JP2565453B2 - Upflow biological nitrification denitrification method and apparatus - Google Patents

Upflow biological nitrification denitrification method and apparatus

Info

Publication number
JP2565453B2
JP2565453B2 JP4158916A JP15891692A JP2565453B2 JP 2565453 B2 JP2565453 B2 JP 2565453B2 JP 4158916 A JP4158916 A JP 4158916A JP 15891692 A JP15891692 A JP 15891692A JP 2565453 B2 JP2565453 B2 JP 2565453B2
Authority
JP
Japan
Prior art keywords
packed bed
tank
bed
porous member
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4158916A
Other languages
Japanese (ja)
Other versions
JPH0623392A (en
Inventor
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP4158916A priority Critical patent/JP2565453B2/en
Publication of JPH0623392A publication Critical patent/JPH0623392A/en
Application granted granted Critical
Publication of JP2565453B2 publication Critical patent/JP2565453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アンモニア性窒素(N
3 −N)を含む有機性汚水を生物学的に硝化脱窒素す
る処理装置に関し、特に単一槽で効果的に、高速度で硝
化反応、脱窒素反応を進行させることが可能な新規装置
に関する。
The present invention relates to an ammoniacal nitrogen (N)
A treatment device for biologically nitrifying and denitrifying organic wastewater containing (H 3 -N), particularly a novel device capable of effectively advancing the nitrification reaction and denitrification reaction at a high speed in a single tank Regarding

【0002】[0002]

【従来の技術】従来より図2に示すように、アンスラサ
イトなどの粒状鉱物のろ材の充填層を浸漬ろ床とする単
位ろ床を用い、該単位ろ床のろ材に脱窒素菌を保持せし
めたものを脱窒素ろ床Dとし、また別の該単位ろ床のろ
材に硝化菌を保持せしめたものを硝化ろ床Eとし、これ
ら脱窒素ろ床Dと硝化ろ床Eを直列的に配置し、散気管
24を有する硝化ろ床Eで好気的に硝化処理した流出水
(硝化液と呼ぶ)をポンプによって脱窒素ろ床Dに循環
する方式の2基の浸漬単位ろ床構成の生物学的硝化脱窒
素装置は公知である。
2. Description of the Related Art Conventionally, as shown in FIG. 2, a unit filter bed having a packed bed of a filter material of granular mineral such as anthracite as an immersion filter bed is used, and the filter material of the unit filter bed is made to retain denitrifying bacteria. Is a denitrifying filter bed D, and a filter medium of another unit filter bed that holds nitrifying bacteria is a nitrifying filter bed E. These denitrifying filter bed D and nitrifying filter bed E are arranged in series. Then, an organism having a two-dip unit filter bed configuration in which effluent water aerobically nitrified in the nitrification filter bed E with an air diffuser 24 (referred to as nitrification solution) is circulated to the denitrification filter bed D by a pump. The nitrification and denitrification equipment is known.

【0003】この上記従来技術には次のような欠点があ
り、さらに優れた技術の開発が切望されている。 処理装置が脱窒素ろ床Dと硝化ろ床Eとの直列的2
基配置で構成されているので、設置面積がかさむ。 脱窒素ろ床Dには、原水としてSSを含んだ有機汚
水が流入するためろ床の目詰まりの進行が速く、頻繁に
ろ床洗浄を行わなければならない。その結果、この方式
は多量の洗浄用水を消費し、従って洗浄排水の発生量も
多い。 脱窒素ろ床Dと硝化ろ床Eとは別々に洗浄しなけれ
ばならず、ますます洗浄排水の発生量が多くなる。 この方式では、ろ床の充填ろ材として粒状鉱物のろ
材を使用しているので微生物の保持量が少なく、従って
硝化反応速度も脱窒素反応速度も小さいので、大きい反
応槽(ろ床)が必要となり、建設コスト、設置スペース
がかさむ。
The above-mentioned conventional technique has the following drawbacks, and the development of a more excellent technique has been earnestly desired. The treatment equipment has a denitrification filter D and a nitrification filter E in series 2
Since it is configured with the base arrangement, the installation area is large. Since organic wastewater containing SS as raw water flows into the denitrification filter bed D, the progress of clogging of the filter bed is rapid, and the filter bed must be frequently washed. As a result, this method consumes a large amount of cleaning water, and therefore produces a large amount of cleaning wastewater. The denitrification filter bed D and the nitrification filter bed E have to be separately washed, and the amount of cleaning wastewater generated further increases. In this method, since a granular mineral filter medium is used as a filter medium for filling the filter bed, the amount of microorganisms retained is small, and therefore the nitrification reaction rate and denitrification reaction rate are low, so a large reaction tank (filter bed) is required. , Construction cost and installation space are large.

