JP2566978B2 - Manufacturing method of corrosion resistant alloy steel - Google Patents

Manufacturing method of corrosion resistant alloy steel

Info

Publication number
JP2566978B2
JP2566978B2 JP62213085A JP21308587A JP2566978B2 JP 2566978 B2 JP2566978 B2 JP 2566978B2 JP 62213085 A JP62213085 A JP 62213085A JP 21308587 A JP21308587 A JP 21308587A JP 2566978 B2 JP2566978 B2 JP 2566978B2
Authority
JP
Japan
Prior art keywords
alloy steel
corrosion
resistant alloy
alloy
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62213085A
Other languages
Japanese (ja)
Other versions
JPS6456849A (en
Inventor
山本  優
一昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62213085A priority Critical patent/JP2566978B2/en
Publication of JPS6456849A publication Critical patent/JPS6456849A/en
Application granted granted Critical
Publication of JP2566978B2 publication Critical patent/JP2566978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、例えば蒸気タービン羽根の前縁部に被着
されるエロージョンシールド部材として適用するに好適
な耐食合金鋼の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention is directed to the production of corrosion-resistant alloy steel suitable for application as an erosion shield member adhered to the leading edge of a steam turbine blade, for example. Regarding the method.

(従来の技術) 例えば、蒸気タービンは高出力化が求められており、
このため蒸気タービンに使用される羽根は必然的に長翼
化する傾向にある。
(Prior Art) For example, a steam turbine is required to have a high output,
Therefore, the blades used in the steam turbine inevitably tend to have long blades.

従来、この種の材質は12Cr鋼が適用されていたが、こ
の12Cr鋼では重量的に高いために、羽根が回転する際に
生起する遠心力がきわめて高く、強度上、厳しい設計が
強いられていた。また、蒸気は、後流側の羽根に向って
流れるにつれて微細な水滴があらわれることもあって、
羽根の前縁部には防食として機能するエロージョンシー
ルド部材を被着していた。
Conventionally, 12Cr steel was used for this type of material, but because of the high weight of this 12Cr steel, the centrifugal force that occurs when the blade rotates is extremely high, and a strict design is required in terms of strength. It was Also, as the steam flows toward the blades on the wake side, fine water droplets may appear,
An erosion shield member that functions as anticorrosion was attached to the front edge of the blade.

しかしながら、従来、羽根材として適用されている12
Cr鋼では、上述遠心力の点を考えると、説明上必ずしも
好ましくなく、従来材質よりも一段と軽く、くわえて耐
食性の高いチタン合金が見直され、適用されつつある。
However, it has been conventionally used as a blade material.
Considering the above-mentioned centrifugal force, the Cr steel is not always preferable in terms of explanation, and a titanium alloy that is much lighter than conventional materials and has high corrosion resistance is being reviewed and applied.

ところが、チタン合金といえども、微細な水滴を含む
蒸気には長年の使用による耐食の点で抗しきれず、やは
り羽根の前縁部にエロージョンシールド部材を被着する
ことが一段と信頼性が高まる。この場合、チタン合金製
の羽根の前縁部に、従来から使用されているエロージョ
ンシールド部材(硬度Hvが約500のCo基合金のステライ
ト)を被着しようにも合金の性質が異なるので、被着す
ることができない。
However, even titanium alloys cannot withstand the vapor containing fine water droplets in terms of corrosion resistance due to long-term use, and it is much more reliable to apply the erosion shield member to the leading edges of the blades. In this case, since the properties of the alloy are different even when the erosion shield member (Stellite of Co-based alloy with hardness Hv of about 500) that has been conventionally used is applied to the leading edge of the titanium alloy blade, I can't wear it.

このため、チタン合金製の羽根に対して、エロージョ
ンシールド部材としては、同じくチタン合金の中で、熱
処理によって硬化できるβ形チタン合金、例ればTi−15
Mo−5Zrの適用を検討しつつある。
Therefore, for a blade made of a titanium alloy, as an erosion shield member, a β-type titanium alloy that can be hardened by heat treatment in the same titanium alloy, for example, Ti-15
The application of Mo-5Zr is under consideration.

