JP2566343B2 - Oxygen concentration measurement sensor for molten metal - Google Patents

Oxygen concentration measurement sensor for molten metal

Info

Publication number
JP2566343B2
JP2566343B2 JP3023568A JP2356891A JP2566343B2 JP 2566343 B2 JP2566343 B2 JP 2566343B2 JP 3023568 A JP3023568 A JP 3023568A JP 2356891 A JP2356891 A JP 2356891A JP 2566343 B2 JP2566343 B2 JP 2566343B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
oxide
molten metal
electromotive force
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3023568A
Other languages
Japanese (ja)
Other versions
JPH04264251A (en
Inventor
浩 黒島
雅昭 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA SANSO KOGYO KK
Shinagawa Shiro Renga KK
Original Assignee
OOSAKA SANSO KOGYO KK
Shinagawa Shiro Renga KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA SANSO KOGYO KK, Shinagawa Shiro Renga KK filed Critical OOSAKA SANSO KOGYO KK
Priority to JP3023568A priority Critical patent/JP2566343B2/en
Publication of JPH04264251A publication Critical patent/JPH04264251A/en
Application granted granted Critical
Publication of JP2566343B2 publication Critical patent/JP2566343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸素イオン導電性を有す
る固体電解質を用いて酸素濃淡電池を形成し、溶鋼、溶
銅等の溶融金属中の溶存酸素濃度を測定するセンサーに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for forming an oxygen concentration battery using a solid electrolyte having oxygen ion conductivity and measuring the dissolved oxygen concentration in molten metal such as molten steel or molten copper.

【0002】[0002]

【従来の技術】金属の精錬等において溶融金属中の溶存
酸素は製品の品質に影響するために非常に重要な管理因
子であるが、近年固体電解質の開発が進むにつれ、これ
を素子とした酸素濃淡電池を構成したセンサーを直接溶
融金属中に浸漬して酸素濃度を測定する方法が行われる
ようになってきた。
2. Description of the Related Art Dissolved oxygen in molten metal is a very important control factor for influencing the quality of products in refining metals, but with the development of solid electrolytes in recent years, oxygen as an element has been developed. A method of measuring the oxygen concentration by directly immersing the sensor constituting the concentration cell in the molten metal has come to be used.

【0003】このセンサーの構成は、図1に示す様に一
端を閉鎖した管状の酸素イオン導電性固体電解質素子
1、酸素イオン導電性固体電解質内部に充填した標準極
2、標準極と電気的接続を形成する内部電極3、溶融金
属中において安定で融点が高い金属、例えばモリブデ
ン、クロム等からなる外部電極4から構成されており、
酸素イオン導電性固体電解質の両側に形成される溶融金
属と標準極との酸素分圧の違いによって発生する起電力
をモリブデン電極と内部電極によって検出して溶融金属
中の溶存酸素を測定している。標準極2には、一般に、
ニッケルと酸化ニッケル、モリブデンと酸化モリブデン
あるいはクロムと酸化クロムの混合物等を使用し、酸素
イオン導電性固体電解質素子1としては酸化ジルコニウ
ムあるいは酸化トリウムを主体としたセラミックスを用
いている。さらにセンサーには熱電対5が併設されてお
り、溶融金属の温度も同時に測定が可能な構造となって
いる。センサーはセラミックスのハウジング6を有して
おり、ハウジングはセラミックファイバー耐火スリーブ
9およびペーパースリーブ10からなるスリーブに取り
付けられており、スリーブ内部には電気回路との接続用
のコネクタ7が設けられている。また、センサーの先端
部分には保護カバー8が設けられており、電極、固体電
解質、熱電対等を保護している。保護カバーには測定対
象となる溶融金属と同一の材料を用いることにより使用
時には速やかに溶解して測定可能となる。ここで溶存酸
素濃度は測定対象が溶鋼の場合ネルンストの式より導か
れる次式により求めることができる。
As shown in FIG. 1, this sensor has a tubular oxygen ion conductive solid electrolyte element 1 with one end closed, a standard electrode 2 filled in the oxygen ion conductive solid electrolyte, and an electrical connection with the standard electrode. And an external electrode 4 made of a metal that is stable and has a high melting point in the molten metal, such as molybdenum or chromium.
Dissolved oxygen in the molten metal is measured by detecting the electromotive force generated by the difference in oxygen partial pressure between the molten metal formed on both sides of the oxygen ion conductive solid electrolyte and the standard electrode with the molybdenum electrode and the internal electrode. . The standard pole 2 is generally
A mixture of nickel and nickel oxide, molybdenum and molybdenum oxide, or a mixture of chromium and chromium oxide is used, and as the oxygen ion conductive solid electrolyte element 1, ceramics mainly containing zirconium oxide or thorium oxide is used. Furthermore, a thermocouple 5 is attached to the sensor so that the temperature of the molten metal can be measured at the same time. The sensor has a ceramic housing 6, which is attached to a sleeve consisting of a ceramic fiber refractory sleeve 9 and a paper sleeve 10, inside which is provided a connector 7 for connection to an electrical circuit. . A protective cover 8 is provided at the tip of the sensor to protect the electrodes, solid electrolyte, thermocouple and the like. By using the same material as the molten metal to be measured for the protective cover, it is possible to quickly dissolve and measure when used. Here, the dissolved oxygen concentration can be obtained by the following equation derived from the Nernst equation when the measurement target is molten steel.