【0004】省スペース策として、脱窒素ろ床と硝化ろ
床の一体配置が考えられる。脱窒素ろ床と硝化ろ床とを
一体とした処理装置は例えば特開平3−217296号
公報に開示されている。該装置は発泡ポリスチレンのよ
うな比重の1.0より小さい浮上性ろ材を充填したろ床
の中間部に、ろ床を通水性多孔部材などで区画すること
なく酸素含有ガスを吹き込むことで、充填ろ床の下部で
脱窒素、上部で硝化を行うものである。しかしながら、
本装置では硝化脱窒素効率が未だ低く、またろ材洗浄時
の空気曝露および攪乱により脱窒素菌がダメージを受け
易く、さらに散気位置を挟んで上下のろ材が混合し、脱
窒素菌、硝化菌の酸素要求に関する環境が逆転する部分
が生じるなどの不都合が生じている。このため、さらに
高効率でかつ安定した硝化脱窒素処理ができるコンパク
トな装置が要望されている。
As a space-saving measure, the denitrification filter bed and the nitrification filter bed may be integrally arranged. A treatment device in which a denitrification filter bed and a nitrification filter bed are integrated is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-217296. The device is filled by blowing an oxygen-containing gas into the middle part of a filter bed filled with a floating filter medium having a specific gravity of less than 1.0 such as expanded polystyrene without blowing the filter bed through a water-permeable porous member. The bottom of the filter bed is denitrified and the top is nitrified. However,
In this device, the nitrifying and denitrifying efficiency is still low, and the denitrifying bacteria are easily damaged by air exposure and disturbance during cleaning of the filter medium. Inconveniences such as the occurrence of a part in which the environment related to the oxygen demand of (1) is reversed. Therefore, there is a demand for a compact device that can perform nitrifying and denitrifying treatment with higher efficiency and stability.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、上記
〜の欠点をすべて解消できる新技術を提供するもの
である。すなわち、 1)単一槽で硝化脱窒素を行えるようにする。 2)ろ床洗浄を合理化する。 3)ろ床の閉塞を減少させ、ろ床の洗浄頻度を著しく少
なくする。 4)硝化反応、脱窒素反応速度を顕著に向上させる。 以上の機能を有する装置の提供を課題とする。
An object of the present invention is to provide a new technique capable of solving all of the above-mentioned disadvantages. That is, 1) Nitrification and denitrification can be performed in a single tank. 2) Streamline filter bed cleaning. 3) The filter bed is blocked and the frequency of washing the filter bed is significantly reduced. 4) Remarkably improve the nitrification reaction and denitrification reaction rate. An object is to provide a device having the above functions.

【0006】[0006]

【課題を解決するための手段】上記課題は、下記の上向
流生物学的硝化脱窒素方法及び装置によって解決され
た。 (1) 槽内に設けた立体的網目構造をもつ粒状固体を充
填した充填層Aに上向流で原水を導き、主にBOD、S
Sの除去および生物学的脱窒素処理を行い、その流出水
を該槽内に張設した多孔部材を介して、前記充填層Aの
上段に別途設けた立体的網目構造をもつ粒状固体を充填
した充填層Bへ導き、酸素含有ガスを供給しつつ主に残
留BOD、SSの除去および生物学的硝化処理を行って
処理水とすると共に、該処理水の少なくとも一部を槽上
より前記充填層Aへ循環させ、前記充填層Aのろ過抵
抗が増加した時に、該処理水の循環を停止し、前記多孔
部材の下部に設けた洗浄排水流出管の弁を開けて槽内水
位を前記多孔部材の下まで下げた後、前記充填層Aの下
方から供給する原水により前記充填層Aを洗浄し、洗浄
排水を前記洗浄排水流出管から流出させることにより前
記充填層Aの洗浄を行うことを特徴とする上向流生物学
的硝化脱窒素方法。
The above problems are solved by the upflow biological nitrification and denitrification method and apparatus described below.
It was (1) The raw water is guided in an upward flow to a packed bed A filled with a granular solid having a three-dimensional network structure provided in the tank, and mainly BOD, S
S is removed and biological denitrification is performed, and the outflow water is filled with a granular solid having a three-dimensional network structure separately provided on the upper stage of the packed bed A through a porous member stretched in the tank. To the packed bed B that has been treated, and while supplying oxygen-containing gas, the residual BOD and SS are mainly removed and biological nitrification treatment is performed to obtain treated water, and at least a part of the treated water is placed on the tank.
Portion to the packed bed A, and the filtration resistance of the packed bed A is increased.
When the resistance increases, the circulation of the treated water is stopped and the
Open the valve of the washing drainage pipe provided at the bottom of the member to
Position below the porous member and then below the packed bed A.
The packed bed A is washed with raw water supplied from
By draining the wastewater from the washing wastewater outflow pipe,
An upflow biological nitrification and denitrification method, characterized in that the packed bed A is washed .

【0007】(2)下部に原水流入部、上部に処理水流
出部を備えた槽内に、立体的網目構造をもつ粒状固体を
充填した充填層を、槽内に張設した多孔部材を介して、
下部充填層Aと上部充填層Bに区画し、上部充填層Bの
下部または多孔部材上面付近に散気手段を設けると共
に、上部充填層Bの流出水の少なくとも一部を下部充填
層Aへ循環する循環路を設け、前記多孔部材の下部に洗
浄排水流出部を設け、該洗浄排水流出部に弁を備えた洗
浄排水流出管を設けたことを特徴とする上向流生物学的
硝化脱窒素装置。
(2) A packed bed filled with granular solid having a three-dimensional network structure is placed in a tank having a raw water inflow part in the lower part and a treated water outflow part in the upper part through a porous member stretched in the tank. hand,
It is divided into a lower packed bed A and an upper packed bed B, and an air diffuser is provided in the lower part of the upper packed bed B or near the upper surface of the porous member, and at least a part of the outflow water of the upper packed bed B is circulated to the lower packed bed A. A circulation path is provided to wash the bottom of the porous member.
A cleaning drain outlet is provided, and a cleaning drain outlet is equipped with a valve.
Upflow biological nitrification and denitrification equipment, characterized in that it is provided with a purified water discharge pipe .

