JP2565305B2 - High thermal conductivity aluminum nitride sintered body and manufacturing method thereof - Google Patents

High thermal conductivity aluminum nitride sintered body and manufacturing method thereof

Info

Publication number
JP2565305B2
JP2565305B2 JP60244648A JP24464885A JP2565305B2 JP 2565305 B2 JP2565305 B2 JP 2565305B2 JP 60244648 A JP60244648 A JP 60244648A JP 24464885 A JP24464885 A JP 24464885A JP 2565305 B2 JP2565305 B2 JP 2565305B2
Authority
JP
Japan
Prior art keywords
point
sintered body
compound
aln
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60244648A
Other languages
Japanese (ja)
Other versions
JPS63134569A (en
Inventor
健一郎 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60244648A priority Critical patent/JP2565305B2/en
Publication of JPS63134569A publication Critical patent/JPS63134569A/en
Application granted granted Critical
Publication of JP2565305B2 publication Critical patent/JP2565305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、放熱基板や各種回路基板、半導体素子用基
板などに用いられる熱伝導性の高い窒化アルミニウム質
焼結体及びその製造法に関する。
Description: TECHNICAL FIELD The present invention relates to an aluminum nitride sintered material having high thermal conductivity, which is used for a heat dissipation board, various circuit boards, semiconductor element boards, and the like, and a method for producing the same.

(従来の技術) 窒化アルミニウム(AlN)は安定で高温強度も高く、
耐食性も優れているため各種高温材料の中でも特に注目
されているものの1つである。
(Prior Art) Aluminum nitride (AlN) is stable and has high high temperature strength,
Because of its excellent corrosion resistance, it is one of the hottest materials among various high temperature materials.

近年、半導体素子の高集積度化が進むとともに、基板
の放熱性が重要視されてきているが、AlNは優れた熱伝
導性と高い電気絶縁性を有するため、半導体素子用基板
としてその焼結体が脚光をあび、近時、この焼結体の研
究が盛んになってきている。
In recent years, with the progress of higher integration of semiconductor elements, the heat dissipation of the substrate has been emphasized, but since AlN has excellent thermal conductivity and high electrical insulation, its sintering as a substrate for semiconductor elements The body shines the limelight, and research on this sintered body has recently become active.

即ち、AlN粉末粒子は難焼結性であり単味では焼結に
難いため、各種焼結助剤を添加する焼結体の製造技術が
検討されてきた。また、その原料粉末となるAlNは純度
の高いものを調製することが困難であるが、その不純物
が焼結性に影響するばかりか焼結体の熱伝導率を低下さ
せる原因となっていることが明らかとなってきており、
特にその酸素含有率は焼結体の最終密度の関係するもの
とされている。しかし、通常2重量%以上の酸素含有量
の粉末でないと理論密度近くまでは緻密化しないとさ
れ、AlN本来の密度と熱伝導性および焼結性の良好な焼
結体を得るには、純度の高いものを必要とすると同時に
不純物酸素をも必要とするという二律背反の関係にあっ
た。
That is, since AlN powder particles are difficult to sinter and are difficult to sinter by themselves, manufacturing techniques of sintered bodies to which various sintering aids are added have been studied. Also, it is difficult to prepare high purity AlN as the raw material powder, but the impurities not only affect the sinterability but also cause the thermal conductivity of the sintered body to decrease. Is becoming clear,
In particular, the oxygen content is considered to be related to the final density of the sintered body. However, it is generally considered that unless the powder has an oxygen content of 2% by weight or more, it will not be densified to a density close to the theoretical density, and in order to obtain a sintered body having a good AlN original density, thermal conductivity and sinterability, There was a trade-off between the need for high oxygen and the need for oxygen as impurities.

このため、前述の製造技術に見られる研究、開発の方
向に対し、特殊の調整方法により酸素含有量の少ないAl
N粉末原料を調製し、これにアルカリ土類金属、Y及びL
n族金属の化合物を配合することにより純度の高いAlN粉
末を使用する際の焼結性の低下を補償すると共に、AlN
の物性を損なわないものを得るという高純度化焼結体を
目指すものも発表されている(例えば、前者の焼結体を
添加するものについては特開昭60−127267号、後者の高
純度化については特開昭60−71575号公報)。
Therefore, with respect to the direction of research and development found in the above-mentioned manufacturing technology, Al with a low oxygen content is adjusted by a special adjustment method.
Prepare N powder raw material and add alkaline earth metal, Y and L
By compounding the compound of the n-group metal, the decrease in sinterability when using high-purity AlN powder is compensated and AlN
Aiming at a highly purified sintered body that does not impair the physical properties of the above has also been announced (for example, regarding the former one to which the sintered body is added, JP-A-60-127267, the latter is highly purified). JP-A-60-71575).