【0004】 LogaO=(10.08E−13580)/T+8.62 (標準極はCr+Cr23) aO:溶存酸素濃度(ppm) E:起電力(mV) T:温度(°K)Loga O = (10.08E-13580) /T+8.62 (standard electrode is Cr + Cr 2 O 3 ) a O : dissolved oxygen concentration (ppm) E: electromotive force (mV) T: temperature (° K)

【0005】[0005]

【発明が解決しようとする課題】センサーの形状につい
ては、種々のものが提案されているが、図1のごとく一
端を閉じた管状の酸素イオン導電性固体電解質素子1
(以下素子という)の内部に標準物質2を充填したセン
サーを用いて溶鋼中の溶存酸素濃度の測定を行なった場
合の起電力および測定温度の時間的変化を示した波形を
図2に示すが、横軸には時間をとり、縦軸には起電力
(EMF)と温度(Temp)の変化をとったものであ
るが、熱的および電気的過渡現象により立上がりに大き
なピークを生じてから平衡状態に移行するという挙動を
示す。
Various sensor shapes have been proposed, but a tubular oxygen ion conductive solid electrolyte element 1 having one end closed as shown in FIG.
FIG. 2 shows a waveform showing the time change of the electromotive force and the measured temperature when the dissolved oxygen concentration in the molten steel is measured using the sensor in which the standard substance 2 is filled inside (hereinafter referred to as the element). , The horizontal axis is the time, and the vertical axis is the change in electromotive force (EMF) and temperature (Temp). Equilibrium occurs after a large peak is generated due to thermal and electrical transient phenomena. The behavior of transitioning to the state is shown.

【0006】しかしながら近年、溶鋼中の溶存酸素量の
測定作業能率の向上が求められていると共に、低酸素濃
度領域(溶存酸素濃度が50ppm以下)での使用が増
加している。したがって素子に対しては、熱起電力が平
衡状態に到達するまでの時間の短縮化すなわち応答速度
の向上、熱起電力波形の安定性等の特性向上が求められ
ている。
However, in recent years, there has been a demand for improvement in the work efficiency of measuring the amount of dissolved oxygen in molten steel, and its use in the low oxygen concentration region (dissolved oxygen concentration of 50 ppm or less) is increasing. Therefore, it is required for the element to shorten the time required for the thermoelectromotive force to reach the equilibrium state, that is, improve the response speed, and improve the characteristics such as the stability of the thermoelectromotive force waveform.