(発明が解決しようとする問題点) ところで、上記β形チタン合金は、熱処理ができる利
便性はあるものの、硬度および耐食性の点では従来適用
のステライトには、はるかにおよばない。しかも、熱処
理による硬化後は延性・靭性が極端に低下し、羽根の前
縁部に適用するには一抹の不安がある。
(Problems to be Solved by the Invention) Although the β-type titanium alloy is convenient in that it can be heat-treated, it is far inferior to conventionally applied stellite in terms of hardness and corrosion resistance. Moreover, the ductility and toughness are extremely reduced after hardening by heat treatment, and there is some concern about application to the leading edge of the blade.

そこでこの発明は、上記不具合な点を取り除くため
に、一段と高い硬度にして耐食性に富み、しかも延性・
靭性を兼ね備える耐食合金鋼の製造方法を提供すること
を目的とする。
Therefore, in order to eliminate the above-mentioned disadvantages, the present invention makes the hardness much higher, has a high corrosion resistance, and has a high ductility.
An object of the present invention is to provide a method for producing a corrosion-resistant alloy steel that also has toughness.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段と作用) この発明は、上記目的を達成するために、チタン炭化
物の粉末と、重量比で、C 0.2〜1.2%,Cr 9.0〜25.0%,
Mo 0.5〜4.0%,Cu 02〜2.0%,V 0.1〜0.6%,Al 0.7〜2.
0%,Ni 0.2〜1.0%,残部Feおよび付随的不純物よりな
るマトリックス合金のアルゴンアトマイズ粉末を混合
し、混合の際、上記チタン炭化物の粉末を全体体積比で
20〜60%,上記マトリックス合金のアルゴンアトマイズ
粉末を全体体積比で40〜80%になるようにして焼結する
ことを特徴としている。
(Means and Actions for Solving Problems) In order to achieve the above-mentioned object, the present invention has a titanium carbide powder and a weight ratio of C 0.2 to 1.2%, Cr 9.0 to 25.0%,
Mo 0.5-4.0%, Cu 02-2.0%, V 0.1-0.6%, Al 0.7-2.
Argon atomized powder of a matrix alloy consisting of 0%, Ni 0.2 to 1.0%, balance Fe and incidental impurities was mixed, and at the time of mixing, the above titanium carbide powder was mixed in a total volume ratio.
It is characterized in that 20 to 60%, and the argon atomized powder of the above matrix alloy is sintered so that the total volume ratio becomes 40 to 80%.

この発明にかかる耐食合金鋼の製造方法では、従来適
用していたものに較べ、金属組成間に生成されている気
孔が圧着されるので硬度・耐食性が一段と富む。また適
用のボーダーラインにあるこの発明にかかる耐食合金鋼
であっても、被部材に接合後、加熱処理すれば、硬度お
よび延性等が一段と高くなって、十分に実用的に供し得
る。
In the method for producing the corrosion-resistant alloy steel according to the present invention, the pores generated between the metal compositions are pressed against each other, so that the hardness and the corrosion resistance are much richer than those conventionally applied. Further, even the corrosion-resistant alloy steel according to the present invention, which is on the borderline of application, can be practically sufficiently provided by further increasing the hardness, ductility, etc., by performing heat treatment after joining the members.

(実施例) 以下この発明にかかる耐食合金鋼の製造方法における
各限定理由について説明するとともに、その具体的実施
手段を説明する。
(Examples) The reasons for each limitation in the method for producing a corrosion-resistant alloy steel according to the present invention will be described below, and specific means for carrying out the same will be described.

先ず、チタン炭化物(以下TiCと記す)は、それ自
体、硬度Hv3200を有する粉末であるが、焼結体中に均一
に分散させるには、全体体積比で20〜60%が好ましい適
用範囲である。これは、全体体積比が20%未満である
と、従来適用されているステライトの硬度Hv500以上を
得ることが難しく、またその60%を超えると、焼結体と
しての硬度が脆くなり、実用的に供し得なくなるからで
ある。
First, titanium carbide (hereinafter referred to as TiC) is a powder itself having a hardness of Hv3200, but in order to disperse it uniformly in the sintered body, 20 to 60% by volume is a preferable range of application. . This is because if the total volume ratio is less than 20%, it is difficult to obtain the hardness Hv500 or more of the conventionally used stellite, and if it exceeds 60%, the hardness as a sintered body becomes brittle, which is practical. Because it cannot be used for.