(発明が解決しようとする問題点) 前者においては、その焼結助剤として希土類成分を用
いるものであり、これはAl結晶粒の粒界にAlN中の不純
物酸素と希土類成分とが反応して3Ln2O3・5Al2O3(Ln:
希土類元素)の形で表されるガーネット構造化合物やLn
AlO3の形で表されるプロブスカイト構造化合物として存
在し不純物酸素を固定するものであり、その熱伝導率が
従来の40W/m・Kから80W/m・K程度まで高められている
が、この程度の熱伝導率では高集積度LSIや大口径、大
容量Siウエハーの実装品で発生するジュール熱を効果的
に放熱するには未だ十分なものであるとは言い難い。
(Problems to be Solved by the Invention) In the former, a rare earth component is used as a sintering aid, and this is because the impurity oxygen in AlN reacts with the rare earth component at the grain boundaries of Al crystal grains. 3Ln 2 O 3・ 5Al 2 O 3 (Ln:
Garnet structure compounds and Ln represented in the form of (rare earth elements)
It exists as a perovskite structure compound represented by the form of AlO 3 and fixes impurity oxygen, and its thermal conductivity is increased from the conventional 40 W / m · K to about 80 W / m · K. It is hard to say that such a thermal conductivity is still sufficient to effectively dissipate the Joule heat generated in the highly integrated LSI, the large-diameter, large-capacity Si wafer mounted products.

そして、後者においては熱伝導率は42〜79W/m・Kの
ものが示されているが前者と同様十分ではない。
And, in the latter, the thermal conductivity of 42 to 79 W / m · K is shown, but it is not sufficient like the former.

(問題点を解決するための手段) 本発明者は上記の問題点に鑑み鋭意検討を重ねた結
果、主成分のAlNにCa化合物とY化合物とを特定の割合
で共に配合して得たAlN質焼結体は、該配合成分の組成
領域が特定の領域範囲にあるものはこれまでの焼結体に
比して高い熱伝導率を有することを見いだした。
(Means for Solving Problems) As a result of intensive studies made by the present inventors in view of the above problems, AlN obtained by blending a main component of AlN with a Ca compound and a Y compound together in a specific ratio It was found that the quality sintered body having a composition region of the blended component within a specific region range has a higher thermal conductivity than the sintered bodies up to now.

即ち、本発明のAlN質焼結体は、該配合両成分の含有
組成がそのCa化合物はCaOに換算し、且つY化合物はY2O
3に換算して添付図面第1図に示す2成分含有組成図に
おいて、点A(0.2,4.8)、点B(0.15,1.2)、点C
(0.5,1.5)、点D(1.0,1.5)、点E(1.9,4.8)、点
F(1.9,6.8)、点G(1.0,6.8)、点H(0.5,4.8)、
点A(0.2,4.8)を結ぶ線分で囲まれた範囲内であり、
範囲内の組成からなるとともに、熱伝導率が120W/m・K
以上であり、且つAlN質焼結体中のCa及びY化合物が主
として粒界生成物として存在してなることを特徴とする
ものである。
That is, in the AlN-based sintered body of the present invention, the composition of both components of the blend is such that the Ca compound is converted to CaO and the Y compound is Y 2 O.
Converted to 3 and in the composition diagram of the two-component composition shown in Figure 1 of the attached drawing, point A (0.2,4.8), point B (0.15,1.2), point C
(0.5,1.5), point D (1.0,1.5), point E (1.9,4.8), point F (1.9,6.8), point G (1.0,6.8), point H (0.5,4.8),
It is within the range surrounded by the line segment connecting point A (0.2,4.8),
It has a composition within the range and has a thermal conductivity of 120 W / mK
The above is the feature that the Ca and Y compounds in the AlN sintered body are mainly present as grain boundary products.