【0007】[0007]

【課題を解決するための手段】本発明は、熱起電力が平
衡状態に到達するまでの時間すなわち応答速度の向上を
図るために、酸素イオン導電性固体電解質としてチタン
酸化物および鉄酸化物の合計が0.1%以下の酸化ジル
コニウムのセラミックスを使用した溶融金属用酸素濃度
測定センサーである。
In order to improve the time required for the thermoelectromotive force to reach an equilibrium state, that is, the response speed, the present invention uses titanium oxide and iron oxide as oxygen ion conductive solid electrolytes. The oxygen concentration measuring sensor for molten metal uses zirconium oxide ceramics having a total content of 0.1% or less.

【0008】酸素イオン導電性固体電解質は酸化ジルコ
ニウムや酸化トリウム等に酸化マグネシウム、酸化カル
シウム、酸化イットリウム等を1モル%ないし10モル
%を加えて安定化したセラミックスであって、酸化ジル
コニウムあるいは酸化トリウムの焼結体が有している格
子欠陥により酸素イオンが移動することを利用するもの
である。
The oxygen ion conductive solid electrolyte is a ceramic obtained by adding 1 mol% to 10 mol% of magnesium oxide, calcium oxide, yttrium oxide, etc. to zirconium oxide, thorium oxide, etc., and is zirconium oxide, thorium oxide, etc. This utilizes the movement of oxygen ions due to the lattice defects of the sintered body.

【0009】一般に固体電解質はイオンによるイオン伝
導が優勢であるが、電子やホールによる伝導も無視でき
ず、特に安定化ジルコニアなど酸化物固体電解質では、
酸素分圧Po2及び温度Tによっては、電子伝導を考慮
する必要が生じ、イオン伝導、電子伝導、ホール伝導を
考慮した全電気伝導度σtotalと酸素分圧Po2の関係は σtotal=σion+σe+σh=σion+k1Po2 -1/n+k2Po2 1/n (k1 、k2 :定数、n:格子欠陥のタイプにより決ま
る定数)であらわされる。
In general, solid electrolytes are predominantly ionic conduction due to ions, but conduction due to electrons and holes cannot be ignored. Particularly, in oxide solid electrolytes such as stabilized zirconia,
Depending on the oxygen partial pressure Po 2 and the temperature T, it is necessary to consider the electron conduction, and the relationship between the total electrical conductivity σ total and the oxygen partial pressure Po 2 considering the ionic conduction, electron conduction, and hole conduction is σ total = σ ion + σ e + σ h = σ ion + k 1 Po 2 −1 / n + k 2 Po 2 1 / n (k 1 , k 2 : constant, n: constant determined by lattice defect type).

【0010】本素子に使用される原料の酸化ジルコニウ
ムに含まれる微量不純物としては、2酸化ケイ素(Si
2)、酸化アルミナ(Al23)、酸化チタン(Ti
2)、鉄酸化物(Fenm)等が一般的であるが、特
にチタン酸化物、鉄酸化物は金属過剰型の非化学量論的
な化合物であるため、過剰になった金属原子により電子
が生成し、これらが素子中の電気伝導に寄与するように
なる。
The trace impurities contained in the raw material zirconium oxide used in this device are silicon dioxide (Si).
O 2 ), alumina oxide (Al 2 O 3 ), titanium oxide (Ti
O 2 ), iron oxide (Fe n O m ), and the like are common, but titanium oxide and iron oxide are metal-excessive non-stoichiometric compounds, and therefore excess metal is used. Atoms generate electrons that contribute to electrical conduction in the device.

【0011】金属過剰型化合物としてはTiO2(Ti
1+x2)、Fe23(Fe2+x3)などがあげられ、過
剰の金属原子は格子間原子として存在し電子を供給する
ドナーになる。
As the metal excess type compound, TiO 2 (Ti
1 + x O 2 ), Fe 2 O 3 (Fe 2 + x O 3 ), and the like, and the excess metal atoms are present as interstitial atoms and serve as donors for supplying electrons.