【0008】本発明の1実施例を図1に示し、図を参照
しながら本発明の具体的な構成について説明する。しか
しながら、本発明は以下の説明によって制限されるもの
ではない。
An embodiment of the present invention is shown in FIG. 1, and a specific configuration of the present invention will be described with reference to the drawing. However, the present invention is not limited by the following description.

【0009】本発明の処理槽1内に、立体的網目構造を
もつ粒状固体からなるろ材を充填した充填層が設けら
れ、該処理槽1の中段に張設された多孔部材C(中段)
によって下部充填層Aと上部充填層Bとに区画されてい
る。充填層Aと充填層Bとの間にろ材が充填されていな
い空間部Hを有してもよい。充填層Bの下部または多孔
部材上面付近に散気管8が設けられ、ガス供給源5から
散気弁18を有する送気管を経て酸素含有ガスが供給さ
れる。上記散気管8は空間部Hに設けられるのが好まし
いが、充填層Bの内部でも構わない。処理槽1の底部に
は供給弁15を有する原水供給管2、循環部弁17を有
する循環水管3および空気洗浄用の空洗散気管11が設
けられている。空洗散気管11には弁12を備えた送気
管を経てブロワー13から空気が供給される。但し、ブ
ロワー13から供給される気体は充填層の微生物に強い
ダメージを与えなければ空気でなくともよい。
In the treatment tank 1 of the present invention, a packing layer filled with a filter material made of granular solid having a three-dimensional network structure is provided, and a porous member C (middle stage) stretched in the middle of the treatment tank 1 is provided.
It is divided into a lower filling layer A and an upper filling layer B by. A space H not filled with the filter medium may be provided between the filling layers A and B. An air diffuser 8 is provided in the lower part of the packed bed B or near the upper surface of the porous member, and the oxygen-containing gas is supplied from the gas supply source 5 through an air supply pipe having an air diffuser valve 18. The air diffuser 8 is preferably provided in the space H, but may be inside the filling layer B. At the bottom of the treatment tank 1, a raw water supply pipe 2 having a supply valve 15, a circulating water pipe 3 having a circulation valve 17 and an air-washing diffuser pipe 11 for air cleaning are provided. Air is supplied from the blower 13 to the air-cleaning air diffusing pipe 11 through an air feeding pipe provided with a valve 12. However, the gas supplied from the blower 13 does not have to be air as long as it does not seriously damage the microorganisms in the packed bed.

【0010】処理槽1の最上部には処理水流出弁16を
有する処理水流出管6および循環ポンプ7と前記循環部
弁17を有する循環水管2を備えている。また、充填層
Bの上部には上部多孔部材4が張設してある。前記充填
層Aと充填層Bとを区画している多孔部材Cおよび上部
多孔部材4はネット、多孔板、グレーチング、格子など
の多孔通水部材で構成されている。この多孔部材Cの近
傍の充填層A内に充填層AとBの洗浄排水を排出する、
弁14を備えた洗浄排水管9が設けられ、充填層A内の
ろ材がそこから流出しないように粗目のネット10が張
設してある。以上が本発明の処理槽1の構成である。
A treated water outlet pipe 6 having a treated water outlet valve 16 and a circulating water pipe 2 having a circulating pump 7 and the circulating portion valve 17 are provided at the top of the treating tank 1. Further, an upper porous member 4 is stretched above the filling layer B. The porous member C and the upper porous member 4 that partition the packed bed A and the packed bed B are composed of a porous water-permeable member such as a net, a porous plate, a grating, and a grid. The cleaning wastewater of the packed beds A and B is discharged into the packed bed A near the porous member C,
A washing and draining pipe 9 having a valve 14 is provided, and a coarse net 10 is stretched to prevent the filter medium in the packed bed A from flowing out therefrom. The above is the configuration of the processing tank 1 of the present invention.

【0011】上記充填層に充填するろ材を構成する立体
的網目構造をもつ粒状固体は、表面から内部にかけて連
続した穴を持つように形成され、有機高分子、無機化合
物等公知のものを使用して公知の発泡法等により製造で
きる。粒状体の素材としては上記発泡法に適性を有する
ものならば特に制限されないが、中でも素材自体に適度
な弾性と強度とを有するウレタン樹脂等が好ましい。ろ
材は例えば、ポリウレタンフォーム等の多孔性粒状固体
を所望の形状、サイズに切断して使用する。
The granular solid having a three-dimensional network structure which constitutes the filter medium to be filled in the above-mentioned filling layer is formed so as to have continuous holes from the surface to the inside thereof, and known substances such as organic polymers and inorganic compounds are used. Can be produced by a known foaming method or the like. The material of the granular material is not particularly limited as long as it is suitable for the foaming method, but among them, a urethane resin having suitable elasticity and strength for the material itself is preferable. As the filter medium, for example, a porous granular solid such as polyurethane foam is cut into a desired shape and size before use.