さらに、本発明の製造法は、AlNを主体とし、Ca化合
物とY化合物(ただし、それら化合物はハロゲン化物原
料由来のものを除く)とを含有するAlN質焼結体組成物
において、Ca化合物とY化合物がそれぞれCaO、Y2O3
換算して添付第1図に示す点A(0.2,4.8)、点B(0.1
5,1.2)、点C(0.5,1.5)、点D(1.0,1.5)、点E
(1.9,4.8)、点F(1.9,6.8)、点G(1.0,6.8)、点
H(0.5,4.8)、点A(0.2,4.8)を結ぶ線分で囲まれた
範囲内であり、焼結体の熱伝導率が120W/m・K以上であ
り、AlN質焼結体中のCa及びY化合物が主として粒界生
成物として存在してなる高熱伝導性窒化アルミニウム質
焼結体の製造法において、焼成により上記範囲内のAlN
質焼結体組成物を生成する原料配合組成物(ただし、ハ
ロゲン化物原料を除く)を成形し、次に得られた成形体
を真空脱バインダー処理した後、窒素中で焼成すること
を特徴とするものである。
Furthermore, the production method of the present invention is mainly composed of AlN, and an AlN-based sintered body composition containing a Ca compound and a Y compound (however, those compounds exclude those derived from a halide raw material) Converting Y compound into CaO and Y 2 O 3 , respectively, points A (0.2,4.8) and point B (0.1
5,1.2), point C (0.5,1.5), point D (1.0,1.5), point E
(1.9,4.8), point F (1.9,6.8), point G (1.0,6.8), point H (0.5,4.8), point A (0.2,4.8) within the range enclosed by the line segment, Manufacture of highly heat-conductive aluminum nitride sintered body in which the thermal conductivity of the sintered body is 120 W / mK or more, and Ca and Y compounds in the AlN sintered body mainly exist as grain boundary products. In the method, by firing, AlN within the above range
Characterized in that a raw material blending composition (excluding a halide raw material) for forming a high quality sintered body composition is molded, and then the obtained molded body is subjected to a vacuum debinding process and then fired in nitrogen. To do.

本発明者は、高熱伝導化を考慮して種々の組成範囲に
わたり、実験を繰り返しその物性を精査した結果、上述
組成範囲のものは従来のものに比して有効な特性を有す
ることを究明したものであるが、この結果、該Ca化合
物、Y化合物をCaO、Y2O3に換算し(以下、該成分は特
に断らない限りCaO、Y2O3で表すことにする。)、その
含有量はAlNの焼結性と熱伝導率に影響をおよぼすこと
が確認された。
The present inventor has scrutinized the properties by repeating experiments over various composition ranges in consideration of high thermal conductivity, and as a result, has determined that those having the above composition range have more effective properties than conventional ones. However, as a result, the Ca compound and the Y compound are converted into CaO and Y 2 O 3 (hereinafter, the component is represented by CaO and Y 2 O 3 unless otherwise specified), and the content thereof is included. It was confirmed that the amount affects the sinterability and thermal conductivity of AlN.

即ち、実験の結果、CaO、Y2O3の同時含有はその単独
含有のものに比して、焼結性が良く、また同時含有の場
合でも概ねCaOは0.15重量%以上、4.8重量%以下、Y2O3
は1.2重量%以上、6.8重量%以下の範囲が必要であるこ
とがわかった。
That is, as a result of the experiment, the simultaneous inclusion of CaO and Y 2 O 3 has better sinterability than that of the single inclusion, and in the case of the simultaneous inclusion, CaO is 0.15% by weight or more and 4.8% by weight or less. , Y 2 O 3
It was found that the range of 1.2 wt% or more and 6.8 wt% or less is required.

その下限値より低いと焼結性が悪化し、焼結体におい
てAlN成分の富なることにより期待される熱伝導率の向
上を図ることができない。また、上限値を越えるとこれ
ら成分は粒界相の量を増やすことになり、熱伝導率が阻
害されることも判明した。
If it is lower than the lower limit, the sinterability deteriorates, and the expected thermal conductivity cannot be improved due to the enriched AlN component in the sintered body. It has also been found that if the upper limits are exceeded, these components increase the amount of grain boundary phases, which impairs the thermal conductivity.