【0012】[0012]

【化1】 Embedded image

【0013】したがって電子を生成する不純物元素の濃
度を低くすることによって、全電気伝導に占める電子に
よる伝導の割合を低くし、イオンによる伝導の割合を高
めることができる。
Therefore, by reducing the concentration of the impurity element that produces electrons, the proportion of conduction by electrons in the total electrical conduction can be lowered and the proportion of conduction by ions can be increased.

【0014】酸化物固体電解質を用いて酸素濃淡電池を
形成した場合の概念図を図3に示す。図3(A)は試料
極側(S)の酸素分圧Po2(S)が標準極側(R)の
酸素分圧Po2(R)より高い酸素分圧領域の場合であ
る。この時、試料極側(S)の酸素分子は酸素イオンO
2-のかたちで、酸化物固体電解質中の格子欠陥を介し
て、試料側(S)から標準極側(R)へ移動し、試料極
側(S)は正電位、標準極側(R)は負電位に帯電する
ことにより起電力Eが生じる。一方、図3(B)は試料
極側(S)の酸素分圧Po2(S)が標準極側(R)の
酸素分圧Po2(R)より低い、低酸素分圧領域であ
る。この時、図3(A)とは逆に試料極側(S)は負電
位、標準極側(R)は正電位に帯電し起電力Eが生じ
る。図3(A)、(B)の場合ともにO2-以外に電子e
-が電気伝導に寄与すると、起電力は(1−tion)の割
合(ただし、tion=σion/σtotal:イオンの輸率)
だけ低下し、正確な酸素濃度の測定が困難になる。また
電子e-の移動の影響で起電力が時間とともに漸減し、
起電力波形の安定性や応答速度に悪影響を及ぼす。した
がって電子伝導をおこす電子e-の量を低く抑えるため
に、チタン酸化物および鉄酸化物の不純物濃度の合量が
0.1重量%以下の酸化ジルコニウムを使用した酸素イ
オン導電性固体電解質を溶融金属用酸素濃度測定センサ
ーに使用することにより、起電力波形の安定性が得られ
その結果として平衡到達時間も短縮することができるよ
うになった。
FIG. 3 shows a conceptual diagram when an oxygen concentration battery is formed by using an oxide solid electrolyte. FIG. 3A shows the case where the oxygen partial pressure Po 2 (S) on the sample electrode side (S) is higher than the oxygen partial pressure Po 2 (R) on the standard electrode side (R). At this time, oxygen molecules on the sample electrode side (S) are oxygen ions O.
In the form of 2- , it moves from the sample side (S) to the standard electrode side (R) through the lattice defect in the oxide solid electrolyte, and the sample electrode side (S) has a positive potential and the standard electrode side (R). Is charged to a negative potential to generate an electromotive force E. On the other hand, FIG. 3B is a low oxygen partial pressure region in which the oxygen partial pressure Po 2 (S) on the sample electrode side (S) is lower than the oxygen partial pressure Po 2 (R) on the standard electrode side (R). At this time, contrary to FIG. 3A, the sample electrode side (S) is charged with a negative potential and the standard electrode side (R) is charged with a positive potential, and an electromotive force E is generated. In the cases of FIGS. 3A and 3B, electrons e other than O 2-
When- contributes to electric conduction, the electromotive force is a ratio of (1-t ion ) (where t ion = σ ion / σ total : ion transport number).
However, it becomes difficult to measure the oxygen concentration accurately. In addition, the electromotive force gradually decreases over time due to the movement of the electron e ,
It adversely affects the stability of the electromotive force waveform and the response speed. Therefore, in order to suppress the amount of electrons e that cause electron conduction to a low level, the oxygen ion conductive solid electrolyte using zirconium oxide having a total impurity concentration of titanium oxide and iron oxide of 0.1 wt% or less is melted. By using it for the oxygen concentration measuring sensor for metals, the stability of the electromotive force waveform was obtained, and as a result, the equilibrium arrival time could be shortened.