次に、TiCと混合するマトリックス合金は、延性およ
び靭性等を考慮して全体体積比としては40〜80%が好ま
しい適用範囲である。
Next, the matrix alloy to be mixed with TiC has a preferable volume range of 40 to 80% as a whole volume ratio in consideration of ductility and toughness.

ところで、マトリックス合金は、重量比でC 0.2〜1.2
%,Cr 9.0〜25.0%,Mo 0.5〜4.0%,Cu 0.2〜2.0%,V 0.
1〜0.6%,Al 0.7〜2.0%,Ni 0.2〜1.0,残部Feおよび付
随的不純物からなる。
By the way, the matrix alloy has a weight ratio of C 0.2 to 1.2.
%, Cr 9.0 to 25.0%, Mo 0.5 to 4.0%, Cu 0.2 to 2.0%, V 0.
1-0.6%, Al 0.7-2.0%, Ni 0.2-1.0, balance Fe and incidental impurities.

ここにおいて、各組成の重量比の限定理由は次の通り
である。
Here, the reason for limiting the weight ratio of each composition is as follows.

Cはマトリックスの強化と析出強化に寄与する成分で
0.2%未満ではその効果はなく、1.2%を超えると延性を
いちじるしく低下させるのでこの範囲としてある。
C is a component that contributes to matrix strengthening and precipitation strengthening.
If it is less than 0.2%, there is no effect, and if it exceeds 1.2%, the ductility is markedly reduced, so this range is set.

Crは耐食性のために必要な元素で9%未満では湿り蒸
気中の耐食性が不充分であり、25%超になるとマトリッ
クス合金の延性を損うため、この範囲としてある。
Cr is an element necessary for corrosion resistance, and if it is less than 9%, the corrosion resistance in wet steam is insufficient, and if it exceeds 25%, the ductility of the matrix alloy is impaired, so this range is set.

Moはマトリックス中に固溶して強化する有用な元素で
0.5%以上でその効果があらわれる。しかし、4.0%を超
えると脆化をもたらす。
Mo is a useful element that solidifies and strengthens in the matrix.
The effect appears at 0.5% or more. However, if it exceeds 4.0%, embrittlement occurs.

Cuは焼結時のバインダーとして必要な元素で、0.2%
以上でその効果があらわれるが、2.0%を超えると非金
属介在物を作って、マトリックス合金を脆くする。
Cu is an element necessary as a binder at the time of sintering, 0.2%
The above effect is exhibited, but if it exceeds 2.0%, nonmetallic inclusions are formed and the matrix alloy becomes brittle.

Vはマトリックス中に固溶して強化する元素で、0.1
%以上では効果があるが、0.6%を超えると脆化する。
V is an element that forms a solid solution in the matrix and strengthens it.
%, It is effective, but if it exceeds 0.6%, it becomes brittle.

Niはマトリックス合金の延性を増す元素で、0.2%未
満ではその効果はないが、1.0%を超えてもその効果は
一定のままなので、この範囲としてある。
Ni is an element that increases the ductility of the matrix alloy. If it is less than 0.2%, it has no effect, but if it exceeds 1.0%, the effect remains constant, so it is within this range.

AlはNiと金属間化合物を形成して硬化にいちじるしく
寄与するが、0.7%未満では硬化にほとんど寄与せず、
また2.0%を超えると介在物としてマトリックス合金の
延性を損う。
Al forms an intermetallic compound with Ni and contributes significantly to curing, but if it is less than 0.7%, it hardly contributes to curing,
If it exceeds 2.0%, the ductility of the matrix alloy is impaired as inclusions.

しかしてTiCとマトリックス合金とは、通常、アルゴ
ンアトマイズ処理により作製された粉末として混合さ
れ、成形後、高温・高真空または不活性ガス中で焼結さ
れる。こうして形成された焼結体では、通常、全体とし
て数%の気孔を有するので、これ自体では脆く、実用的
に供し得ない。
However, TiC and the matrix alloy are usually mixed as a powder produced by an argon atomizing treatment, and after molding, sintered at a high temperature and a high vacuum or in an inert gas. Since the sintered body thus formed usually has several percent of pores as a whole, it is fragile by itself and cannot be practically used.