上述したように本発明のAlN質焼結体は、高密度且つ
高熱伝導率を有し、従来のものを超えるものであり優れ
た特性を有することが理解される。この結果について論
理的解明は未だ十分になされていないが、本発明AlN質
焼結体のXMA分析、SEM写真観察から一応次のように考察
しうるものと考えられる。
As described above, it is understood that the AlN-based sintered body of the present invention has high density and high thermal conductivity, is superior to conventional ones, and has excellent properties. Although the logical elucidation of this result has not been made sufficiently, it is considered that it can be considered as follows from the XMA analysis and SEM photograph observation of the AlN sintered body of the present invention.

即ち、本発明のAlN質焼結体においては、その粒界相
が結晶内部に固溶したり、異成分(粒子)とし取り込ま
れたりすることなく、このことにより固溶、取り込まれ
たりした場合にはAlN結晶内部におけるフォノンの平均
自由行路が短くなり、このため熱伝導率が低下すること
になると考えられる熱伝導率の低下要因を来すことなく
熱伝導率を向上せしめた原因の一つも考察される。
That is, in the AlN-based sintered body of the present invention, when the grain boundary phase does not form a solid solution inside the crystal or is taken in as a different component (particle) In addition, the mean free path of phonons in the AlN crystal is shortened, which is thought to result in a decrease in the thermal conductivity. Be considered.

さらに、本発明の焼結体においては、AlN結晶間の接
合状態は、その接合界面粒界相によって程良く濡れが確
保され、粒界相によって結晶粒子どうしが完全に分離さ
れた状態や、粒界相がAlN結晶粒子どうしの交差点に孤
立した状態で存在し、換言すれば粒界相と結晶粒子との
濡れが十分でないことにより結晶粒子どうしの界面の接
合状態が十分に確保されていないという状態を呈するこ
となく、AIN結晶の粒界面に沿って粒界相が少しづつ浸
透し、AlN結晶粒子と粒界相との濡れが良くなり、その
結果として粒子どうしの接合状態が緊密となり熱伝導性
を向上させたもう一つの原因であると考察される。更
に、前述の考察に加えて焼結体の結晶粒子と粒界相との
界面エネルギーの平衡モデル論理に基づいて考察する
と、第2図(a)の固−液系の典型的モデルにおいては
結晶粒子と粒界相との界面エネルギーは次式 γss=2γsr cosφ/2 ・・・(1) で与えられる。
Furthermore, in the sintered body of the present invention, the bonding state between AlN crystals is such that the bonding interface grain boundary phase ensures proper wetting, and the crystal particles are completely separated by the grain boundary phase, or It is said that the boundary phase exists in an isolated state at the intersection of AlN crystal grains, in other words, the wetting of the grain boundary phase and the crystal grains is not sufficient, so that the bonding state of the interface between the crystal grains is not sufficiently secured. The grain boundary phase gradually penetrates along the grain boundary of the AIN crystal without exhibiting the state, and the wettability between the AlN crystal grain and the grain boundary phase is improved. It is considered to be another cause of improving the sex. Furthermore, in addition to the above-mentioned consideration, when considering based on the equilibrium model logic of the interfacial energy between the crystal grains of the sintered body and the grain boundary phase, in the typical model of the solid-liquid system of FIG. The interfacial energy between the particles and the grain boundary phase is given by the following equation γss = 2γsr cos φ / 2 (1).

これを第2図(b)に示す多結晶試料については、
(1)式を基にして次式 γss=2γsl cosφ/2 ・・・(2) で与えられる。
For the polycrystalline sample shown in FIG. 2 (b),
Based on the equation (1), it is given by the following equation γss = 2γsl cosφ / 2 (2).

ここでφは2面角であり、2相系では、2面角φは、
次式 cosφ/2=1/2・γss/γsl ・・・(3) で与えられ、2面角は各相間の界面エネルギーにより規
定される。
Here φ is the dihedral angle, and in the two-phase system, the dihedral angle φ is
It is given by the following equation cosφ / 2 = 1/2 ・ γss / γsl (3), and the dihedral angle is defined by the interfacial energy between the phases.