【0015】[0015]

【作用】本発明の溶融金属中の溶存酸素濃度の測定用の
センサーは酸素イオン導電性固体電解質としてチタン酸
化物および鉄酸化物の合計の濃度が0.03〜0.08
重量%であるとともに、鉄酸化物が0.02〜0.03
重量%の、酸化マグネシウムで安定化した酸化ジルコニ
ウムを使用したので、電子の量が低いので起電力波形お
よび起電力の応答性が優れている。
The sensor for measuring the dissolved oxygen concentration in the molten metal according to the present invention has a total concentration of titanium oxide and iron oxide of 0.03 to 0.08 as the oxygen ion conductive solid electrolyte.
% By weight, and iron oxides of 0.02 to 0.03
Since the weight percent of zirconium oxide stabilized with magnesium oxide is used, the electromotive force waveform and electromotive force response are excellent because the amount of electrons is low.

【0016】[0016]

【実施例】実施例1 酸素イオン導電性固体電解質として、表1に示す化学成
分の酸化ジルコニウム原料A、B、Cを用い、酸化ジル
コニウム成分の100重量部に対して、酸化マグネシウ
ムを2.8重量部を混合して、一端を閉鎖した外径5.
8mm、長さ44mm、厚さ1.1mmの管状体を成形
したのち、大気雰囲気中で焼結して固体電解質を得た。
管状の固体電解質の内部にはクロムおよび酸化クロムか
らなる混合物を充填し、モリブデンの電極を設け、固体
電解質の管状体を、溶融金属中へ浸漬するモリブデン製
の金属電極、熱電対とともにセラミックスからなるハウ
ジングに取り付けてセンサーを作製した。
Example 1 As the oxygen ion conductive solid electrolyte, zirconium oxide raw materials A, B and C having the chemical components shown in Table 1 were used, and magnesium oxide was 2.8 with respect to 100 parts by weight of the zirconium oxide component. 4. Outside diameter with one part closed by mixing parts by weight.
After forming a tubular body having a length of 8 mm, a length of 44 mm and a thickness of 1.1 mm, it was sintered in an air atmosphere to obtain a solid electrolyte.
The tubular solid electrolyte is filled with a mixture of chromium and chromium oxide, a molybdenum electrode is provided, and the tubular body of the solid electrolyte is made of a molybdenum metal electrode that is immersed in molten metal, and a thermocouple is made of ceramics. The sensor was made by mounting it on the housing.

【0017】[0017]

【表1】 [Table 1]

【0018】得られたセンサーを溶鋼中に浸漬した時の
平衡到達時間及び得られた起電力波形の安定性について
調べた。測定条件は以下のとおりである。
The equilibrium arrival time when the obtained sensor was immersed in molten steel and the stability of the obtained electromotive force waveform were investigated. The measurement conditions are as follows.

【0019】溶解炉:20kg高周波誘導炉 溶融温度:1600℃ 溶融金属:鋼、12kg 溶鋼中の酸素濃度は顆粒状グラファイトの添加量で調整
し、酸素濃度は低酸素分圧である1ppmないし5pp
mとした。また溶融浴表面はアルゴンガスでシールし
た。
Melting furnace: 20 kg high frequency induction furnace Melting temperature: 1600 ° C. Molten metal: Steel, 12 kg The oxygen concentration in the molten steel is adjusted by the amount of granular graphite added, and the oxygen concentration is a low oxygen partial pressure of 1 ppm to 5 pp.
m. The surface of the molten bath was sealed with argon gas.

【0020】[0020]

【表2】 [Table 2]

【0021】低酸素分圧時には平衡に達するまでの時間
は、原料Aと原料Bおよび原料Cとは大きな差があり、
とくに原料Bの場合には原料Aの場合に比べて半分以下
である。
At low oxygen partial pressure, the time required to reach equilibrium differs greatly between raw material A and raw material B and raw material C,
Particularly in the case of the raw material B, the amount is half or less as compared with the case of the raw material A.