このため、気孔を圧搾して均質なものにするために
は、ホットアイソスタティックプレス(以下HIPと記
す)処理工程を行う。このHIP処理工程は、先ず、試料
をステンス製の容器に入れ、つづいてその周囲をボロン
ナイトライド(BN)の粉末で充填し、かくしてアルゴン
ガス中等で温度1100〜1200℃に加熱するとともに、1000
気圧で加圧して、そのまま1時間保持し、しかる後冷却
するプロセスである。
Therefore, a hot isostatic press (hereinafter referred to as HIP) treatment step is performed to squeeze the pores to make them uniform. In this HIP treatment step, first, the sample is placed in a container made of stainless steel, and then the periphery thereof is filled with boron nitride (BN) powder, and thus heated to a temperature of 1100 to 1200 ° C. in argon gas, etc.
It is a process of pressurizing with atmospheric pressure, holding for 1 hour as it is, and then cooling.

こうしてHIP処理後、作製された耐食合金鋼は、例え
ば蒸気タービン羽根の前縁部に接合されるが、その接合
方法は従来から適用されている溶接方法である。
The corrosion-resistant alloy steel thus produced after the HIP treatment is joined to, for example, the leading edge portion of the steam turbine blade, and the joining method is a welding method that has been conventionally applied.

しかしながら、強度上、耐食上、十分に保証し得る耐
食合金鋼ならともかく、その適用上、ボーダラインにあ
る耐食合金鋼では、被部材に接合後、温度範囲500〜800
℃で加熱される。こうして加熱すると、マトリックス合
金からTi,Alを主成分とする金属間化合物の析出が見ら
れ、TiC粒子による硬化とあいまって、耐食合金鋼に一
段と高い硬度が得られる。ここで、加熱温度を500〜800
℃と選定したのは500未満では、硬化のための析出が十
分に得られず、また800℃以上では析出物が粗大化して
硬化に寄与しなくなるからである。
However, in terms of strength, corrosion resistance, and corrosion resistant alloy steel that can be sufficiently guaranteed, due to its application, in the corrosion resistant alloy steel in the border line, after joining to the member to be treated, the temperature range is 500 to 800.
Heated in ° C. When heated in this way, precipitation of intermetallic compounds containing Ti and Al as the main components is observed from the matrix alloy, and together with the hardening by TiC particles, a higher hardness is obtained for the corrosion-resistant alloy steel. Here, the heating temperature is 500 ~ 800
The reason why the temperature is selected as ° C is that if it is less than 500, sufficient precipitation for curing cannot be obtained, and if it is 800 ° C or higher, the precipitate becomes coarse and does not contribute to curing.

次に、上記具体的手段に基づいて作製された耐食合金
鋼の特性を説明する。
Next, the characteristics of the corrosion resistant alloy steel produced based on the above specific means will be described.

平均粒径20μmのTiC粉末とCr−Ni−Co−Mo−Al−Ti
−Cu−Feマトリックス合金のアルゴンアトマイズ粉末
(−100メッシュ)を混合し、表1に示す組成比の試料
を作成した。
TiC powder with an average particle size of 20 μm and Cr-Ni-Co-Mo-Al-Ti
Argon atomized powder (-100 mesh) of -Cu-Fe matrix alloy was mixed to prepare a sample having a composition ratio shown in Table 1.

上記表1で、試料Aはこの発明に基づいて得られた試
料であり、試料Bはこの発明に基づくものからはずれた
ものである。各試料は、混合後、6Ton/cm2荷重を加えて
成形プレスし、温度1200〜1300℃で真空焼結した。
In Table 1 above, sample A is a sample obtained according to the present invention and sample B is a sample deviated from that according to the present invention. After mixing, each sample was molded and pressed by applying a load of 6 Ton / cm 2 , and vacuum-sintered at a temperature of 1200 to 1300 ° C.