この(3)式の意義は、界面エネルギーγslが結晶粒
子間同士の接合面に働く界面エネルギーγssより大きい
とφは大となり、通常120゜より大では粒界相は第3図
(d)(e)のように結晶粒子間の交さ点に孤立した状
態を呈し、φが0では第3図(a)のように結晶粒子は
粒界相の中に孤立して点在し、焼結体の緻密さ、電気特
性、熱伝導性、等諸特性は、該2面角の大小によって影
響される。
The significance of this equation (3) is that φ becomes large when the interfacial energy γsl is larger than the interfacial energy γss acting on the joint surface between the crystal grains, and when it is larger than 120 °, the grain boundary phase is as shown in FIG. As shown in e), it appears in an isolated state at the intersections between the crystal grains, and when φ is 0, the crystal grains are isolated and scattered in the grain boundary phase as shown in FIG. Various characteristics such as compactness, electrical characteristics, and thermal conductivity of the body are affected by the size of the dihedral angle.

そしてこのことから、多結晶において結晶粒子と粒界
相とのなす2面角φが120゜≧φ>0゜において、粒界
相の結晶粒子に対する濡れがほど好く確保されるものと
考えられており、本発明の焼結体は上記理論に基づく2
面角が該範囲に一致しているものと推察される。
From this, it is considered that when the dihedral angle φ between the crystal grain and the grain boundary phase in the polycrystal is 120 ° ≧ φ> 0 °, the wetting of the grain boundary phase with respect to the crystal grain is appropriately secured. And the sintered body of the present invention is based on the above theory.
It is presumed that the face angle is in agreement with the range.

上述するような考察は、前述したXMA分析、SEM写真観
察の結果と符号するもので、これらの観察結果から本発
明のAlN質焼結体試料においてCaO、Y2O3等は粒界相に存
在することが認められたことに対し、AlN結晶内部に固
溶したり、異成分(粒子)として取り込まれているよう
なことは、認められなかったものである。
The consideration as described above is the same as the above-mentioned XMA analysis and SEM photograph observation results, and CaO, Y 2 O 3 etc. in the grain boundary phase in the AlN sintered sample of the present invention are observed from these observation results. In contrast to the fact that it was present, it was not observed that it was solid-solved inside the AlN crystal or incorporated as a foreign component (particle).

このような理論はともかくとして、本発明によればAl
N原料粉末は高純度のものにこしたことはないが、高純
度のものに限定することなく通常得られるものを使用す
ることが出来、また添加、配合するCa、Y成分について
も容易に入手し易いものでその添加効果が顕著であり、
製造コストの低減、高熱伝導性の向上が達成される。
Aside from such theory, according to the present invention, Al
Although the N raw material powder has never been crushed into a high-purity powder, the normally-obtained powder can be used without being limited to a high-purity powder, and Ca and Y components to be added or blended can be easily obtained. It is easy to do and its addition effect is remarkable,
Reduction of manufacturing cost and improvement of high thermal conductivity are achieved.

(実施例) 粒径分布2〜40μmのAlN粉末にCaCO3粉末(特級試
薬)及び粒径1μm、純度99.9%Y2O3粉末を後述第1表
に示す組成範囲になるように添加、配合し、これをボー
ルミルでメタノール中で充分湿式混合し、これにパラフ
ィンワックス、ステアリン酸、若干量のバインダーを加
えて混合したものを成形圧1000kg/cm2でプレス成形し
た。次に、得られた成形体を常法により300℃で2時間
真空脱バインダー処理した後、窒素中(1気圧)で1860
℃、30分間焼成して窒化アルミニウム質焼結体を得た。
(Example) CaCO 3 powder (special grade reagent) and particle size 1 μm, purity 99.9% Y 2 O 3 powder were added to AlN powder having a particle size distribution of 2 to 40 μm so as to be in the composition range shown in Table 1 below, and blended. Then, this was thoroughly wet-mixed in methanol with a ball mill, and paraffin wax, stearic acid, and a small amount of a binder were added and mixed, and the mixture was press-molded at a molding pressure of 1000 kg / cm 2 . Next, the obtained molded body was subjected to a vacuum debinding treatment at 300 ° C. for 2 hours by a conventional method, and then subjected to 1860 in nitrogen (1 atm).
The aluminum nitride sintered body was obtained by firing at 30 ° C. for 30 minutes.

これらの焼結体のカサ密度をアルキメデス法で、熱伝
導率をレーザーフラッシュ法(試料厚み3mm、室温)で
測定した結果を表1、表2に示した。
The bulk density of these sintered bodies was measured by the Archimedes method, and the thermal conductivity was measured by the laser flash method (sample thickness 3 mm, room temperature). The results are shown in Tables 1 and 2.