【0022】また、起電力波形の安定性についても、原
料Aを使用した場合には図4に見られるように漸減する
傾向が認められるが、原料Cについては図5に示される
ようにこの傾向は小さく、更に原料Bでは図6に示され
るように安定した起電力の波形が得られる。
Regarding the stability of the electromotive force waveform, when raw material A is used, a tendency of gradual decrease is observed as shown in FIG. 4, but for raw material C, this tendency is observed as shown in FIG. Is small, and with the raw material B, a stable electromotive force waveform is obtained as shown in FIG.

【0023】図4、図5および図6の溶存酸素濃度は、
それぞれ2.7ppm、3.6ppmおよび2.7pp
mであった。
The dissolved oxygen concentration in FIGS. 4, 5 and 6 is
2.7 ppm, 3.6 ppm and 2.7 pp respectively
It was m.

【0024】実施例2 実施例1と同様に作製したセンサーについて、溶存酸素
濃度が高い溶鋼中に浸漬した時の平衡到達時間及び得ら
れた起電力波形の安定性について調べた。測定条件は以
下のとおりである。 溶解炉:20kg高周波誘導炉 溶融温度:1650℃および1700℃ 溶融金属:鋼、12kg 溶鋼中の溶存酸素濃度は顆粒状グラファイトの添加量で
調整し、溶存酸素濃度は400ppmないし750pp
mとした。また溶融浴表面はアルゴンガスでシールし
た。
Example 2 A sensor manufactured in the same manner as in Example 1 was examined for equilibrium arrival time and stability of the obtained electromotive force waveform when immersed in molten steel having a high dissolved oxygen concentration. The measurement conditions are as follows. Melting furnace: 20 kg High frequency induction furnace Melting temperature: 1650 ° C. and 1700 ° C. Molten metal: Steel, 12 kg Dissolved oxygen concentration in molten steel is adjusted by the addition amount of granular graphite, and dissolved oxygen concentration is 400 ppm to 750 pp
m. The surface of the molten bath was sealed with argon gas.

【0025】溶解炉:20kg高周波誘導炉 溶融温度:1650℃および1700℃ 溶融金属:鋼、12kg 溶鋼中の溶存酸素濃度は顆粒状グラファイトの添加量で
調整し、溶存酸素濃度は400ppmないし750pp
mとした。また溶融浴表面はアルゴンガスでシールし
た。
Melting furnace: 20 kg high-frequency induction furnace Melting temperature: 1650 ° C. and 1700 ° C. Molten metal: Steel, 12 kg The dissolved oxygen concentration in molten steel is adjusted by the amount of granular graphite added, and the dissolved oxygen concentration is 400 ppm to 750 pp.
m. The surface of the molten bath was sealed with argon gas.

【0026】溶鋼温度1650℃での測定結果を表3に
示し、その時の代表的な起電力波形を図7、図8および
図9に示すが、溶存酸素濃度はそれぞれ486ppm、
499ppmおよび556ppmであった。
The measurement results at a molten steel temperature of 1650 ° C. are shown in Table 3, and representative electromotive force waveforms at that time are shown in FIGS. 7, 8 and 9, and the dissolved oxygen concentration is 486 ppm, respectively.
It was 499 ppm and 556 ppm.

【0027】[0027]

【表3】 [Table 3]

【0028】また、溶鋼の温度が1700℃での高酸素
分圧領域での測定結果を表4に示す。
Table 4 shows the measurement results in the high oxygen partial pressure region where the temperature of the molten steel is 1700 ° C.

【0029】[0029]

【表4】 [Table 4]

【0030】また、平衡に到達する時間の平均値を各測
定温度について示す。
The average value of the time to reach equilibrium is shown for each measured temperature.

【0031】[0031]

【表5】 [Table 5]

【0032】原料の違いによる平衡到達時間に大差はな
いが傾向としては、溶鋼温度の高い場合にはA、C、B
の順に短くなっており、溶存酸素濃度が高い場合にも、
平衡到達時間の短縮化にがみられる。
There is no great difference in the equilibrium arrival time due to the difference in the raw materials, but the tendency is that when the molten steel temperature is high, A, C, B
It becomes shorter in the order of, and even when the dissolved oxygen concentration is high,
It can be seen that the equilibrium arrival time is shortened.