【0012】そのサイズは10〜30mm、好ましくは
15〜20mmであり、形状は角形、球状、その他種々
の形状がとれるが、角形が好ましい。その素材の比重
は、通常1.0〜1.2程度が好ましく、特に1.1〜
1.2程度が好ましい。また、空隙率は、90%以上が
好ましい。気孔径、即ち、孔径は、0.1〜6mm、好
ましくは2〜4mmの範囲から選択することが望まし
い。また、1cm長さ当たりの孔の数は、5〜20個が
好ましい。本発明において、処理槽1の中段に張設する
多孔部材Cには上記多孔性粒状固体からなるろ材を通過
させないものを用い、充填層AとBに充填されている粒
状ろ材が相互に混じり合わないようにしている。
The size is 10 to 30 mm, preferably 15 to 20 mm, and the shape can be square, spherical, and various other shapes, but the square is preferable. The specific gravity of the material is usually preferably about 1.0 to 1.2, particularly 1.1 to 1.2.
About 1.2 is preferable. The porosity is preferably 90% or more. The pore diameter, that is, the pore diameter is desirably selected from the range of 0.1 to 6 mm, preferably 2 to 4 mm. Further, the number of holes per 1 cm length is preferably 5 to 20. In the present invention, the porous member C stretched in the middle stage of the treatment tank 1 is one that does not allow the filter medium made of the above-mentioned porous granular solid to pass through, and the granular filter mediums filled in the packed layers A and B are mixed with each other. I try not to.

【0013】[0013]

【作用】次に、図1を用いて本発明の作用について説明
する。充填層Aは主に生物学的な脱窒素、BOD除去と
原水SSのろ過を行う。充填層Bは残留BOD除去と生
物学的硝化とSSの高度なろ過を行う領域である。下水
などのNH3 −N含有汚水(原水)は原水供給管2から
充填層Aの下部に流入し、循環水管3からの硝化循環液
と共に充填層A内に上向流で流入する。充填層Aに充填
されている立体的網目状の粒状固体からなるろ材には、
その網目構造内に合わせておよそ15000〜1800
0mg/リットル(実測値)の脱窒素菌並びにBOD資
化菌が固定化されているため、次の反応式のように原水
中のBODがNOX −N(硝酸性窒素)をN2 ガスに還
元するための有機炭素源として利用され、NOX −Nが
極めて高速に除去される。なお、散気管11から少量の
空気などガスを吐出しても生成N2 ガスを追い出し易く
なるので好適である。 BOD+NOX −N −−−→ N2 +CO2 +H2 O (脱窒素菌)
Next, the operation of the present invention will be described with reference to FIG. The packed bed A mainly performs biological denitrification, BOD removal, and filtration of raw water SS. The packed bed B is an area for removing residual BOD, biological nitrification and advanced filtration of SS. NH 3 —N-containing wastewater (raw water) such as sewage flows into the lower part of the packed bed A from the raw water supply pipe 2 and flows into the packed bed A in an upward flow together with the nitrifying circulating liquid from the circulating water pipe 3. The filter medium made of a three-dimensional mesh-like granular solid filled in the packed bed A is
Approximately 15000-1800 to fit within the mesh structure
Since 0 mg / liter (measured value) of denitrifying bacteria and BOD-assimilating bacteria are immobilized, BOD in the raw water is converted to NO x -N (nitrate nitrogen) into N 2 gas as shown in the following reaction formula. is used as an organic carbon source for the reduction, NO X -N is very removed quickly. Even if a small amount of gas such as air is discharged from the air diffuser 11, the generated N 2 gas can be easily expelled, which is preferable. BOD + NO X -N --- → N 2 + CO 2 + H 2 O ( denitrification bacteria)

【0014】充填層Aを構成する立体網目状の粒状固体
からなるろ材はSSのろ過性能にも優れているため、充
填層A内を通過することによって原水中のSSがろ過除
去され、充填層Aからの流出水のSSは通常15mg/
リットル以下に低下する。なお、立体的網目状の粒状固
体に好ましくは比重が1.1〜1.2程度であるポリウ
レタンフォーム粒状物を用いると、脱窒素反応によって
発生するN2 ガスとCO2 ガス気泡がポリウレタンフォ
ームの網目構造に捕捉される結果、見掛け比重が1.0
以下になり、浮上した状態の充填層Aが、多孔部材Cの
下部に形成される。しかして、原水中のBOD、SSお
よび循環硝化液中のNOX −Nの大部分が除去された充
填層Aからの流出水は、散気管8から吐出される空気泡
と共に、生物学的硝化反応が進行する充填層Bに進入し
て行く。
Since the filter medium composed of a solid solid having a three-dimensional mesh structure that constitutes the packed bed A is also excellent in the filtration performance of SS, SS in the raw water is filtered and removed by passing through the packed bed A, and the packed bed is filtered. SS of runoff water from A is usually 15 mg /
It drops below liters. When a polyurethane foam granule having a specific gravity of about 1.1 to 1.2 is used as the three-dimensional mesh-like solid, N 2 gas and CO 2 gas bubbles generated by the denitrification reaction are the same as those of the polyurethane foam. As a result of being captured by the mesh structure, the apparent specific gravity is 1.0.
As described below, the floating filling layer A is formed below the porous member C. Thus, the effluent from the packed bed A from which most of BOD, SS in the raw water and NO X -N in the circulating nitrification solution has been removed, together with the air bubbles discharged from the diffuser 8, the biological nitrification. It enters into the packed bed B where the reaction proceeds.

