JP2564873B2 - Excitation amplitude and phase setting method of radiating element in shaped beam antenna - Google Patents

Excitation amplitude and phase setting method of radiating element in shaped beam antenna

Info

Publication number
JP2564873B2
JP2564873B2 JP63022733A JP2273388A JP2564873B2 JP 2564873 B2 JP2564873 B2 JP 2564873B2 JP 63022733 A JP63022733 A JP 63022733A JP 2273388 A JP2273388 A JP 2273388A JP 2564873 B2 JP2564873 B2 JP 2564873B2
Authority
JP
Japan
Prior art keywords
radiating element
excitation amplitude
phase
antenna
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63022733A
Other languages
Japanese (ja)
Other versions
JPH01200704A (en
Inventor
吉英 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
NTT Mobile Communications Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, NTT Mobile Communications Networks Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63022733A priority Critical patent/JP2564873B2/en
Publication of JPH01200704A publication Critical patent/JPH01200704A/en
Application granted granted Critical
Publication of JP2564873B2 publication Critical patent/JP2564873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は無線通信用線状アレイアンテナにおいて、ア
ンテナ素子の振幅および位相を設定する方法に関する。
TECHNICAL FIELD The present invention relates to a method for setting the amplitude and phase of an antenna element in a linear array antenna for wireless communication.

(従来の技術) 航空機に対する無線通信用基地局アンテナは、第1図
に示すような状況で使用される。ここで1は基地局アン
テナ、2は基地局、3は水平方向、4は航空機、5は基
地局から航空機4を見込む方向を示す。
(Prior Art) A radio communication base station antenna for an aircraft is used in a situation as shown in FIG. Here, 1 is a base station antenna, 2 is a base station, 3 is a horizontal direction, 4 is an aircraft, and 5 is a direction in which the aircraft 4 is seen from the base station.

また、基地局で使用されるアレイアンテナの構造を第
2図に示す。6は放射素子、7は給電線、8は放射素子
に振幅および位相分布を与える給電回路、9はアンテナ
保護材、10は給電点である。
The structure of the array antenna used in the base station is shown in FIG. 6 is a radiating element, 7 is a feeding line, 8 is a feeding circuit for giving amplitude and phase distribution to the radiating element, 9 is an antenna protective material, and 10 is a feeding point.

これら航空機を対象としたアンテナの放射特性の典型
的な例を第3図に示す。縦軸に放射電界強度、横軸にア
ンテナ仰角を示す。θ=0゜が水平方向であり、θのプ
ラスの方向が天上方向でサービスエリア内に相当し、θ
のマイナス方向はサービスエリア外である。11は主に滑
走路への誘導用として使用されるもので、航空機の進入
仰角の変化に対して電界強度が不変となるコセカント二
乗特性を有する成形ビームである。この場合、各放射素
子の励振振幅および位相ともに、アンテナ長さ方向に大
きく変化する分布を実現する必要があり、複雑な給電回
路が必要となる。これに対し、12は各放射素子の励振振
幅および位相を全て一様とした場合で、アンテナ構成上
は最も単純で一般的なものである。
A typical example of the radiation characteristic of the antenna for these aircraft is shown in FIG. The vertical axis shows the radiated electric field strength, and the horizontal axis shows the antenna elevation angle. θ = 0 ° is the horizontal direction, and the positive direction of θ is the top direction, which corresponds to the inside of the service area.
The minus direction is outside the service area. 11 is mainly used for guiding to the runway, and is a shaped beam having a cosecant square characteristic in which the electric field strength does not change with changes in the approach elevation angle of the aircraft. In this case, it is necessary to realize a distribution in which both the excitation amplitude and the phase of each radiating element greatly change in the antenna length direction, and a complicated feeding circuit is required. On the other hand, 12 is the case where the excitation amplitude and phase of each radiating element are all uniform, which is the simplest and most common antenna configuration.

(発明が解決しようとする課題) ここで、基地局の周囲環境が第4図の如く、山などの
反射物が存在する状況では、航空機での受信感度が悪化
することが生ずる。13は反射構造物、14は反射波を示
す。反射波が複数個存在すると、航空機方向では反射波
間の干渉が起こり、大きな電界強度変動が発生する。
(Problems to be Solved by the Invention) Here, in a situation where the surrounding environment of the base station is such that there is a reflecting object such as a mountain as shown in FIG. 4, the receiving sensitivity of the aircraft may deteriorate. Reference numeral 13 indicates a reflective structure, and 14 indicates a reflected wave. When there are a plurality of reflected waves, interference between the reflected waves occurs in the direction of the aircraft, and a large electric field strength fluctuation occurs.

ところで、第3図のθ=0゜方向が反射構造物の方向
に当たり反射波はかなり強く成っているため、5の方向
の電界強度によっては反射波の干渉に埋もれてしまう。
第5図は、模式的に受信感度悪化の様子を説明するもの
である。15は反射干渉波のレベル、5は基地局かの直接
波レベル、16は航空機での受信レベルを示し、横軸は時
間経過、縦軸は各波のレベルを示す。図は航空機が基地
局に遠方から近づく場合を示し、T1時には遠方に、T2
には近くに存在する。各時刻に於ける直接波および反射
波の航空機までの伝搬距離は等しいため、直接波レベル
5の反射波レベル15との差は、主に第3図に示す基地局
アンテナの放射特性で定まる。各時刻に対応するアンテ
ナ仰角θも第3図に示すとおりであり、ここではコセカ
ント二乗特性のビームについて議論を進める。
By the way, since the θ = 0 ° direction in FIG. 3 hits the direction of the reflective structure and the reflected wave is considerably strong, it is buried in the interference of the reflected wave depending on the electric field strength in the direction of 5.
FIG. 5 schematically illustrates how the reception sensitivity deteriorates. Reference numeral 15 is the level of the reflected interference wave, 5 is the direct wave level of the base station, 16 is the reception level at the aircraft, the horizontal axis is the time passage, and the vertical axis is the level of each wave. The figure shows an aircraft approaching a base station from a distance, and is present at a distance at T 1 and near at T 2 . Since the propagation distances of the direct wave and the reflected wave to the aircraft at each time are the same, the difference between the direct wave level 5 and the reflected wave level 15 is mainly determined by the radiation characteristic of the base station antenna shown in FIG. The antenna elevation angle θ corresponding to each time is also as shown in FIG. 3, and here, discussion will be made on the beam having the cosecant square characteristic.

第5図の(a)において、T1時のレベルをL1とする
と、L1=−10dBである。一方、反射波はθ=0゜方向の
放射波の周辺地物による反射であり、干渉波のピーク値
Rは約−20dBであることが実測により確かめられてい
る。よって、T1においてはT−R=10dBの差が有るが、
T2の点では、L2=−25dBとなり、R=−20dBのレベルと
逆転してしまう。従って、航空機での受信レベルは第5
図の(b)の如く、T1時でのレベル変動は僅かであるの
に対し、T2時では大きな変動を生ずる。同様に、第3図
に励振振幅および位相が一様のビームについても、T2
では大きなレベル変動が生ずる。
In FIG. 5A, if the level at T 1 is L 1 , then L 1 = −10 dB. On the other hand, the reflected wave is a reflection of the radiation wave in the θ = 0 ° direction by the surrounding features, and it has been confirmed by actual measurement that the peak value R of the interference wave is about −20 dB. Therefore, there is a difference of T−R = 10 dB at T 1 ,
At the point of T 2 , L 2 = −25 dB, which is the reverse of the level of R = −20 dB. Therefore, the reception level on the aircraft is 5th.
As shown in (b) of the figure, the level change at T 1 is slight, while the level change is large at T 2 . Similarly, a large level fluctuation occurs at T 2 even for a beam having a uniform excitation amplitude and phase in FIG.

以上説明したように、従来の基地局アンテナの放射特
性によると、基地局周辺に反射地物が存在する場合、航
空機が高仰角に進入した状態で、航空機受信電力に大き
なレベル変動が発生し、受信感度の悪化を来してしま
う。
As described above, according to the radiation characteristics of the conventional base station antenna, when there is a reflective feature around the base station, a large level fluctuation occurs in the aircraft received power in a state where the aircraft has entered a high elevation angle, The reception sensitivity will deteriorate.

従って本発明は、地物反射波が原因の干渉波によるレ
ベル変動の影響を小さくするよう、基地局アンテナの高
仰角方向のレベル低下を少なく成し得るようにアンテナ
の放射素子の励振振幅および位相を設定する方法を提供
するものである。
Therefore, according to the present invention, the excitation amplitude and phase of the radiating element of the antenna are reduced so as to reduce the level variation in the high elevation direction of the base station antenna so as to reduce the influence of the level fluctuation due to the interference wave caused by the reflected wave of the feature. It provides a way to set up.

(課題を解決するための手段) この目的を達成するために本発明では、多素子の放射
素子を一直線に配列した線状アレイアンテナを鉛直方向
に設置した成形ビームアンテナにおける各放射素子の励
振振幅および位相を設定する方法として、主ビームの最
大電力放射方向を水平方向に狭い角度範囲に集中し、か
つ該主ビームに隣接した水平面上方の角度から天頂方向
に向かった数10度の角度範囲に亘って該主ビームの放射
電力の最大値から約15dB低下した値で放射電力がほぼ一
定となるように、放射素子の励振振幅および位相を設定
している。
(Means for Solving the Problem) In order to achieve this object, in the present invention, the excitation amplitude of each radiating element in a shaped beam antenna in which a linear array antenna in which multiple radiating elements are arranged in a straight line is installed vertically And as a method of setting the phase, the maximum power radiation direction of the main beam is concentrated in a narrow angle range in the horizontal direction, and the angle range of several tens of degrees from the angle above the horizontal plane adjacent to the main beam toward the zenith direction. The excitation amplitude and phase of the radiating element are set so that the radiation power becomes substantially constant at a value that is about 15 dB lower than the maximum value of the radiation power of the main beam.

(作用) 従来は航空機と基地局との間の直接波のみに着目し
て、基地局アンテナの放射特性を設計していたが、本発
明では基地局周辺の地物による反射波をも考慮に入れ、
主ビームの放射電力の最大値を水平方向の狭い角度範囲
に集中し、水平面上方の角度から天頂方向に向かって数
10度の角度範囲に亘って上述の最大値から約15dB低下し
た値で放射電力がほぼ一定となるように各放射素子の励
振振幅および位相を設定しているので、広い仰角範囲に
おいて航空機と基地局間の直接波レベルを周囲反射波に
比して十分高くでき、その結果、反射波によるレベル変
動の少ない安定した通信状態の通信路が得られる。
(Operation) Conventionally, the radiation characteristics of the base station antenna have been designed by focusing only on the direct wave between the aircraft and the base station, but the present invention also considers the reflected wave due to the features around the base station. Get in,
Concentrate the maximum radiated power of the main beam in a narrow horizontal angle range, and measure from the angle above the horizontal plane toward the zenith direction.
The excitation amplitude and phase of each radiating element are set so that the radiated power is approximately constant at a value that is about 15 dB lower than the above-mentioned maximum value over an angle range of 10 degrees. The direct wave level between the stations can be made sufficiently higher than the ambient reflected wave, and as a result, a stable communication path with less level fluctuation due to the reflected wave can be obtained.

(実施例) 次に本発明の実施例について説明する。この実施例に
よって達成しようとする放射特性が第6図に示されてい
る。即ち、仰角θが10゜〜70゜の広い角度範囲に亘って
−15dB以上の放射レベルを得るという特性である。
(Example) Next, the Example of this invention is described. The radiation characteristic to be achieved by this embodiment is shown in FIG. That is, it is a characteristic that a radiation level of -15 dB or more is obtained over a wide angle range of elevation angle θ of 10 ° to 70 °.

このような放射特性を有するアレイアンテナの各放射
素子の指向性合成は次式で与えられる。
The directivity combination of each radiating element of the array antenna having such radiation characteristics is given by the following equation.

〔V〕=〔〔Bt〔T〕〔B〕〕-1〔Bt〔T〕
〔A〕 (1) ここに、〔V〕は励振振幅および位相を与えるマトリ
ックス、〔A〕は目標パターン、〔B〕は素子パターン
とアレイファクタから成るマトリックスである。tおよ
び*は転置および複素共役を示す。〔T〕は放射パター
ンにウェイトを与える対角行列のマトリックスである。
[V] = [[B t ] * [T] [B]] -1 [B t ] * [T]
[A] (1) Here, [V] is a matrix that gives excitation amplitude and phase, [A] is a target pattern, and [B] is a matrix composed of element patterns and array factors. t and * indicate transposition and complex conjugation. [T] is a matrix of diagonal matrices that gives weight to the radiation pattern.

本実施例では、第6図の特性を得るために、仰角が10
゜〜70゜の範囲でT=5、その他の範囲でT=1とし
た。
In this embodiment, in order to obtain the characteristic shown in FIG.
T = 5 in the range of 70 ° to 70 °, and T = 1 in other ranges.

これによって(1)式から得られる各放射素子の励振
振幅および位相が第7図および第8図にそれぞれ示され
ている。11番目の素子がアレイアンテナの中央に相当す
る。振幅は縦軸に真値を取って示しており、中央の強度
が最も強くアレイの末端に向かう従って減衰するような
分布となっている。位相については、縦軸に偏角を取っ
て示しており、素子間の最大変化量で180度程度となっ
ている。なお、このような励振振幅および位相特性を有
する放射素子を実際に構成することは、当業者であれば
容易であるため、具体的な構成法については、その説明
を省略する。
Thus, the excitation amplitude and phase of each radiating element obtained from the equation (1) are shown in FIGS. 7 and 8, respectively. The eleventh element corresponds to the center of the array antenna. The amplitude is shown by taking the true value on the vertical axis, and the distribution is such that the intensity at the center is the strongest and is attenuated toward the end of the array. Regarding the phase, the vertical axis shows the angle of deviation, and the maximum variation between elements is about 180 degrees. Since it is easy for those skilled in the art to actually configure a radiating element having such excitation amplitude and phase characteristics, description of a specific configuration method will be omitted.

次に、本実施例における第6図に示した放射特性を用
いて、第5図と同様の航空機受信レベルの評価を行った
ものを第9図に示す。
Next, FIG. 9 shows an evaluation of the aircraft reception level similar to that shown in FIG. 5 using the radiation characteristics shown in FIG. 6 in the present embodiment.

同図の(a)に示すように、T1時での直接波のレベル
17は第5図の場合と同じくL1=−5dBであるが、T2時の
レベル17は第5図に比べて大きく上昇しL2≧−15dBとな
り、反射干渉波Rのレベル15より5dB程度高くなる。こ
のため、航空機における18受信レベルは同図の(b)に
示す如く、干渉波のレベル変動の影響が極めて少ない特
性が得られる。
As shown in (a) of the figure, the level of the direct wave at T 1
17 is L 1 = −5 dB as in the case of FIG. 5, but the level 17 at T 2 is much higher than that of FIG. 5 and L 2 ≧ −15 dB, which is 5 dB higher than the level 15 of the reflected interference wave R. It gets higher. Therefore, as shown in (b) of the figure, the 18 reception levels in the aircraft can be obtained with characteristics that the influence of the level fluctuation of the interference wave is extremely small.

実際に、基地局と航空機電話端末との間で通話試験を
行ったが、サイドローブレベルが−15dB以上の区間で
は、雑音が生ぜず良好な通話品質でありメリット4の評
価が得られた。
Actually, a call test was conducted between the base station and the aircraft telephone terminal, but in the section where the sidelobe level was -15 dB or higher, no noise was generated and the call quality was good, and the evaluation of Merit 4 was obtained.

(発明の効果) 以上述べたように、主ビームの最大電力放射方向の水
平方向の狭い角度範囲に集中し、かつ該主ビームに隣接
した水平面上方の角度から天頂方向に向かった数10度の
角度範囲に亘って該主ビームの放射電力の最大値から約
15dB低下した値で放射電力がほぼ一定となるように、各
放射素子の励振振幅および位相を設定することにより、
広い仰角範囲において航空機と基地局間の直接波レベル
を周囲反射波に比して十分高くでき、反射波によるレベ
ル変動の少ない通信路を実現できる。
(Effects of the invention) As described above, the main beam is concentrated in a narrow horizontal angle range of the maximum power radiation direction, and the direction of several tens of degrees from the angle above the horizontal plane adjacent to the main beam toward the zenith direction. From the maximum of the radiated power of the main beam over an angular range
By setting the excitation amplitude and phase of each radiating element so that the radiated power becomes almost constant at a value reduced by 15 dB,
The direct wave level between the aircraft and the base station can be made sufficiently higher than the ambient reflected wave in a wide elevation angle range, and a communication path with little level fluctuation due to the reflected wave can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は航空機用通進路を概略的に示す図、第2図はア
レイアンテナの構造例を示す図、第3図は従来のアンテ
ナ放射特性を示す図、第4図は反射波の存在する伝播路
を示す図、第5図は航空機の受信レベルの変化を示す
図、第6図は本発明の一実施例によって得られる放射特
性例を示す特性図、第7図および第8図は本実施例にお
ける各放射素子の励振振幅および位相の特性図、第9図
には本発明による放射特性を用いた場合の航空機受信レ
ベルを表す図である。 1は基地局アンテナ、2は基地局、3は水平方向、4は
航空機で、5は基地局から航空機を見込む方向、6は放
射素子、7は給電線、8は放射素子に振幅および位相分
布を与える給電回路、9はアンテナ保護材、10は給電
点、11はコセカント二乗特性、12は一様励振の放射特
性、13は反射構造物、14は反射波、15は反射干渉波のレ
ベル、16は受信レベル、17は放射レベル、18は受信レベ
ルである。
FIG. 1 is a diagram schematically showing an aircraft communication path, FIG. 2 is a diagram showing a structural example of an array antenna, FIG. 3 is a diagram showing a conventional antenna radiation characteristic, and FIG. 4 is a diagram showing reflected waves. FIG. 5 is a diagram showing a propagation path, FIG. 5 is a diagram showing changes in the reception level of an aircraft, FIG. 6 is a characteristic diagram showing an example of radiation characteristics obtained by an embodiment of the present invention, and FIGS. 7 and 8 are books. FIG. 9 is a characteristic diagram of excitation amplitude and phase of each radiating element in the example, and FIG. 9 is a diagram showing an aircraft reception level when the radiation characteristic according to the present invention is used. 1 is a base station antenna, 2 is a base station, 3 is a horizontal direction, 4 is an aircraft, 5 is a direction in which the aircraft is seen from the base station, 6 is a radiating element, 7 is a feed line, 8 is an amplitude and phase distribution in the radiating element , 9 is an antenna protection material, 10 is a feeding point, 11 is a cosecant square characteristic, 12 is a radiation characteristic of uniform excitation, 13 is a reflective structure, 14 is a reflected wave, 15 is a level of reflected interference wave, 16 is a reception level, 17 is a radiation level, and 18 is a reception level.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多素子の放射素子を一直線に配列した線状
アレイアンテナを鉛直方向に設置した成形ビームアンテ
ナにおける各放射素子の励振振幅および位相を設定する
方法であって、 主ビームの最大電力放射方向を水平方向に狭い角度範囲
に集中し、かつ該主ビームに隣接した水平面上方の角度
から天頂方向に向かった数10度の角度範囲に亘って該主
ビームの放射電力の最大値から約15dB低下した値で放射
電力がほぼ一定となるように、放射素子の励振振幅およ
び位相を設定することを特徴とする成形ビームアンテナ
における放射素子の励振振幅および位相設定方法。
1. A method of setting the excitation amplitude and phase of each radiating element in a shaped beam antenna in which a linear array antenna in which multiple radiating elements are arranged in a straight line is installed in the vertical direction, and the maximum power of the main beam is set. The radial direction is concentrated in a narrow angle range in the horizontal direction, and from the maximum value of the radiant power of the main beam over an angle range of several tens of degrees from the angle above the horizontal plane adjacent to the main beam toward the zenith direction. A method for setting the excitation amplitude and phase of a radiating element in a shaped beam antenna, characterized in that the excitation amplitude and phase of the radiating element are set so that the radiated power becomes almost constant at a value reduced by 15 dB.
JP63022733A 1988-02-04 1988-02-04 Excitation amplitude and phase setting method of radiating element in shaped beam antenna Expired - Lifetime JP2564873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63022733A JP2564873B2 (en) 1988-02-04 1988-02-04 Excitation amplitude and phase setting method of radiating element in shaped beam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022733A JP2564873B2 (en) 1988-02-04 1988-02-04 Excitation amplitude and phase setting method of radiating element in shaped beam antenna