また、第1表中の試料を第1図に試料番号を付して図
示した。また、X線マイクロアナライザ(XMA)で粒界
相のCa、Y成分の元素分析を行い、これを第4図、第5
図に示した。第4図、第5図は、本実施例焼結体組織の
走査電子顕微鏡(SEM)写真とX線マイクロアナライザ
分析値を示すものである。
The samples in Table 1 are shown in FIG. 1 with sample numbers. In addition, elemental analysis of Ca and Y components in the grain boundary phase was carried out with an X-ray microanalyzer (XMA).
As shown in the figure. 4 and 5 show scanning electron microscope (SEM) photographs and X-ray microanalyzer analysis values of the sintered body structure of this example.

これらのデータより、第1図点A,B,C,D,E,F,G,H,Aを
結ぶ線分で囲まれる範囲内においてCaO、Y2O3の単独含
有の場合に比して焼結性、熱伝導率、高密度の点で優れ
た物性を有していることが認められた。
From these data, compared to the case of containing CaO and Y 2 O 3 alone within the range surrounded by the line segment connecting points A, B, C, D, E, F, G, H and A in Fig. 1. It was confirmed that they have excellent physical properties in terms of sinterability, thermal conductivity and high density.

なお、以上の焼結体は、常圧法によって焼成したが、
ホットプレス法によっても同様の傾向に試験結果が得ら
れ、焼結体の密度が一層高められるので熱伝導率も上昇
する。
The above sintered body was fired by the atmospheric method,
Test results are obtained in the same tendency by the hot pressing method, and the density of the sintered body is further increased, so that the thermal conductivity is also increased.

更に、その成形はプレス成形のほか、テープ成形、鋳
込成形によっても行いうる。
Further, the molding may be performed by press molding, tape molding, or cast molding.

また、Ca化合物、Y化合物は、上述原料調製において
用いたCa、Y成分原料以外にCaC2、Ca、CaB6、CaCN2、C
a3N2、CaO−Al2O3系化合物、Y、YN、Y2O3−Al2O3系化
合物、YB6、YC等の原料(ただし、ハロゲン化物原料を
除く。)を使用することができる。
In addition to the Ca and Y component raw materials used in the above-mentioned raw material preparation, Ca compounds, Y compounds, CaC 2 , Ca, CaB 6 , CaCN 2 , C
a 3 N 2, CaO-Al 2 O 3 compound, Y, YN, Y 2 O 3 -Al 2 O 3 compound, YB 6, YC, etc. of the raw materials (excluding. halide material) using the be able to.

(発明の効果) 従来技術においては、高純度の窒化アルミニウム粉末
原料を使用することや各種焼結助剤を配合使用すること
によって高熱伝導性を確保し且つ焼結性を維持しようと
いうものであったが、本発明においては容易な原料調製
により120W/m・K以上の熱伝導性の高い窒化アルミニウ
ム質焼結体を提供できるものであり、そのAlN原料粉末
についてもその純度を厳守することを要せず、比較的広
い範囲に亘って使用可能である。
(Effect of the Invention) In the prior art, it is intended to secure high thermal conductivity and maintain sinterability by using a high-purity aluminum nitride powder raw material and by compounding various sintering aids. However, in the present invention, it is possible to provide an aluminum nitride sintered body having a high thermal conductivity of 120 W / m · K or more by easily preparing the raw material, and the purity of the AlN raw material powder is strictly adhered to. It is not necessary and can be used over a relatively wide range.

そして本発明による焼結体の熱伝導性は一段と向上し
たものであるから、特に半導体技術分野における放熱基
板、回路絶縁基板、半導体素子用基板などのニーズに十
分対応しうる材料を提供することができるのである。
Since the thermal conductivity of the sintered body according to the present invention is further improved, it is possible to provide a material that can sufficiently meet the needs such as a heat dissipation substrate, a circuit insulating substrate, and a semiconductor element substrate in the field of semiconductor technology. You can do it.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明のAlN質焼結体に含有されるCa化合物
とY化合物の量的範囲を示すものであり、第2図は焼結
体における界面エネルギーモデルの説明図、第3図は焼
結体中の2面角の違いによる粒界相と結晶粒子との関係
を示すものである。第4図、第5図は、本発明の実施例
焼結体組織の走査電子顕微鏡(SEM)写真とX線マイク
ロアナライザー(XMA)分析値を示すものである。
FIG. 1 shows the quantitative range of Ca compound and Y compound contained in the AlN sintered body of the present invention, and FIG. 2 is an explanatory view of an interface energy model in the sintered body, FIG. Shows the relationship between the grain boundary phase and the crystal grains due to the difference in dihedral angle in the sintered body. FIG. 4 and FIG. 5 show a scanning electron microscope (SEM) photograph and an X-ray microanalyzer (XMA) analysis value of a sintered body structure of an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−117160(JP,A) 特開 昭61−201668(JP,A) 特開 昭61−201669(JP,A) 特開 昭62−41766(JP,A) 特開 昭62−52180(JP,A) 特開 昭61−201671(JP,A) 特開 昭61−209959(JP,A) 特開 昭61−227967(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 61-117160 (JP, A) JP 61-201668 (JP, A) JP 61-201669 (JP, A) JP 62- 41766 (JP, A) JP 62-52180 (JP, A) JP 61-201671 (JP, A) JP 61-209959 (JP, A) JP 61-227967 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ca化合物とY化合物(ただし、それら化合
物はハロゲン化物原料由来のものを除く)と、残部がAl
NからなるAlN質焼結体組成物において、Ca化合物とY化
合物がそれぞれCaO、Y2O3に換算して添付第1図に示す
点A(0.2,4.8)、点B(0.15,1.2)、点C(0.5,1.
5)、点D(1.0,1.5)、点E(1.9,4.8)、点F(1.9,
6.8)、点G(1.0,6.8)、点H(0.5,4.8)、点A(0.
2,4.8)を結ぶ線分で囲まれた範囲内の組成からなると
ともに、熱伝導率が120W/m・K以上であり、且つAlN質
焼結体中のCa及びY化合物が主として粒界生成物として
存在してなることを特徴とする高熱伝導性窒化アルミニ
ウム質焼結体。
1. A Ca compound and a Y compound (however, those compounds are not derived from a halide material) and the balance is Al.
In the AlN-based sintered body composition consisting of N, the Ca compound and the Y compound are converted into CaO and Y 2 O 3 , respectively, and the points A (0.2,4.8) and B (0.15,1.2) shown in the attached Fig. 1 are shown. , Point C (0.5, 1.
5), point D (1.0,1.5), point E (1.9,4.8), point F (1.9,
6.8), point G (1.0,6.8), point H (0.5,4.8), point A (0.
(2,4.8) has a composition within the range enclosed by the line segment and has a thermal conductivity of 120 W / mK or more, and Ca and Y compounds in the AlN sintered body are mainly grain boundaries. A highly heat-conductive aluminum nitride sintered body characterized by being present as a material.
【請求項2】Ca化合物とY化合物(ただし、それら化合
物はハロゲン化物原料由来のものを除く)と、残部がAl
NからなるAlN質焼結体組成物において、Ca化合物とY化
合物がそれぞれCaO、Y2O3に換算して添付第1図に示す
点A(0.2,4.8)、点B(0.15,1.2)、点C(0.5,1.
5)、点D(1.0,1.5)、点E(1.9,4.8)、点F(1.9,
6.8)、点G(1.0,6.8)、点H(0.5,4.8)、点A(0.
2,4.8)を結ぶ線分で囲まれた範囲内であり、焼結体の
熱伝導率が120W/m・K以上であり、AlN質焼結体中のCa
及びY化合物が主として粒界生成物として存在してなる
高熱伝導性窒化アルミニウム質焼結体の製造法におい
て、焼成により上記範囲内のAlN質焼結体組成物を生成
する原料配合組成物(ただし、ハロゲン化物原料を除
く)を成形し、次に得られた成形体を真空脱バインダー
処理した後、窒素中で焼成することを特徴とする高熱伝
導性窒化アルミニウム質焼結体の製造法。
2. A Ca compound and a Y compound (however, those compounds are not derived from a halide raw material) and the balance is Al.
In the AlN-based sintered body composition consisting of N, the Ca compound and the Y compound are converted into CaO and Y 2 O 3 , respectively, and the points A (0.2,4.8) and B (0.15,1.2) shown in the attached Fig. 1 are shown. , Point C (0.5, 1.
5), point D (1.0,1.5), point E (1.9,4.8), point F (1.9,
6.8), point G (1.0,6.8), point H (0.5,4.8), point A (0.
24.8), the thermal conductivity of the sintered body is 120 W / mK or more, and Ca in the AlN sintered body is
And a Y compound mainly present as a grain boundary product, in a method for producing a high thermal conductivity aluminum nitride sintered body, a raw material composition which produces an AlN sintered body composition within the above range by firing (however, , Except for the halide raw material), and then subjecting the obtained molded body to a vacuum debinding process and then firing in nitrogen, a method for producing a highly heat-conductive aluminum nitride sintered body.
JP60244648A 1985-10-31 1985-10-31 High thermal conductivity aluminum nitride sintered body and manufacturing method thereof Expired - Lifetime JP2565305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60244648A JP2565305B2 (en) 1985-10-31 1985-10-31 High thermal conductivity aluminum nitride sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60244648A JP2565305B2 (en) 1985-10-31 1985-10-31 High thermal conductivity aluminum nitride sintered body and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6009341A Division JP2673095B2 (en) 1994-01-31 1994-01-31 Aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPS63134569A JPS63134569A (en) 1988-06-07
JP2565305B2 true JP2565305B2 (en) 1996-12-18

Family

ID=17121871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60244648A Expired - Lifetime JP2565305B2 (en) 1985-10-31 1985-10-31 High thermal conductivity aluminum nitride sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2565305B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102557205B1 (en) 2016-12-21 2023-07-18 엔지케이 인슐레이터 엘티디 Transparent AlN sintered body and its manufacturing method
WO2018117161A1 (en) * 2016-12-21 2018-06-28 日本碍子株式会社 Oriented aln sintered body, and production method therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712981B2 (en) * 1985-03-13 1995-02-15 株式会社東芝 Method for manufacturing aluminum nitride sintered body
JPH0649613B2 (en) * 1984-11-08 1994-06-29 株式会社東芝 Aluminum nitride sintered body and manufacturing method thereof
JPS61201669A (en) * 1985-03-01 1986-09-06 住友電気工業株式会社 Aluminum nitride sintered body and manufacture
JPS61201671A (en) * 1985-03-01 1986-09-06 電気化学工業株式会社 High heat conductor and manufacture
JPS61201668A (en) * 1985-03-01 1986-09-06 住友電気工業株式会社 High heat conducting aluminum nitride sintered body and manufacture
JPS61227967A (en) * 1985-03-30 1986-10-11 電気化学工業株式会社 High heat conductivity ceramics and manufacture
JPS6241766A (en) * 1985-08-13 1987-02-23 株式会社トクヤマ Aluminum nitride sintered body and manufacture
JPS6252180A (en) * 1985-08-30 1987-03-06 株式会社トクヤマ Aluminum nitride composition

Also Published As

Publication number Publication date
JPS63134569A (en) 1988-06-07

Similar Documents

Publication Publication Date Title
US5773733A (en) Alumina-aluminum nitride-nickel composites
US5529962A (en) Aluminum nitride sintered body and method of producing the same
CN108863395B (en) High-thermal-conductivity and high-strength silicon nitride ceramic material and preparation method thereof
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
JP2565305B2 (en) High thermal conductivity aluminum nitride sintered body and manufacturing method thereof
US6143677A (en) Silicon nitride sinter having high thermal conductivity and process for preparing the same
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JP2673095B2 (en) Aluminum nitride sintered body
JPH09268069A (en) Highly heat conductive material and its production
JP3145519B2 (en) Aluminum nitride sintered body
JPH0524930A (en) Aln sintered compact and production thereof
JP2778783B2 (en) Method for producing BN-AlN-based sintered body having anisotropy
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JP2002029850A (en) Sintered silicon nitride compact and method for manufacturing the same
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JPH0684265B2 (en) Aluminum nitride sintered body
JPS63277570A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS59182275A (en) Manufacture of high strength silicon nitride sintered body
JPS6252181A (en) Manufacture of aluminum nitride sintered body
JP2541150B2 (en) Aluminum nitride sintered body
JPS63218585A (en) High heat-conductive aluminum nitride sintered body and manufacture
JP2684275B2 (en) Silicon nitride sintered body
JPH0678195B2 (en) Aluminum nitride sintered body
JP3049941B2 (en) Manufacturing method of aluminum nitride sintered body
JPS63151682A (en) Silicon nitride sintered body and manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term