炉ウエルプール1の水面
に到達し、その水面近傍の水温を昇温するのを防止する
ことができる。その結果、原子炉ウエルプール1の水面
周りにおける定検作業等の作業環境の改善を図ることが
できる。
Therefore, the downward flow of the reactor water is heated by the core 3 by the core 3 and prevents the upward flow of the reactor water, so that the high-temperature water reaches the water surface of the reactor well pool 1, It is possible to prevent the water temperature near the water surface from rising. As a result, it is possible to improve the working environment such as the periodic inspection work around the water surface of the reactor well pool 1.

このような原子炉ウェルプール冷却設備の運転は定検
時のみに行なわれ、常時は行なわないので、一対の出口
側連絡ライン28a,28bには配管内面の腐食によるクラッ
ドが発生している。
Since the operation of the reactor well pool cooling system is performed only at the time of regular inspection and is not performed at all times, cladding is generated in the pair of outlet side connection lines 28a and 28b due to corrosion of the pipe inner surface.

そこで、この出口側連絡ライン28a,28bのクラッドを
除去するために、連絡止め弁33を閉じる一方、排水弁52
を開けて、出口側連絡ライン28a,28b内の滞溜水を建屋
内排水系51へ排水させ、クラッドを除去させる。
Therefore, in order to remove the cladding of the outlet side communication lines 28a and 28b, while closing the communication stop valve 33, the drain valve 52
Is opened, the accumulated water in the outlet side connection lines 28a, 28b is drained to the building interior drainage system 51, and the cladding is removed.

第2図は本発明の第2実施例を説明するための原子炉
ウェルプール冷却設備の系統図であり、本実施例が適用
される原子炉ウェルプール冷却設備の構成は第1図で示
す実施例のものと殆ど同様であるが、異なる点は排水ラ
イン50、建屋内排水系51、排水弁52および連絡止め弁33
を省略している点にある。
FIG. 2 is a system diagram of a reactor well pool cooling system for explaining a second embodiment of the present invention. The configuration of the reactor well pool cooling system to which the present embodiment is applied is shown in FIG. It is almost the same as the example, except that the drainage line 50, the drainage system 51 in the building, the drainage valve 52 and the stop valve 33 are provided.
Is omitted.

また、第2実施例は第2図に示すように原子炉ウェル
プール冷却設備の各弁の開閉操作を第1実施例と殆ど同
様に行なうが次の点で異なる。
In the second embodiment, as shown in FIG. 2, opening and closing operations of each valve of the reactor well pool cooling system are performed in substantially the same manner as in the first embodiment, but differ in the following points.

(1)他方の残留熱除去系Aaにおる残留熱除去熱交換器
5aの出口弁12aを閉から開にする。
(1) Residual heat removal heat exchanger in the other residual heat removal system Aa
The outlet valve 12a of 5a is changed from closed to open.

(2)残留熱除去系Aの廃棄物処理系連絡弁31a,31bを
開から閉にする。
(2) The waste treatment system communication valves 31a and 31b of the residual heat removal system A are closed from open.

(3)出口側連絡弁30bを開から閉にする。(3) The outlet side communication valve 30b is closed from open.

したがって、吸込弁10bより吸込んだ原子炉圧力容器
2内の炉水の一部を残留熱除去ポンプ4bにより昇圧して
から残留熱除去熱交換器5bにより冷却し、原子炉圧力容
器2の上部へ再び戻す。
Therefore, a part of the reactor water in the reactor pressure vessel 2 sucked from the suction valve 10b is pressurized by the residual heat removal pump 4b and then cooled by the residual heat removal heat exchanger 5b. Put it back again.

また、残留熱除去系Abの残留熱除去熱交換器5bより流
出する冷却された炉水の一部を、出口側連絡ライン28b
を通して燃料プール冷却系Bのろ過脱塩装置26の下流側
に案内し、ここから燃料プール22と原子炉ウエルプール
1とにそれぞれ注入する。
Further, a part of the cooled reactor water flowing out of the residual heat removal heat exchanger 5b of the residual heat removal system Ab is transferred to the outlet side connection line 28b.
Through the fuel pool cooling system B to the downstream side of the filtration and desalination apparatus 26, from which they are injected into the fuel pool 22 and the reactor well pool 1, respectively.

このために、第2実施例においても第1実施例と同様
に、原子炉圧力容器2内の炉心周辺部の炉水に下向きの
流れを生じ、高温炉水が原子炉ウエルプール1の水面に
向けて昇流しようとするのを防止することができ、第1
実施例と同様の効果を奏する。
For this reason, in the second embodiment, similarly to the first embodiment, a downward flow is generated in the reactor water around the core in the reactor pressure vessel 2, and the high-temperature reactor water flows to the surface of the reactor well pool 1. It is possible to prevent an attempt to ascend toward
An effect similar to that of the embodiment is obtained.

第3図で示す第3実施例は原子炉ウエルプール冷却設
備の各弁の開閉操作を第2実施例と殆ど同様に行なうが
次の点で異なる。
The third embodiment shown in FIG. 3 performs opening and closing operations of each valve of the reactor well pool cooling system in almost the same manner as the second embodiment, but differs in the following points.

(1)他方の残留熱除去系Aaにおける残留熱除去熱交換
器5aの出口弁12aを開から閉にする。
(1) The outlet valve 12a of the residual heat removal heat exchanger 5a in the other residual heat removal system Aa is closed from open.

(2)他方の残留熱除去系Aaのバイパス弁14aを開から
閉にする。
(2) The bypass valve 14a of the other residual heat removal system Aa is closed from open.

(3)廃棄物処理系連絡弁31a,31bを閉から開にする。(3) The waste treatment system communication valves 31a and 31b are opened from the closed state.

(4)出口側連絡弁30aを閉から開にする。(4) The outlet side communication valve 30a is opened from the closed state.

この第3実施例においても第1実施例と同様に、残留
熱除去系Aにより冷却された炉水の一部が原子炉ウエル
プール1に注入されるので、第1実施例と同様の作用効
果を奏する。
In the third embodiment as well, similar to the first embodiment, a part of the reactor water cooled by the residual heat removal system A is injected into the reactor well pool 1, so that the same operation and effect as the first embodiment are obtained. To play.

第4図で示す第4実施例は原子炉ウェルプール冷却設
備の各弁の開閉操作を第1実施例とほぼ同様に行なう
が、これと異なる点は第1図で示す排水ライン50、建屋
内排水系51、排水弁52および連絡止め弁33の設置を省略
した点にある。
In the fourth embodiment shown in FIG. 4, the opening / closing operation of each valve of the reactor well pool cooling system is performed in substantially the same manner as in the first embodiment, except for the drain line 50 shown in FIG. The point is that the installation of the drainage system 51, the drainage valve 52, and the communication stop valve 33 is omitted.

したがって、第4実施例ではこれら排水ライン50等を
利用した一対の出口側連絡ライン28a,28bの配管洗浄を
行なわない。
Therefore, in the fourth embodiment, the pipe cleaning of the pair of outlet side connection lines 28a and 28b using these drain lines 50 and the like is not performed.

このために、この点を除いて第4実施例は第1実施例
と同様の作用効果を奏する。
Therefore, except for this point, the fourth embodiment has the same operation and effect as the first embodiment.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、原子炉圧力容器より取
水した炉水の一部を残留熱除去系で冷却してから燃料プ
ール冷却系の一部を通して、原子炉圧力容器に上下方向
に連通する原子炉ウエルプールに注水するので、原子炉
圧力容器の炉心周りの炉水に下向きの流れを与え、原子
炉圧力容器の炉心で核加熱された高温炉水が原子炉ウエ
ルプールの水面へ向けて昇流しようとするのを防止する
ことができる。
As described above, the present invention cools a part of the reactor water taken from the reactor pressure vessel by the residual heat removal system, and then communicates with the reactor pressure vessel in a vertical direction through a part of the fuel pool cooling system. Since water is injected into the reactor well pool, a downward flow is given to the reactor water around the core of the reactor pressure vessel, and the high-temperature reactor water that has been nuclear-heated in the reactor pressure vessel core is directed toward the surface of the reactor well pool. An attempt to ascend can be prevented.

したがって本発明によれば、原子炉ウエルプールの水
面近傍における水温上昇を防止し、定検時等における原
子炉ウエルプールの水面近傍での作業環境を改善するこ
とができる。
Therefore, according to the present invention, it is possible to prevent a rise in water temperature near the water surface of the reactor well pool, and to improve the working environment near the water surface of the reactor well pool at the time of regular inspection or the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第4図は本発明に係る原子炉ウエルプール冷却
設備の運転方法の第1実施例〜第4実施例をそれぞれ説
明するための原子炉ウエルプール冷却設備の系統図、第
5図は従来の原子炉ウエルプール冷却設備の運転方法を
説明するための原子炉ウェルプール冷却設備の系統図で
ある。 1……原子炉ウエルプール、2……原子炉圧力容器、4
a,4b……残留熱除去ポンプ、5a,5b……残留熱除去熱交
換器、22……燃料プール、25……燃料プール冷却用熱交
換器、26……ろ過脱塩装置、28a,28b……出口側連絡ラ
イン、A,Aa,Ab……残留熱除去系、B……燃料プール冷
却系。
FIGS. 1 to 4 are system diagrams of a reactor well pool cooling system for describing first to fourth embodiments of a method of operating a reactor well pool cooling system according to the present invention, respectively, and FIG. FIG. 1 is a system diagram of a reactor well pool cooling facility for explaining an operation method of a conventional reactor well pool cooling facility. 1 ... Reactor well pool, 2 ... Reactor pressure vessel, 4
a, 4b: Residual heat removal pump, 5a, 5b: Residual heat removal heat exchanger, 22: Fuel pool, 25: Heat exchanger for cooling fuel pool, 26: Filtration and desalination equipment, 28a, 28b … Exit side connection line, A, Aa, Ab… Residual heat removal system, B… Fuel pool cooling system.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子炉圧力容器内の炉水の一部をその下部
より取水して残留熱除去用熱交換器により冷却し、再び
原子炉圧力容器に戻す残留熱除去系と、燃料プールのプ
ール水の一部を取水して燃料プール冷却用熱交換器によ
り冷却してからろ過脱塩装置によりろ過脱塩し、再び燃
料プールと、上記原子炉圧力容器に連通する原子炉ウエ
ルプールとに戻す燃料プール冷却系とを有し、上記残留
熱除去用熱交換器の出口側を上記ろ過脱塩装置の出口側
に出口側連絡ラインにより連絡させる原子炉ウエルプー
ル冷却設備の運転方法において、上記残留熱除去用熱交
換器により冷却した冷却水の一部を上記出口側連絡ライ
ンと上記燃料プール冷却系の一部とを通して、上記原子
炉ウエルプールおよび燃料プールに注入することを特徴
とする原子炉ウエルプール冷却設備の運転方法。
1. A residual heat removal system, wherein a part of the reactor water in a reactor pressure vessel is taken from a lower part thereof, cooled by a residual heat removal heat exchanger, and returned to the reactor pressure vessel again. A part of the pool water is taken out, cooled by the heat exchanger for cooling the fuel pool, filtered and desalted by the filter desalination device, and then returned to the fuel pool and the reactor well pool communicating with the reactor pressure vessel. A fuel pool cooling system for returning, wherein the outlet side of the heat exchanger for removing residual heat is connected to the outlet side of the filtration and desalination apparatus by an outlet side connection line, and A part of the cooling water cooled by the heat exchanger for removing residual heat is injected into the reactor well pool and the fuel pool through the outlet side connection line and a part of the fuel pool cooling system. Furnace wafer Method of operating a pool cooling equipment.
JP63037431A 1988-02-22 1988-02-22 Operation method of reactor well pool cooling system Expired - Lifetime JP2573284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037431A JP2573284B2 (en) 1988-02-22 1988-02-22 Operation method of reactor well pool cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037431A JP2573284B2 (en) 1988-02-22 1988-02-22 Operation method of reactor well pool cooling system

Publications (2)

Publication Number Publication Date
JPH01213596A JPH01213596A (en) 1989-08-28
JP2573284B2 true JP2573284B2 (en) 1997-01-22

Family

ID=12497326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037431A Expired - Lifetime JP2573284B2 (en) 1988-02-22 1988-02-22 Operation method of reactor well pool cooling system

Country Status (1)

Country Link
JP (1) JP2573284B2 (en)

Also Published As

Publication number Publication date
JPH01213596A (en) 1989-08-28

Similar Documents

Publication Publication Date Title
KR101752717B1 (en) Reactor system with a lead-cooled fast reactor
JP3226383B2 (en) Reactor
JPS6323519B2 (en)
JPH04276596A (en) Method and apparatus for chemical decontamination of primary system of atomic reactor
JP2573284B2 (en) Operation method of reactor well pool cooling system
JP2001296387A (en) Reactor cooling equipment and its operational method
JPH09329689A (en) Purification and cooling equipment for spent fuel storage pool
JP3909973B2 (en) Condensate storage facility and its operation control method
JP2563506B2 (en) Reactor coolant purification equipment
JP5513846B2 (en) Nuclear power plant and method for operating the same
JPS62237396A (en) Nuclear-reactor well water drainage system
JP2001091684A (en) Fuel pool cooling equipment
JP7062568B2 (en) Water treatment method and water treatment preparation method for nuclear power plants
JPH07318687A (en) Coolant purification system for reactor
JPH0648311B2 (en) Reactor coolant purification device
JPS6312559B2 (en)
JPS63241392A (en) Drain water-filling device for nuclear-reactor pressure vessel
JPH029720B2 (en)
JPH0259699A (en) Operating method for nuclear reactor apparatus cooling equipment
JPS6017694A (en) Condenser
JPS63238397A (en) Condenser cooling pipe cleaning device
JPH08285983A (en) Reactor core cooling facility for emergency
JPS59128491A (en) Method of cleaning up reactor cooling circuit
JP2011164077A (en) Discharge system for pool water of nuclear reactor and method for draining reactor well and drier separator pool
JPH02287292A (en) Warming device of reactor residual heat removal system