【0015】充填層Bを構成する立体網目状粒状固体も
気泡を保持するため浮上して固定床を形成する。その内
部および表面にはBOD資化菌、硝化菌が高濃度に固定
化されているので、原水中のNH3 −Nが の反応によって高速度で硝化され、BODも生物学的に
除去され、SSもろ過除去され、SSが5mg/リット
ル以下の極めて清澄な処理水となって処理水流出管6か
ら系外に流出する。処理水の大部分は循環ポンプ7によ
って循環水管3を経て前述のように充填層Aの下部にリ
サイクルされる。
The three-dimensional mesh-like solid particles constituting the packed bed B also float to hold bubbles and form a fixed bed. Since BOD-assimilating bacteria and nitrifying bacteria are immobilized at a high concentration inside and on the surface, NH 3 -N in raw water is Is nitrified at a high speed by the reaction of BOD, BOD is biologically removed, SS is also filtered out, and SS becomes an extremely clear treated water of 5 mg / liter or less and flows out of the treated water outflow pipe 6 to the outside of the system. . Most of the treated water is recycled to the lower part of the packed bed A through the circulating water pipe 3 by the circulation pump 7 as described above.

【0016】本発明は 充填層に充填するろ材として、特に立体網目状の粒
状固体からなるろ材を用い、この特定ろ材に硝化菌、脱
窒素菌などを従来より著しく高濃度(4〜5倍)に固定
することおよび、 上段の硝化領域と下段の脱窒素領域を多孔部材で明
確に区分すること。 が重要なポイントである。特にの構成は重要であり、
この構成によって循環水管3を経て循環される硝化液中
の溶存酸素濃度が高くても、問題なく充填層A内で脱窒
素反応が進む。なぜなら、立体網目状の粒状固体からな
るろ材の内部には溶存酸素が拡散し難いので、ろ材の内
部でNOX −Nが脱窒素菌によって効率よく脱窒素され
るからである。これに対し、従来法のアンスラサイトな
どの粒状固体をろ材として使う方法および装置では、脱
窒素菌がアンスラサイトの表面にミクロンオーダーの厚
みで付着しているに過ぎないので、硝化循環液中の溶存
酸素が高いと、その影響に曝されるためNOX −Nの脱
窒素反応が進みにくい。
In the present invention, as the filter medium to be filled in the packed bed, a filter medium composed of a solid solid in the form of a three-dimensional mesh is used. , And clearly demarcate the upper nitrification region and the lower denitrification region with a porous member. Is an important point. The configuration of is especially important,
With this configuration, even if the dissolved oxygen concentration in the nitrification liquid circulated through the circulating water pipe 3 is high, the denitrification reaction proceeds in the packed bed A without any problem. This is because NO X -N is efficiently denitrified by the denitrifying bacterium inside the filter medium because dissolved oxygen is unlikely to diffuse into the filter medium made of a three-dimensional network granular solid. On the other hand, in the conventional method and apparatus using a granular solid such as anthracite as a filter medium, the denitrifying bacteria are only attached to the surface of the anthracite in a thickness of micron order, so When dissolved oxygen is high, denitrification of NO X -N is difficult advances because they are exposed to its influence.

【0017】次に、前記の単一槽で硝化領域と脱窒素
領域を区分して、上下に設けるという概念も重要であ
る。なぜなら、もしも多孔部材Cを設けておかないと、
充填層AおよびBを逆流洗浄すると、洗浄中に充填層A
およびBのろ材が混合し、下部にも硝化菌が付着した粒
状固体が位置し、硝化を行わせるべき上部にも脱窒素菌
が付着した粒状固体が位置してしまう。この結果、硝化
脱窒素の反応速度が悪化してしまう。
Next, the concept of dividing the nitrification region and the denitrification region in the above-mentioned single tank and providing them separately is also important. Because, if the porous member C is not provided,
Backwashing of packed beds A and B results in packed bed A during washing.
The filter media of B and B are mixed, and the granular solid to which the nitrifying bacteria adhere is located at the lower part, and the granular solid to which the denitrifying bacteria adhere is also located at the upper part where nitrification is to be performed. As a result, the reaction rate of nitrification and denitrification deteriorates.

【0018】次に、本発明の充填層AおよびBの洗浄方
法を説明する。この洗浄方法も従来技術にはない、本発
明の独自の技術である。すなわち、運転を続けた結果、
充填層A内のろ材での原水SS捕捉量が増加し、またろ
材に脱窒素菌が増殖し、充填層Aの過抵抗が増加するの
で、所定のろ過抵抗に達した時点で、次のような手順で
洗浄を行う。
Next, a method of cleaning the filling layers A and B of the present invention will be described. This cleaning method is also unique to the present invention and not unique to the prior art. That is, as a result of continuing driving,
The amount of raw water SS trapped in the filter material in the packed bed A increases, and the denitrifying bacteria grow in the filter material, and the over-resistance of the packed bed A increases. Therefore, when the predetermined filtration resistance is reached, Follow the procedure below.