【0033】[0033]

【発明の効果】本発明の溶融金属中の溶存酸素濃度測定
用のセンサーは酸素イオン導電性固体電解質として使用
する酸化ジルコニウムとして、電子伝導に寄与するチタ
ン酸化物および鉄酸化物の合計の濃度が0.03〜0.
08重量%であるとともに、鉄酸化物が0.02〜0.
03重量%の、酸化ジルコニウムを使用したもので、電
子やホールの量が低く、特に低酸素分圧時における起電
力波形および起電力の応答性が優れている。
INDUSTRIAL APPLICABILITY The sensor for measuring the dissolved oxygen concentration in the molten metal of the present invention has zirconium oxide used as an oxygen ion conductive solid electrolyte and has a total concentration of titanium oxide and iron oxide contributing to electron conduction. 0.03-0.
The content of iron oxide is 0.02 to 0.
The content of zirconium oxide is 03% by weight, the amount of electrons and holes is low, and the electromotive force waveform and the electromotive force response are excellent especially at low oxygen partial pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶融金属中の溶存酸素濃度を測定するセンサー
の一例を示す。
FIG. 1 shows an example of a sensor for measuring the dissolved oxygen concentration in molten metal.

【図2】測定時の起電力波形および温度の時間変化を示
す。
FIG. 2 shows a time change of an electromotive force waveform and temperature during measurement.

【図3】酸化物固体電解質を用いて酸素濃淡電池を形成
した場合の概念図を示す。
FIG. 3 is a conceptual diagram when an oxygen concentration battery is formed using an oxide solid electrolyte.

【図4】原料Aを使用した場合の低酸素濃度域での起電
力波形および温度の変化を示す。
FIG. 4 shows changes in electromotive force waveform and temperature in a low oxygen concentration range when the raw material A was used.

【図5】原料Cを使用した場合の低酸素濃度域での起電
力波形および温度の変化を示す。
FIG. 5 shows changes in electromotive force waveform and temperature in a low oxygen concentration range when the raw material C was used.

【図6】原料Bを使用した場合の低酸素濃度域での起電
力波形および温度の変化を示す。
FIG. 6 shows changes in electromotive force waveform and temperature in a low oxygen concentration region when raw material B was used.

【図7】原料Aを使用した場合の高酸素濃度域での起電
力波形および温度の変化を示す。
FIG. 7 shows changes in electromotive force waveform and temperature in a high oxygen concentration range when the raw material A was used.

【図8】原料Bを使用した場合の高酸素濃度域での起電
力波形および温度の変化を示す。
FIG. 8 shows changes in electromotive force waveform and temperature in a high oxygen concentration region when raw material B was used.

【図9】原料Cを使用した場合の高酸素濃度域での起電
力波形および温度の変化を示す。
FIG. 9 shows changes in electromotive force waveform and temperature in a high oxygen concentration range when the raw material C was used.

【符号の説明】[Explanation of symbols]

1…酸素イオン導電性固体電解質素子、2…標準極、3
…内部電極、4…外部電極、5…熱電対、6…ハウジン
グ、7…コネクタ、8…保護カバー、9…セラミックフ
ァイバー耐火スリーブ、10…ペーパースリーブ
1 ... Oxygen ion conductive solid electrolyte element, 2 ... Standard electrode, 3
… Internal electrode, 4… External electrode, 5… Thermocouple, 6… Housing, 7… Connector, 8… Protective cover, 9… Ceramic fiber fireproof sleeve, 10… Paper sleeve

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化マグネシウムを安定化剤とし、酸化ジ
ルコニウムを主成分とする酸素イオン導電性固体電解質
を使用した溶融金属用酸素濃度測定センサーにおいて、
酸化ジルコニウム中のチタン酸化物と鉄酸化物の合計が
0.03〜0.08重量%であるとともに、鉄酸化物が
0.02〜0.03重量%の酸化ジルコニウムを使用す
ることを特徴とする溶融金属用酸素濃度測定センサー。
1. A sensor for measuring oxygen concentration for molten metals, which uses magnesium oxide as a stabilizer and an oxygen ion conductive solid electrolyte containing zirconium oxide as a main component,
The total amount of titanium oxide and iron oxide in zirconium oxide is 0.03 to 0.08% by weight, and zirconium oxide containing 0.02 to 0.03% by weight of iron oxide is used. Oxygen concentration measuring sensor for molten metal.
JP3023568A 1991-02-18 1991-02-18 Oxygen concentration measurement sensor for molten metal Expired - Lifetime JP2566343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3023568A JP2566343B2 (en) 1991-02-18 1991-02-18 Oxygen concentration measurement sensor for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3023568A JP2566343B2 (en) 1991-02-18 1991-02-18 Oxygen concentration measurement sensor for molten metal

Publications (2)

Publication Number Publication Date
JPH04264251A JPH04264251A (en) 1992-09-21
JP2566343B2 true JP2566343B2 (en) 1996-12-25

Family

ID=12114144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3023568A Expired - Lifetime JP2566343B2 (en) 1991-02-18 1991-02-18 Oxygen concentration measurement sensor for molten metal

Country Status (1)

Country Link
JP (1) JP2566343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319864B2 (en) 2008-09-11 2012-11-27 Ricoh Company, Ltd. Imaging apparatus and imaging method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693039A (en) * 1979-12-27 1981-07-28 Hitachi Chem Co Ltd Oxygen sensor element for melted steel
US4906349A (en) * 1988-10-12 1990-03-06 Zircoa Incorporation Process for the manufacture of a measuring probe for a measuring head to detect the oxygen activity of metal melts and a measuring probe manufactured by such a process
JPH04181155A (en) * 1990-11-15 1992-06-29 Nippon Steel Corp Measuring sensor for oxygen partial pressure in molten salt

Also Published As

Publication number Publication date
JPH04264251A (en) 1992-09-21

Similar Documents

Publication Publication Date Title
US3403090A (en) Vessel for measuring oxygen content of a molten metal
US7335287B2 (en) Solid electrolyte sensor for monitoring the concentration of an element in a fluid particularly molten metal
AU2002253286A1 (en) Solid electrolyte sensor for monitoring the concentration of an element in a fluid particularly molten metal
JPH07167823A (en) Collating electrode for electrochemical measurement of partial pressure of oxygen in ionic melt
JP4301732B2 (en) Sensor for application to molten metal
JP2566343B2 (en) Oxygen concentration measurement sensor for molten metal
Friedman et al. Electronic conductivities of commercial ZrO 2+ 3 to 4 wt pct CaO electrolytes
KR960010691B1 (en) Probe for measuring concentration of impurity element in molten metal
JPH0471464B2 (en)
US5656143A (en) Sensors for the analysis of molten metals
KR101232121B1 (en) Auxiliary electrode typed sensor and that reference electrode and manufacturing method thereof
JPS58211649A (en) Reference electrode for oxygen probe
JP7265007B2 (en) Solid reference material and hydrogen gas sensor
JPH06258282A (en) Oxygen probe
JP4714336B2 (en) Conductive refractories for immersion in molten steel
JPH10213563A (en) Solid electrolyte element and oxygen concentration measuring device
Saeki et al. Effect of Partial Equilibrium and Redox Reactions in a Zirconia Solid Electrolyte on the Electromotive Force in a Zirconia Oxygen Sensor
Liu et al. A review of solid-state electrochemical sensors for measurements of sulfur content of liquid metals
JP2006132959A (en) Magnesium sensor probe
JP3043841B2 (en) Component sensor for molten metal using composite solid electrolyte
SU308772A1 (en) ELECTROLYTIC 51CLAY
WO2001061333A1 (en) Sensors
JPS60149961A (en) Solid electrolyte oxygen sensor
Liu et al. Oxygen sensor with double layer electrolyte for low oxygen measurement of steel melts
JPS59125055A (en) High temperature hydrogen sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 15