焼結後、HIP処理を行って、一部をHIP処理そのままで
引張試験、硬さ試験およびエロージョン試験に供した。
HIP処理を行うと、各試料A,Bは共に、第1図に見られる
ように、硬さはCo基合金(ステライト)と同様もしくは
それ以上であるが、引張破断伸びがCo基合金よりも向上
する。この理由は、主としてHIP処理により焼結時の気
孔が圧着され、引張破断の源であったミクロポロシティ
が消失したためと考えられる。さらに、時効処理(600
℃×3hr)を行うと、試料A,Bの硬さは上昇し、引張破断
伸びは若干低下する。試料Bにおいて、引張破断伸びが
小さく、硬さが高いのは、TiC量およびマトリックス合
金量がこの本発明範囲を超えているためで、この発明範
囲にある試料AはHIP処理後と時効処理後のいずれにお
いても、硬さ、引張破断伸びともCo基合金を上回ってい
る。
After the sintering, HIP treatment was performed, and a part of the HIP treatment was subjected to a tensile test, a hardness test and an erosion test as it was.
When subjected to HIP treatment, both samples A and B have a hardness similar to or higher than that of the Co-based alloy (Stellite) as shown in Fig. 1, but a tensile elongation at break higher than that of the Co-based alloy. improves. The reason for this is considered to be that the pores during sintering were pressed by the HIP treatment, and the microporosity that was the source of tensile fracture disappeared. Furthermore, aging treatment (600
(° C x 3 hr), the hardness of Samples A and B increases and the tensile elongation at break decreases slightly. In Sample B, the tensile elongation at break is small and the hardness is high because the amount of TiC and the amount of matrix alloy are beyond the range of the present invention. Sample A in the range of the present invention is after the HIP treatment and the aging treatment. In both cases, the hardness and the tensile elongation at break are higher than those of the Co-based alloy.

第2図は、エロージョン(腐食)試験の結果で、Co基
合金のエロージョン量に較べ、この発明にかかる試料は
HIP処理を行うことによってエロージョン量が低下して
いることが理解される。さらに時効処理を行えば一段と
耐エロージョン性に富む。
FIG. 2 shows the results of the erosion (corrosion) test. Compared with the erosion amount of the Co-based alloy, the sample according to the present invention
It is understood that the amount of erosion is reduced by performing the HIP process. Further aging treatment will further enhance erosion resistance.

ところで、上記実施例は、焼結体中の気孔を圧搾する
ために、HIP処理を例に採って説明したが、これに限ら
ず熱間あるいは冷間における圧延・鍛造等の塑性加工を
行っても同様の効果を奏する。
By the way, in the above example, in order to squeeze the pores in the sintered body, the HIP treatment was taken as an example, but the present invention is not limited to this, and hot or cold plastic working such as rolling and forging is performed. Also has the same effect.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明によれば、従来適用さ
れていたこの種のものに較べ、耐食性および延性が一段
と高く富み、例えばチタン合金製の蒸気タービン羽根等
に適用する場合などでは信頼性の高い好適なものが提供
できる。
As described above, according to the present invention, the corrosion resistance and the ductility are much higher than those of the type that has been conventionally applied. For example, when the invention is applied to a steam turbine blade made of a titanium alloy, the reliability is high. A highly suitable product can be provided.

なお、この発明による方法によって製造された耐食合
金鋼は蒸気タービン羽根のエロージョンシールドはもと
より、水滴によるエロージョン発生部位への防御用や
砂、ほこり、酸化スケール等による固体粒子エロージョ
ンに対しても有効である。
Incidentally, the corrosion-resistant alloy steel produced by the method according to the present invention is effective not only for erosion shield of steam turbine blades but also for protection of the erosion generation site by water droplets, sand, dust, solid particle erosion due to oxide scale, etc. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明によって得られた耐食合金鋼の特性と
従来のCo基合金鋼の特性を比較する図で試料A,Bは共
に、HIP処理後の引張破断伸びおよび硬さを、またHIP処
理後さらに時効処理後の引張破断伸びおよび硬さを示
し、第2図はエロージョン比に対して、この発明によっ
て得られた耐食合金鋼と従来の合金鋼とを比較する図で
ある。
FIG. 1 is a diagram comparing the characteristics of the corrosion-resistant alloy steel obtained by the present invention with the characteristics of a conventional Co-based alloy steel. Samples A and B both show tensile elongation at break and hardness after HIP treatment, and FIG. 2 is a diagram comparing the corrosion-resistant alloy steel obtained according to the present invention with the conventional alloy steel with respect to the erosion ratio, showing the tensile elongation at break and the hardness after the treatment and after the aging treatment.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チタン炭化物の粉末と、重量比で、C 0.2
〜1.2%,Cr 9.0〜25.0%,Mo 0.5〜4.0%,Cu 0.2〜2.0
%,V 0.1〜0.6%,Al 0.7〜2.0%,Ni 0.2〜1.0%,残部F
eおよび付随的不純物よりなるマトリックス合金のアル
ゴンアトマイズ粉末を混合し、混合の際、上記チタン炭
化物の粉末を全体体積比で20〜60%,上記マトリックス
合金のアルゴンアトマイズ粉末を全体体積比で40〜80%
になるようにして焼結することを特徴とする耐食合金鋼
の製造方法。
1. A titanium carbide powder and C 0.2 in a weight ratio.
~ 1.2%, Cr 9.0 ~ 25.0%, Mo 0.5 ~ 4.0%, Cu 0.2 ~ 2.0
%, V 0.1 to 0.6%, Al 0.7 to 2.0%, Ni 0.2 to 1.0%, balance F
A matrix alloy argon atomized powder consisting of e and incidental impurities is mixed, and at the time of mixing, the titanium carbide powder is 20 to 60% by total volume ratio, and the matrix alloy argon atomized powder is 40 to 40% by total volume ratio. 80%
A method for producing a corrosion-resistant alloy steel, comprising the steps of:
JP62213085A 1987-08-28 1987-08-28 Manufacturing method of corrosion resistant alloy steel Expired - Lifetime JP2566978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62213085A JP2566978B2 (en) 1987-08-28 1987-08-28 Manufacturing method of corrosion resistant alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62213085A JP2566978B2 (en) 1987-08-28 1987-08-28 Manufacturing method of corrosion resistant alloy steel

Publications (2)

Publication Number Publication Date
JPS6456849A JPS6456849A (en) 1989-03-03
JP2566978B2 true JP2566978B2 (en) 1996-12-25

Family

ID=16633305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62213085A Expired - Lifetime JP2566978B2 (en) 1987-08-28 1987-08-28 Manufacturing method of corrosion resistant alloy steel

Country Status (1)

Country Link
JP (1) JP2566978B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435056B2 (en) 2006-02-28 2008-10-14 Honeywell International Inc. Leading edge erosion protection for composite stator vanes

Also Published As

Publication number Publication date
JPS6456849A (en) 1989-03-03

Similar Documents

Publication Publication Date Title
EP0738782B1 (en) Iron aluminide useful as electrical resistance heating elements
AU2008201238B2 (en) Method for the manufacture of dental protheses
JP4511097B2 (en) Method for producing FeCrAl material and material thereof
US5395699A (en) Component, in particular turbine blade which can be exposed to high temperatures, and method of producing said component
JP2008502794A (en) Wear member made of diamond-containing composite material
CN101796205A (en) Production of alloys based on titanium aluminides
US5409781A (en) High-temperature component, especially a turbine blade, and process for producing this component
Baron et al. The processing and characterization of sintered metal-reinforced aluminium matrix composites
JP4166821B2 (en) Powder metallurgical manufacturing method of composite material
CA2892986C (en) Imparting high-temperature wear resistance to turbine blade z-notches
JP2653527B2 (en) How to join erosion resistant alloys
JP2837798B2 (en) Cobalt-based alloy with excellent corrosion resistance, wear resistance and high-temperature strength
JP2566978B2 (en) Manufacturing method of corrosion resistant alloy steel
CN111085796B (en) Fe-based multielement active high-temperature brazing filler metal for carbon fiber reinforced ceramic matrix composite
JP2566979B2 (en) Manufacturing method of corrosion resistant alloy steel
JP2566980B2 (en) Manufacturing method of corrosion resistant alloy steel
JPH0593233A (en) Aluminum-modified titanium/titanium alloy microcomposite material
JPH0819497B2 (en) Turbine blade manufacturing method
US6280682B1 (en) Iron aluminide useful as electrical resistance heating elements
JPH11277669A (en) Corrosion-resistant and wear-resistant clad member and its manufacture
EP1060279A1 (en) Iron aluminide composite and method of manufacture thereof
JP3743019B2 (en) Titanium aluminide for precision casting containing Fe and V
JPH09176759A (en) Production of erosion resistant alloy
JPH05222476A (en) Deposition-cured nickel chromium alloy containing dispersed and cured oxide
US20100043597A1 (en) Method of making rare-earth strengthened components