【0019】(1)循環ポンプ7を停める。洗浄排水流
出管9の弁14を開け、槽内水位を多孔部材Cの下まで
下げる。 (2)原水供給管2から原水を流入させたまま、空洗ブ
ロワー13を駆動し、弁12を開け、多量の洗浄用空気
を空洗散気管11から吐出することによって、充填層A
内を激しく攪乱する。 この操作を数十分間続けると、充填層A内に捕捉されて
いたSSと増殖微生物の大部分が洗浄排水管9から系外
に流出して行くので、その後空洗ブロワー13を止め、
弁12を閉じる。 (3)この状態で、原水供給管2から原水を20〜30
分間流入し続けると、充填層A内に残っていたSSのほ
ぼすべてが系外に排出され、充填層Aが清浄な状態に復
帰する。ここで弁14を閉じる。すると、槽の水位が上
昇し、しばらくすると、処理水流出管6から処理水が流
出しはじめるので、循環ポンプ9を再起動する。
(1) Stop the circulation pump 7. The valve 14 of the cleaning drainage outflow pipe 9 is opened, and the water level in the tank is lowered below the porous member C. (2) While the raw water is being supplied from the raw water supply pipe 2, the air-washing blower 13 is driven, the valve 12 is opened, and a large amount of washing air is discharged from the air-washing diffuser pipe 11 to obtain the packed bed A.
The inside is violently disturbed. If this operation is continued for several tens of minutes, most of the SS and the propagating microorganisms trapped in the packed bed A will flow out of the system from the cleaning drainage pipe 9, so the air-washing blower 13 is stopped,
Close valve 12. (3) In this state, the raw water supply pipe 2 supplies 20 to 30 raw water.
When the flow continues for a minute, almost all of the SS remaining in the packed bed A is discharged out of the system, and the packed bed A returns to a clean state. Here, the valve 14 is closed. Then, the water level in the tank rises, and after a while, the treated water begins to flow out from the treated water outflow pipe 6, so that the circulation pump 9 is restarted.

【0020】なお、充填層Bは流入SSが少なく、硝化
菌の増殖率が小さいので、操作(1)でドレンするだけ
で容易に洗浄が行えることを確かめた。このように本発
明では、下部の脱窒素ろ床の充填層Aでは強い洗浄を行
い、上部の硝化ろ床の充填層Bでは弱い洗浄を行うだけ
でよい。しかも、従来技術のような「処理水を使用した
ろ床の逆洗」も不要なので、せっかく生産した処理水を
浪費する必要がない。
Since the packed bed B has a small amount of inflowing SS and a small growth rate of nitrifying bacteria, it was confirmed that washing can be easily performed only by draining in the operation (1). As described above, in the present invention, it is sufficient to perform strong washing on the packed bed A of the lower denitrification filter bed and weak washing on the packed bed B of the upper nitrification filter bed. Moreover, there is no need to "wash back the filter bed using treated water" as in the prior art, so there is no need to waste treated water that has been produced.

【0021】[0021]

【実施例】表1に示した水質の団地下水を対象にして、
本発明の処理装置を用いて処理し、本発明の効果を実証
した。 表1 (下水の水質) 水温 : 15〜18℃ pH : 7.2〜7.3 SS : 86〜185mg/リットル BOD : 150〜220mg/リットル 全窒素 : 34〜42 mg/リットル
[Example] For the group groundwater of the water quality shown in Table 1,
Processing was performed using the processing apparatus of the present invention, and the effect of the present invention was demonstrated. Table 1 (Water quality of sewage) Water temperature: 15 to 18 ° C. pH: 7.2 to 7.3 SS: 86 to 185 mg / liter BOD: 150 to 220 mg / liter Total nitrogen: 34 to 42 mg / liter

【0022】処理条件を表2に示す。 表2 (処理条件) 処理装置寸法 : 直径 0.4mφ(丸型カラム) 高さ 4.5m 充填層Aの高さ 1.5m 充填層Aの高さ 2.0m 多孔通水部材の設置位置 床面から1.9m 下水流量 : 4.52m3 /日 ろ過速度 : 36 m/日 散気管からの空気供給量: 8 Nm3 /日 硝化液循環量 : 4 m3 /日 充填層Aおよび充填層Bに充填するろ材はろ材の粒径が
10×25×25mmの角状、セル数13のポリウレタ
ンフォームの粒状片である。である。
Table 2 shows the processing conditions. Table 2 (Treatment conditions) Treatment device dimensions: Diameter 0.4 mφ (Round column) Height 4.5 m Packed bed A height 1.5 m Packed bed A height 2.0 m Porous water-passing member installation position Floor 1.9 m from the surface Sewage flow rate: 4.52 m 3 / day Filtration rate: 36 m / day Air supply from diffuser: 8 Nm 3 / day Nitrification solution circulation: 4 m 3 / day Packed bed A and packed bed The filter medium to be filled in B is a granular piece of polyurethane foam having a particle size of 10 × 25 × 25 mm and a cell number of 13 cells. Is.

【0023】表2の処理条件で表1の水質の下水を10
ヶ月間の連続処理した。通水開始後20日間で、ポリウ
レタンフォームの粒状片のろ材に硝化菌および脱窒素
菌、BOD資化菌が十分固定化されたので、21日目か
ら土日を除く毎日1回、24時間コンポジットサンプル
を採取し、水質分析を行った。その結果を表3に示す。 表3 (処理水水質) pH : 6.8〜7.0 SS : 2.8〜4.3 mg/リットル BOD : 3〜5 mg/リットル 全窒素 : 8.4〜10.3mg/リットル 表3から明らかなように、全窒素除去率75%が安定し
て得られ、SSおよびBODも著しく少ない清澄処理水
が得られた。また、ろ床の洗浄頻度は2〜3日に1回で
よく、極めて長期間のろ過継続ができた。(図2の従来
装置では1日に1回の洗浄が必要)洗浄方法としては、
前述の方法を適用したが、処理水を洗浄用水として使用
することなく、効果的な洗浄が行えた。
Under the treatment conditions of Table 2, the sewage of the water quality of Table 1 was changed to 10 times.
Continuous treatment for months. Nitrifying bacteria, denitrifying bacteria, and BOD-assimilating bacteria were sufficiently immobilized on the filter material of the polyurethane foam granules within 20 days after the start of water flow, so from the 21st day once every day except Saturday and Sunday, 24 hours composite sample Was collected and the water quality was analyzed. Table 3 shows the results. Table 3 (Water quality of treated water) pH: 6.8 to 7.0 SS: 2.8 to 4.3 mg / liter BOD: 3 to 5 mg / liter Total nitrogen: 8.4 to 10.3 mg / liter Table 3 As is clear from the above, a clarified water having a total nitrogen removal rate of 75% was stably obtained, and SS and BOD were remarkably small. Further, the filter bed may be washed once every 2 to 3 days, and the filtration could be continued for an extremely long time. (The conventional apparatus of FIG. 2 requires cleaning once a day.)
Although the method described above was applied, effective cleaning could be performed without using the treated water as cleaning water.