Publications (2)

Publication Number Publication Date
JPH01200704A JPH01200704A (en) 1989-08-11
JP2564873B2 true JP2564873B2 (en) 1996-12-18

Family

ID=12090937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022733A Expired - Lifetime JP2564873B2 (en) 1988-02-04 1988-02-04 Excitation amplitude and phase setting method of radiating element in shaped beam antenna

Country Status (1)

Country Link
JP (1) JP2564873B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076923B (en) * 2004-12-13 2013-12-25 艾利森电话股份有限公司 Anlenna device and method concerned
JP5206034B2 (en) * 2008-03-10 2013-06-12 日本電気株式会社 Measurement system, buoy, receiver, and measurement method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104636A (en) * 1976-10-04 1978-08-01 Hazeltine Corporation Doppler reference antenna with phased centerline emphasis
JPS61172411A (en) * 1985-01-28 1986-08-04 Nippon Telegr & Teleph Corp <Ntt> Multi-stage linear array antenna

Also Published As

Publication number Publication date
JPH01200704A (en) 1989-08-11

Similar Documents

Publication Publication Date Title
US3568204A (en) Multimode antenna feed system having a plurality of tracking elements mounted symmetrically about the inner walls and at the aperture end of a scalar horn
US6188373B1 (en) System and method for per beam elevation scanning
US5629713A (en) Horizontally polarized antenna array having extended E-plane beam width and method for accomplishing beam width extension
EP0540387A2 (en) Cellular radio communication system with phased array antenne
Kim et al. An ultrawide-band double discone antenna with the tapered cylindrical wires
Lindmark et al. Dual-polarized array for signal-processing applications in wireless communications
US3044063A (en) Directional antenna system
US6512934B2 (en) Adaptive array antenna
US3605104A (en) Parasitic loop counterpoise antenna
US6115005A (en) Gain-optimized lightweight helical antenna arrangement
JP2564873B2 (en) Excitation amplitude and phase setting method of radiating element in shaped beam antenna
Kijima et al. Development of a dual-frequency base station antenna for cellular mobile radios
US4223317A (en) Dual polarization antenna couplets
WO2018096307A1 (en) A frequency scanned array antenna
CN107978840B (en) Dual-polarized antenna feed source array assembly
US4034378A (en) Antenna with echo cancelling elements
CA2247349C (en) Adaptive array antenna unit
Mologni et al. Investigation on the deployment of FSS as electromagnetic shielding for 5G devices
JPH11330848A (en) Base station antenna device
US3761940A (en) Means for directing electromagnetic wave energy at a very low angle above the horizon
US3613099A (en) Vor antenna system
JPH02113706A (en) Antenna system
Sengupta et al. Experimental study of a spherical array of circularly polarized elements
EP0141886B1 (en) Monopulse detection systems
JPS6128403Y2 (en)