【0024】[0024]

【発明の効果】本発明によって有機性汚水を処理するこ
とにより、次のような効果を得ることができる。 1.単一槽で硝化・脱窒素を行えるので、装置設置ス
ペースが少なく、ろ床の洗浄も合理的に行える。 2.立体的網目構造をもつ粒状固体からなるろ材に硝化
菌、脱窒素菌、BOD資化菌を高濃度に固定化したの
で、硝化反応、脱窒素反応の速度が従来法におけるより
3〜4倍も大きい。 3.ろ床の目詰まりが著しく少なく、ろ床洗浄頻度が激
減する。従って、メンテナンスが容易で洗浄排水の発生
も少ない。以上のように、省スペース性、メンテナンス
性およびろ床洗浄の合理性の3面で優れた効果が得られ
た。
The following effects can be obtained by treating organic wastewater according to the present invention . 1. Since it performs the nitrification and denitrification in a single tank, less installation space of the apparatus, cleaning of the filter bed be performed reasonably. 2. Since nitrifying bacteria, denitrifying bacteria, and BOD-assimilating bacteria were immobilized at a high concentration on a filter medium composed of a granular solid having a three-dimensional network structure, the rate of nitrification reaction and denitrification reaction was 3 to 4 times that of the conventional method. large. 3. The filter bed is not significantly clogged and the filter bed cleaning frequency is drastically reduced. Therefore, maintenance is easy and the generation of cleaning drainage is small. As described above, excellent effects were obtained in the three aspects of space saving, maintainability, and rationality of filter bed cleaning.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の上向流式生物学的硝化脱窒素処理槽の
1例を示す模式図。
FIG. 1 is a schematic view showing an example of an upflow biological nitrification / denitrification treatment tank of the present invention.

【図2】従来の2槽式の生物学的硝化脱窒素処理装置の
典型例を示す模式図。
FIG. 2 is a schematic view showing a typical example of a conventional two-tank type biological nitrification denitrification treatment apparatus.

【符号の説明】[Explanation of symbols]

1 処理槽 2 原水供給管 3 循環水管 4 上部多孔部材 5 ガス供給源 6 処理水流出管 7 循環ポンプ 8 散気管 9 洗浄排水流出管 10 流出防止多孔部材 11 空洗散気管 12 弁 13 空洗ブロワー 14 弁 15 供給弁 16 処理水流出弁 17 循環部弁 18 散気弁 20 原水供給管 21 循環水管(下流) 22 処理水移送管 23 循環水管(上流) 24 散気管 25 洗浄用水ポンプ 26 洗浄用水管 27 循環ポンプ A 充填層(下部) B 充填層(上部) C 多孔部材(中間) D 脱窒素ろ床 E 硝化ろ床 F 処理水槽 H 空間部 1 Treatment Tank 2 Raw Water Supply Pipe 3 Circulating Water Pipe 4 Upper Perforated Member 5 Gas Supply Source 6 Treated Water Outflow Pipe 7 Circulation Pump 8 Diffuser Pipe 9 Cleaning Drainage Outflow Pipe 10 Outflow Preventing Porous Member 11 Empty Washing Diffuser Pipe 12 Valve 13 Empty Washing Blower 14 valve 15 supply valve 16 treated water outflow valve 17 circulation valve 18 diffuser valve 20 raw water supply pipe 21 circulating water pipe (downstream) 22 treated water transfer pipe 23 circulating water pipe (upstream) 24 diffuser pipe 25 washing water pump 26 washing water pipe 27 Circulation pump A Packed bed (bottom) B Packed bed (top) C Porous member (intermediate) D Denitrification filter bed E Nitrification filter bed F Treated water tank H Space part

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 槽内に設けた立体的網目構造をもつ粒状
固体を充填した充填層Aに上向流で原水を導き、主にB
OD、SSの除去および生物学的脱窒素処理を行い、そ
の流出水を該槽内に張設した多孔部材を介して、前記充
填層Aの上段に別途設けた立体的網目構造をもつ粒状固
体を充填した充填層Bへ導き、酸素含有ガスを供給しつ
つ主に残留BOD、SSの除去および生物学的硝化処理
を行って処理水とすると共に、該処理水の少なくとも一
部を槽上部より前記充填層Aへ循環させ、前記充填層A
のろ過抵抗が増加した時に、該処理水の循環を停止し、
前記多孔部材の下部に設けた洗浄排水流出管の弁を開け
て槽内水位を前記多孔部材の下まで下げた後、前記充填
層Aの下方から供給する原水により前記充填層Aを洗浄
し、洗浄排水を前記洗浄排水流出管から流出させること
により前記充填層Aの洗浄を行うことを特徴とする上向
流生物学的硝化脱窒素方法。
1. Raw water is introduced in an upward flow into a packed bed A filled with a granular solid having a three-dimensional network structure provided in a tank, and mainly B
OD and SS are removed and biological denitrification treatment is performed, and the effluent is a granular solid having a three-dimensional network structure separately provided on the upper stage of the packed bed A through a porous member stretched in the tank. To the packed bed B filled with oxygen, while mainly supplying the oxygen-containing gas to remove residual BOD, SS and biological nitrification treatment to obtain treated water, and at least a part of the treated water from the upper part of the tank. It is circulated to the packed bed A, and the packed bed A
When the filtration resistance of increases, the circulation of the treated water is stopped,
Open the valve of the washing drainage pipe provided at the bottom of the porous member.
After lowering the water level in the tank to below the porous member,
Washing the packed bed A with raw water supplied from below the bed A
And drain the cleaning wastewater from the cleaning wastewater outflow pipe.
The upflow biological nitrification denitrification method, wherein the packed bed A is washed by
【請求項2】 下部に原水流入部、上部に処理水流出部
を備えた槽内に、立体的網目構造をもつ粒状固体を充填
した充填層を、槽内に張設した多孔部材を介して、下部
充填層Aと上部充填層Bに区画し、上部充填層Bの下部
または多孔部材上面付近に散気手段を設けると共に、上
部充填層Bの流出水の少なくとも一部を下部充填層Aへ
循環する循環路を設け、前記多孔部材の下部に洗浄排水
流出部を設け、該洗浄排水流出部に弁を備えた洗浄排水
流出管を設けたことを特徴とする上向流生物学的硝化脱
窒素装置。
2. A packed bed filled with a granular solid having a three-dimensional network structure is placed in a tank having a raw water inflow part in the lower part and a treated water outflow part in the upper part through a porous member stretched in the tank. , A lower packed bed A and an upper packed bed B, and an air diffuser is provided in the lower part of the upper packed bed B or near the upper surface of the porous member, and at least a part of the outflow water of the upper packed bed B is transferred to the lower packed bed A. A circulation path is provided to circulate , and cleaning drainage is provided below the porous member.
Wash drainage provided with an outflow section and a valve at the wash drain outflow section
An upflow biological nitrification and denitrification apparatus characterized by having an outflow pipe .
JP4158916A 1992-05-27 1992-05-27 Upflow biological nitrification denitrification method and apparatus Expired - Fee Related JP2565453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4158916A JP2565453B2 (en) 1992-05-27 1992-05-27 Upflow biological nitrification denitrification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4158916A JP2565453B2 (en) 1992-05-27 1992-05-27 Upflow biological nitrification denitrification method and apparatus

Publications (2)

Publication Number Publication Date
JPH0623392A JPH0623392A (en) 1994-02-01
JP2565453B2 true JP2565453B2 (en) 1996-12-18

Family

ID=15682149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4158916A Expired - Fee Related JP2565453B2 (en) 1992-05-27 1992-05-27 Upflow biological nitrification denitrification method and apparatus

Country Status (1)

Country Link
JP (1) JP2565453B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296398A (en) * 1999-04-13 2000-10-24 Nippon Steel Corp Equipment for removal treatment of nitrogen in wastewater
US7499075B2 (en) * 2004-09-28 2009-03-03 Seiko Epson Corporation Video conference choreographer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168592A (en) * 1986-01-17 1987-07-24 Hitachi Plant Eng & Constr Co Ltd Waste water treatment unit
JPH02191595A (en) * 1989-01-20 1990-07-27 Nkk Corp Sewage treating device
JP3090696U (en) * 2002-06-13 2002-12-20 深水 陳 Crusher safety device

Also Published As

Publication number Publication date
JPH0623392A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
JP3183547B2 (en) Biological redox reactor, biofiltration method and cleaning method used in the reactor
JP2584386B2 (en) Biological filtration method and device
JP2565449B2 (en) Upflow biological treatment equipment
JP2565453B2 (en) Upflow biological nitrification denitrification method and apparatus
JP2684495B2 (en) Advanced purification equipment for organic wastewater
JP2592356B2 (en) Organic sewage biological filtration equipment
JP2601391B2 (en) Biological nitrification denitrification equipment
JP2609195B2 (en) Organic wastewater purification method and apparatus
JPH06142668A (en) Purifying treatment device for organic sewage
JP2525711B2 (en) Advanced purification equipment for organic wastewater
JP2008212865A (en) Nitration tank
JP3973069B2 (en) Organic wastewater treatment method and apparatus
JPH0717438Y2 (en) Organic wastewater treatment equipment
JP2565429B2 (en) Method and apparatus for biological nitrification denitrification of organic wastewater
JPH0623065A (en) Biological treatment method and apparatus for organic sewage
JP3666064B2 (en) Wastewater treatment equipment
JP2609181B2 (en) Biological nitrification denitrification method and apparatus for organic wastewater
JP2565427B2 (en) Organic sewage biological filtration equipment
JP2584384B2 (en) Method and apparatus for treating organic sewage
JP3024639B2 (en) Cleaning method of aerobic treatment tank in sewage purification tank
KR20000018687A (en) Method for managing wastewater using continuous filtration process
JPH0596288A (en) Sewage purifying tank
JPH08294699A (en) Biological denitrification apparatus of waste water
JP2572327B2 (en) Organic wastewater treatment method and treatment apparatus
JPH10180274A (en) Biological filter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees