JP2563995B2 - Catalyst - Google Patents

Catalyst

Info

Publication number
JP2563995B2
JP2563995B2 JP63282430A JP28243088A JP2563995B2 JP 2563995 B2 JP2563995 B2 JP 2563995B2 JP 63282430 A JP63282430 A JP 63282430A JP 28243088 A JP28243088 A JP 28243088A JP 2563995 B2 JP2563995 B2 JP 2563995B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier
weight
height
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63282430A
Other languages
Japanese (ja)
Other versions
JPH02131141A (en
Inventor
健次 植田
竜也 川端
知佐子 西尾
信也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP63282430A priority Critical patent/JP2563995B2/en
Publication of JPH02131141A publication Critical patent/JPH02131141A/en
Application granted granted Critical
Publication of JP2563995B2 publication Critical patent/JP2563995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は触媒に関する。詳しくは本発明は特定形状を
有する担体に触媒成分を担持してなる触媒に関する。
FIELD OF THE INVENTION This invention relates to catalysts. More specifically, the present invention relates to a catalyst in which a catalyst component is supported on a carrier having a specific shape.

更に詳しくは、本発明は例えば芳香族化合物を分子状
酸素含有ガスにより接触気相酸化してカルボン酸無水物
を製造するための触媒に関するものである。より具体的
には本発明は、オルソキシレンまたはナフタリンより無
水フタル酸、デュレンもしくはテトラアルキルベンゼン
より無水ピロメリット酸またはベンゼンより無水マレイ
ン酸を製造する上で好適な触媒を提供するものである。
More specifically, the present invention relates to a catalyst for producing a carboxylic acid anhydride by, for example, catalytic gas-phase oxidation of an aromatic compound with a molecular oxygen-containing gas. More specifically, the present invention provides a catalyst suitable for producing phthalic anhydride from orthoxylene or naphthalene, pyromellitic dianhydride from durene or tetraalkylbenzene, or maleic anhydride from benzene.

従来の技術およびその問題点 カルボン酸無水物は多管式固定床反応器において、芳
香族化合物対空気または分子状酸素含有ガスの混合比が
5〜60g/Nm3、および空間速度が1,000〜15,000Hr-1の条
件下で相応させる芳香族化合物を接触酸化して得られる
が、これらの反応に使用される触媒は製造される製品が
高品質で高収率さらに長寿命であると同時に触媒の物理
的要因として幾何学表面積が大きく、充填使用時の圧力
損失が小さいことが望まれる。
Conventional technology and its problems Carboxylic anhydride is a multi-tube fixed bed reactor with a mixing ratio of aromatic compound to air or a gas containing molecular oxygen of 5 to 60 g / Nm 3 and space velocity of 1,000 to 15,000. Obtained by catalytic oxidation of the corresponding aromatic compound under Hr −1 conditions, the catalysts used for these reactions have high quality, high yield and long life, and at the same time As physical factors, it is desired that the geometric surface area is large and the pressure loss during filling and use is small.

かかる目的を満足するものの一つとして円筒形状を有
する触媒が知られている。しかしながら、近年単位反応
器あたりの生産性向上、および省エネルギーを目的とし
て原料の高負荷条件下操業が一般化する傾向にあり、そ
れにともない触媒もその高負荷条件下でも前記要求を満
足するものが要望されている。
A catalyst having a cylindrical shape is known as one that satisfies this purpose. However, in recent years, there is a tendency that the operation of raw materials under high load conditions is generalized for the purpose of improving productivity per unit reactor and saving energy, and accordingly, catalysts that satisfy the above requirements even under the high load conditions are demanded. Has been done.

このように高負荷操業条件下に耐え得る触媒はその触
媒活性成分組成が最適であることと同時にその単位容積
あたりの幾何学表面積が従来触媒よりさらに大である事
が必須条件である。単位容積あたりの幾何学表面積を増
大させる方法として円筒形状担体に内部区割壁を設ける
方法、担体の粒径を小さくする方法が提案されている
が、これらの方法では触媒成分の被覆を触媒成分を含む
スラリーを吹きつけて行う際、円筒形内側への付着量が
著しく少なくなったり、触媒の充填使用時の圧力損失が
異常に高くなりやすいという欠点がある。
As described above, it is an essential condition that the catalyst capable of withstanding high-load operating conditions has an optimal catalytic active component composition and at the same time has a larger geometric surface area per unit volume than conventional catalysts. As a method of increasing the geometric surface area per unit volume, a method of providing an internal partition wall on a cylindrical carrier and a method of reducing the particle size of the carrier have been proposed. When the slurry containing is sprayed, the amount adhering to the inner side of the cylindrical shape is significantly reduced, and the pressure loss during filling and use of the catalyst tends to be abnormally high.

上述のごとく従来技術での幾何学表面積を増大した触
媒では触媒製造時、触媒運搬時、触媒充填使用時種々の
問題点があり実使用に耐えないものである。
As described above, the conventional catalyst having an increased geometric surface area has various problems at the time of manufacturing the catalyst, at the time of carrying the catalyst, and at the time of using the catalyst, and cannot be actually used.

一方、芳香族化合物を分子状酸化含有ガスにより接触
気相酸化して相応するカルボン酸無水物を製造するに際
して、近年一般化している、生産効率の向上及び省エネ
ルギーを目的として高原料負荷操業条件下(たとえば、
オルソキシレン酸化無水フタル酸の場合65〜100g/Nm3
で高品質、高収率で長期使用に耐え得る触媒の開発が要
望されている。
On the other hand, when producing a corresponding carboxylic acid anhydride by catalytically vapor-phase oxidizing an aromatic compound with a molecular oxidation-containing gas, it has become popular in recent years to improve the production efficiency and save energy under high raw material load operating conditions. (For example,
Ortho-xylene oxide Phthalic anhydride 65 to 100 g / Nm 3 )
Therefore, there is a demand for the development of a catalyst which can endure long-term use with high quality and high yield.

これらのカルボン酸を工業材料として利用するうえ
で、より高品質のカルボン酸無水物取得に対する要求が
あり、上述の如き高負荷操業は低負荷操業に比べカルボ
ン酸無水物の品質を低下せしめる傾向にあり対応の望ま
れるところであった。カルボン酸無水物への中間酸化生
成としての例を挙げれば、ナフタリンより無水フタル酸
の場合1,4−ナフトキノンが、オルソキシレンより無水
フタル酸の場合でオルソトルアルデヒドおよびフタライ
ドが、ベンゼンより無水マレイン酸の場合p−ベンゾキ
ノンが、デュレンより無水ピロメリット酸の場合ジメチ
ル無水フタル酸がそれぞれ副生物として挙げられる。こ
れらは高負荷操業ではその副生率が上昇し、製品品質の
悪化を招く原因となっている。とくにフタライドは無水
フタル酸との比揮発度がほぼ1に等しいため蒸留分離が
困難で、製品である無水フタル酸の熱安定性を低下せし
めるため、反応器出口部でのフタライド発生率を出来る
だけ低減する必要があるといわれる。そのため反応器出
口でのこれらの反応中間体の副生を抑制するためには反
応温度を高めることによって可能となるが、この方策で
はカルボン酸無水物の収率低下の犠牲が伴うので経済的
ではない。さらに収率の面でも高負荷条件下では単位触
媒表面積当りの原料負荷が高く発熱量が増大しその結果
収率低下さらに寿命も短くなる傾向にある。高負荷操業
条件下で高品質、高収率、長寿命を達成出来る触媒の具
備する条件としては、その触媒活性成分組成が最適であ
ることと同時に触媒単位面積当りの原料負荷を減少させ
るために、触媒単位容積あたりの幾何学表面積を増大さ
せる事が必須要件である。
In using these carboxylic acids as industrial materials, there is a demand for obtaining higher quality carboxylic acid anhydrides, and the high-load operation as described above tends to lower the quality of the carboxylic anhydride compared to the low-load operation. There was a need for a response. As an example of intermediate oxidation formation to carboxylic acid anhydride, 1,4-naphthoquinone is used in the case of phthalic anhydride over naphthalene, orthotoraldehyde and phthalide in the case of phthalic anhydride over orthoxylene, and maleic anhydride over benzene. In the case of acid, p-benzoquinone is mentioned as a by-product, and in the case of pyromellitic anhydride, dimethyl phthalic anhydride is mentioned as a by-product rather than durene. These increase the by-product rate in high-load operation and cause deterioration of product quality. In particular, phthalide has a relative volatility with phthalic anhydride that is almost equal to 1, so it is difficult to separate by distillation, and the thermal stability of phthalic anhydride, which is a product, is reduced, so the phthalide generation rate at the reactor outlet is as high as possible. It is said that it needs to be reduced. Therefore, it is possible to suppress the by-products of these reaction intermediates at the reactor outlet by increasing the reaction temperature.However, this measure involves the sacrifice of a decrease in the yield of the carboxylic anhydride, so that it is not economical. Absent. Further, in terms of yield as well, under high load conditions, the raw material load per unit surface area of the catalyst is high and the calorific value increases, resulting in a decrease in yield and a shorter life. The conditions for a catalyst that can achieve high quality, high yield, and long life under high load operating conditions are to optimize the composition of the catalytically active components and to reduce the raw material load per unit area of the catalyst. It is an essential requirement to increase the geometric surface area per unit volume of the catalyst.

発明の目的 従って、本発明の目的は上記欠点を解消し、幾何学表
面積を増大させ高負荷操業条件下でもその製造される製
品が高品質で高収率さらに長寿命である触媒を提供する
ことにある。
OBJECT OF THE INVENTION It is therefore an object of the present invention to overcome the above drawbacks and to provide a catalyst whose geometric surface area is increased and whose products produced under high load operating conditions are of high quality, high yield and long life. It is in.

さらに本発明の別の目的は芳香族化合物の接触気相酸
化によってカルボン酸無水物を製造するに際して、高負
荷操業条件下で高品質、高収率、長寿命の製品を取得し
うる触媒を提供することにある。
Still another object of the present invention is to provide a catalyst capable of obtaining a high-quality, high-yield, long-life product under high-load operating conditions when producing a carboxylic anhydride by catalytic gas-phase oxidation of an aromatic compound. Is to do.

発明の構成 かかる目的を達成するために、本発明者らは種々の担
体形状について検討を加えた結果、円筒形状担体の外面
にその高さ方向にほぼ平行に突起を有する担体に触媒成
分を担持した触媒が、高負荷操業条件下で高品質、高収
率、長寿命であることを満足し、さらに触媒物質吹付時
に円筒内側への付着量が著しく低下したり、触媒充填使
用時の圧力損失が異常に高くなったりする欠点が解消さ
れるという事を見出し本発明を完成させた。
In order to achieve such an object, the inventors of the present invention have studied various carrier shapes, and as a result, have supported the catalyst component on the carrier having protrusions on the outer surface of the cylindrical carrier substantially parallel to the height direction. The satisfied catalyst is of high quality, high yield and long life under high load operating conditions, and further, the amount of adhesion to the inside of the cylinder during spraying of the catalyst substance is significantly reduced, and the pressure loss during catalyst filling and use. The present invention has been completed by finding that the drawback of abnormally high value is solved.

すなわち、本発明は円筒形の外面に突起部を有する円
筒形状の担体であって、円筒の大きさが外径4〜11mm、
内径2〜9mm、高さ3〜11mmであり、且つその円筒形外
面に、その高さ方向にほぼ平行に突起部高さ/内径=0.
05〜0.3、突起部平均厚み/内径=0.1〜0.2を満足する
突起部を有する担体に触媒成分を担持したことを特徴と
する触媒である。
That is, the present invention is a cylindrical carrier having a protrusion on the outer surface of the cylindrical shape, the cylinder having an outer diameter of 4 to 11 mm,
The inner diameter is 2 to 9 mm, the height is 3 to 11 mm, and the height of the protrusion / inner diameter = 0.
The catalyst is characterized in that a catalyst component is supported on a carrier having protrusions satisfying 05 to 0.3 and average thickness of protrusions / inner diameter = 0.1 to 0.2.

本発明の円筒形外面に突起部を有する無機質不活性担
体は、比表面積として5m2/g以下、とくに1m2/g以下が好
ましく、また担体の素材としてα−Al2O3、シリコンカ
ーバイド、ジルコニア、ステアタイト等が好ましいが、
とくにアルミナ含有量が10重量%以下、好ましくは3重
量%以下、SiC含有量が50重量%以上、とくに80重量%
以上であり、かつ見掛け気孔率5〜50%、好ましくは10
〜50%の多孔性成形体が好ましい。担体外面の突起物の
個数は3〜5個が好ましく、突起物を付けることによる
幾何学的表面積の増大は突起物を付けない同サイズの担
体に比較し6〜25%の範囲が好ましく、これ以下では本
発明の効果がなく、これ以上であると担体外面への触媒
物質の付着が著しく減少したり、触媒充填時の圧力損失
が増大する等の問題が生じてくる。
The inorganic inert carrier having a protrusion on the cylindrical outer surface of the present invention has a specific surface area of 5 m 2 / g or less, preferably 1 m 2 / g or less, and α-Al 2 O 3 as a carrier material, silicon carbide, Zirconia, steatite, etc. are preferred,
Alumina content of 10% by weight or less, preferably 3% by weight or less, SiC content of 50% by weight or more, especially 80% by weight
And above, and apparent porosity 5 to 50%, preferably 10
A -50% porous compact is preferred. The number of protrusions on the outer surface of the carrier is preferably 3 to 5, and the increase in geometric surface area due to the addition of protrusions is preferably in the range of 6 to 25% as compared with a carrier of the same size without protrusions. Below, the effect of the present invention is not obtained, and if it is more than this, problems such as a marked decrease in adhesion of the catalyst substance to the outer surface of the carrier and an increase in pressure loss at the time of filling the catalyst occur.

以下、本発明において使用される担体の形状の一例を
図面を参照しながら説明する。
Hereinafter, an example of the shape of the carrier used in the present invention will be described with reference to the drawings.

第1図は、本発明で使用する担体の平面図、第2図は
縦断面図、図中1は担体外面に設けられた突起を示し、
2は円周壁を示す。aは担体内径、bは突起物の高さ、
cは突起物の平均厚みを示し本発明の担体はb/a=0.05
〜0.3、c/a=0.1〜0.2を満足する突起を担体外面に3〜
5個有するものである。
FIG. 1 is a plan view of a carrier used in the present invention, FIG. 2 is a longitudinal sectional view, and 1 in the drawing shows a protrusion provided on the outer surface of the carrier,
Reference numeral 2 denotes a circumferential wall. a is the inner diameter of the carrier, b is the height of the protrusion,
c is the average thickness of the protrusions, and the carrier of the present invention is b / a = 0.05.
~ 0.3, c / a = 0.1 ~ 0.2 protrusions on the outer surface of the carrier 3 ~
It has five.

また、円筒の径方向における突起部の断面形状は、角
形状、半円状、楕円状等いずれでもよく任意の形状が採
用される。突起部の長さは円筒の高さの0.1〜1倍であ
る。
In addition, the cross-sectional shape of the protrusion in the radial direction of the cylinder may be any of a square shape, a semicircular shape, an elliptical shape, and an arbitrary shape is adopted. The length of the protrusion is 0.1 to 1 times the height of the cylinder.

上記担体に担持される触媒成分は使用対象反応に応じ
て種々選択されるが酸化触媒または脱水素触媒等の還元
触媒成分が好適である。
The catalyst component supported on the carrier is variously selected according to the reaction to be used, but a reduction catalyst component such as an oxidation catalyst or a dehydrogenation catalyst is preferable.

例示すれば、ナフタリンまたはオルトキシレンより無
水フタル酸を製造する場合には、担体に担持される物質
としては、バナジウムを含む触媒活性物質であれば、と
くに限定されないが、バナジウム酸化物(以下V2O5とす
る)とチタン酸化物(以下TiO2とする)および/または
スズ酸化物(以下SnO2とする)および/またはジルコニ
ウム酸化物(以下ZrO2とする)を主成分とする混合物に
リン、アルカリ金属等の助触媒物質を加えたものが好ま
しく、例えば特公昭49−41036号、特公昭52−4538号、
特開昭57−105241号公報等に示された触媒活性物質が好
ましい。とりわけ本発明触媒においては、V2O5が1〜20
重量部および実質的に0.4〜0.7ミクロンの平均直径より
なり、かつ比表面積が10〜60m2/gの多孔性アナターゼ型
TiO299〜80重量部、さらにこれら2成分の合計100重量
部に対してニオブが0.01〜1重量部、カリウム、セシウ
ム、ルビジウムおよびタリウムよりなる群から選ばれた
少くとも1成分が酸化物として0.05〜1.2重量部、リン
がP2O5として0.05〜1.2重量部およびアンチモンがSb2O5
として0.5〜10重量部を含有してなる活性物質を前記の
如き寸法形状を有する円筒形の外面に突起部を有する円
筒形状の無機質不活性担体100ccに対して5〜30g担持せ
しめ、空気流通下200〜600℃の温度で0.5〜10時間焼成
して触媒が調製される。
For example, in the case of producing phthalic anhydride from naphthalene or orthoxylene, the substance supported on the carrier is not particularly limited as long as it is a catalytically active substance containing vanadium, but vanadium oxide (hereinafter referred to as V 2 O 5 ) and titanium oxide (hereinafter TiO 2 ) and / or tin oxide (hereinafter SnO 2 ) and / or zirconium oxide (hereinafter ZrO 2 ) as the main component in the mixture of phosphorus. , Those containing a promoter such as an alkali metal are preferable, for example, JP-B-49-41036, JP-B-52-4538,
Preferred are the catalytically active substances disclosed in JP-A-57-105241. In particular, in the catalyst of the present invention, V 2 O 5 is 1 to 20.
Porous anatase type consisting of parts by weight and an average diameter of substantially 0.4-0.7 microns and having a specific surface area of 10-60 m 2 / g
99 to 80 parts by weight of TiO 2 , and 0.01 to 1 part by weight of niobium based on 100 parts by weight of these two components, and at least one component selected from the group consisting of potassium, cesium, rubidium and thallium as an oxide. 0.05-1.2 parts by weight, phosphorus as P 2 O 5 is 0.05-1.2 parts by weight and antimony is Sb 2 O 5
As an active substance containing 0.5 to 10 parts by weight as above, 5 to 30 g is supported on 100 cc of a cylindrical inorganic inert carrier having protrusions on the outer surface of the cylindrical shape having the above-mentioned size and shape, and under air circulation. The catalyst is prepared by calcining at a temperature of 200 to 600 ° C. for 0.5 to 10 hours.

ベンゼンより無水マレイン酸を製造する場合も同様に
触媒活性物質は限定されないが、とくにV2O51モルに対
してモリブデンがMoO3として0.01〜1.0モル、リンがP2O
5として0.01〜0.05モル、ナトリウムがNa2Oとして0.03
〜0.2モルおよびカリウムがK2Oとして0〜0.05モルより
なる活性物質を前記形状担体100ccに対して3〜30g担持
させ、空気流通下で温度300〜600℃にて2〜10時間焼成
して触媒が調製される。
Although not catalytically active material is limited as well when producing maleic anhydride from benzene, in particular 0.01 to 1.0 mol molybdenum as MoO 3 against V 2 O 5 1 mol of phosphorus P 2 O
0.01-0.05 mol as 5 , sodium is 0.03 as Na 2 O
˜0.2 mol and potassium as K 2 O in an amount of 0 to 0.05 mol are supported on 3 to 30 g of the shaped carrier 100 cc, and calcined at a temperature of 300 to 600 ° C. for 2 to 10 hours under air flow. A catalyst is prepared.

デュレンより無水ピロメリット酸を製造する場合も同
様に担持される触媒活性物質はとくに限定されないが、
とりわけV2O51〜20重量部および実質的に0.4〜0.7ミク
ロンの平均直径よりなり、かつ比表面積が10〜60m2/gの
多孔性アナターゼ型TiO299〜80重量部、さらにこれら2
成分の合計100重量部に対してニオブがNb2O5として0.01
〜1重量部、カリウム、セシウム、ルビジウムおよびタ
リウムよりなる群から選ばれた1成分またはそれ以上が
酸化物として0〜1.2重量部、リンがP2O5として0.05〜
1.2重量部およびアンチモンがSb2O5として0.5〜10重量
部よりなる触媒活性物質を前記形状寸法を有する円筒形
の外面に突起部を有する円筒形状無機質不活性担体100c
cに対して5〜30g担持せしめ空気流通下200〜600℃の温
度で2〜10時間焼成して触媒が調製される。
In the case of producing pyromellitic anhydride from durene, the catalytically active substance similarly supported is not particularly limited,
In particular, 99 to 80 parts by weight of porous anatase type TiO 2 having 1 to 20 parts by weight of V 2 O 5 and an average diameter of substantially 0.4 to 0.7 micron and a specific surface area of 10 to 60 m 2 / g, and further 2
Niobium is 0.01% as Nb 2 O 5 based on 100 parts by weight of the total components.
~ 1 part by weight, 0 or 1.2 parts by weight of one or more components selected from the group consisting of potassium, cesium, rubidium and thallium as an oxide, and phosphorus as P 2 O 5 of 0.05 ~.
Cylindrical inorganic inert carrier 100c having 1.2 parts by weight and 0.5 to 10 parts by weight of antimony as Sb 2 O 5 in the form of a catalyst active substance having the above-mentioned geometrical dimensions and a cylindrical outer surface.
The catalyst is prepared by supporting 5 to 30 g with respect to c and calcining at a temperature of 200 to 600 ° C. for 2 to 10 hours under flowing air.

触媒活性物質の担体への担持方法は従来公知の方法で
行われるが、好ましい方法としては含浸法、加熱せられ
た担体に触媒活性物質を含んだ溶液を噴霧させる焼付担
持法等が挙げられる。
The method for supporting the catalytically active substance on the carrier is carried out by a conventionally known method. Preferred methods include an impregnation method, a baking and supporting method in which a solution containing the catalytically active substance is sprayed onto a heated carrier.

このようにしてえられた触媒は高負荷操業条件下にお
いても高収率で長寿命であり且つ高品質なカルボン酸無
水物を生成せしめる。しかし原料負荷をさらに高めた場
合、これらの芳香族化合物から各々相応せるカルボン酸
無水物への反応速度が非常に速いため触媒充填層の前半
部に非常に高い発熱点(Hot spot)が顕われる。このた
めこの部位での焼成反応が増大しカルボン酸無水物への
選択率が大きく低下しさらに触媒寿命も短くなる。この
ような場合には触媒層前半部での芳香族化合物の反応量
を抑え過度な発熱点が顕われないような工夫を要し、こ
のためには従来公知の手段が採用される。例えば、主反
応部の触媒を担体で希釈するとか、担持率を減じると
か、あるいは前記の触媒組成範囲内でアルカリ金属やP2
O5の添加量をコントロールし低活性にするとかといった
方法が採用される。本発明触媒でオルトキシレンまたは
ナフタレンより無水フタル酸を製造する場合、触媒は内
径15〜40mm、好ましくは15〜27mmの管に1〜5メート
ル、好ましくは1.5〜4メートルの高さに充填され、管
は熱媒体によって250〜450℃、とくに300〜400℃の温度
に保持されこれに原料のオルトキシレンまたはナフタレ
ンを酸化剤として空気または分子状酸素含有ガス(酸
素:5〜21容量%)とともにオルトキシレンまたはナフタ
レン/空気または分子状酸素含有ガスの比5〜120g/N
m3、空気速度1000〜6000Hr-1、とくに2000〜4000Hr
-1(STP)の条件下で導通され、ナフタレンよりはナフ
トキノン副生率0.5重量%以下で104〜106重量%の収率
で、オルトキシレンよりはフタライド副生率0.1重量%
以下で113〜118重量%の収率でそれぞれ無水フタル酸が
得られる。ベンゼンより無水マレイン酸を製造する場
合、触媒は内径15〜40mm、好ましくは15〜27mmの管に1
〜5メートル、好ましくは1.5〜4メートルの高さに充
填し、管は熱媒体によって350〜450℃、好ましくは370
〜420℃の温度に保持され、これにベンゼンを酸化物と
して空気または分子状酸素含有ガス(酸素5〜21容量
%)とともにベンゼン/空気または分子状酸素含有ガス
の比5〜80g/Nm3空間速度2000〜4000Hr-1、好ましくは2
000〜3000Hr-1の条件下で導通されパラベンゾキノン副
生率0.05重量%以下で95〜100重量%の収率で無水マレ
イン酸が得られる。
The catalysts thus obtained produce high-quality, long-lived and high-quality carboxylic anhydrides even under high-load operating conditions. However, when the raw material load is further increased, the reaction rate of these aromatic compounds to the corresponding carboxylic acid anhydrides is extremely high, so that a very high hot spot appears in the first half of the catalyst packed bed. . For this reason, the calcination reaction at this site is increased, the selectivity to carboxylic anhydride is greatly reduced, and the catalyst life is shortened. In such a case, it is necessary to reduce the reaction amount of the aromatic compound in the first half of the catalyst layer so that an excessive heat generation point does not appear. For this purpose, conventionally known means is adopted. For example, the catalyst in the main reaction section may be diluted with a carrier, the loading rate may be reduced, or alkali metal or P 2 within the above-mentioned catalyst composition range.
A method such as controlling the amount of O 5 added to reduce the activity is adopted. When phthalic anhydride is produced from orthoxylene or naphthalene with the catalyst of the present invention, the catalyst is packed in a tube having an inner diameter of 15 to 40 mm, preferably 15 to 27 mm at a height of 1 to 5 meters, preferably 1.5 to 4 meters, The tube is kept at a temperature of 250 to 450 ° C, especially 300 to 400 ° C by a heat medium, and orthoxylene or naphthalene as a raw material is used as an oxidant together with air or a molecular oxygen-containing gas (oxygen: 5 to 21% by volume). Xylene or naphthalene / air or molecular oxygen-containing gas ratio 5-120 g / N
m 3 , air velocity 1000 ~ 6000Hr -1 , especially 2000 ~ 4000Hr
-1 (STP) is conducted, the naphthoquinone by-product ratio is 0.5 wt% or less than naphthalene and the yield of 104 to 106 wt%, and the phthalide by-product ratio is 0.1 wt% than ortho-xylene.
In the following, phthalic anhydride is obtained in a yield of 113 to 118% by weight, respectively. In the case of producing maleic anhydride from benzene, the catalyst is used in a tube with an inner diameter of 15-40 mm, preferably 15-27 mm.
Filled to a height of ~ 5 meters, preferably 1.5-4 meters, the tube is heated to 350-450 ° C, preferably 370
Maintained at a temperature of ~ 420 ℃, benzene as an oxide with air or molecular oxygen-containing gas (oxygen 5-21% by volume) benzene / air or molecular oxygen-containing gas ratio 5-80g / Nm 3 space Speed 2000-4000Hr -1 , preferably 2
Maleic anhydride is obtained in a yield of 95 to 100% by weight when the parabenzoquinone by-product ratio is 0.05% by weight or less by conducting under the condition of 000 to 3000 Hr -1 .

デュレンより無水ピロメリット酸を製造する場合、触
媒は内径15〜30mm、好ましくは15〜27mmの管に1〜5メ
ートル、好ましくは1.5〜4メートルの高さに充填し、
管は熱媒体によって300〜450℃、好ましくは350〜400℃
の温度に保持され、これにデュレンを酸化剤として空気
または分子状酸素含有ガス(酸素5〜21容量%)ととも
に、デュレン/空気または分子状酸素含有ガスの比10〜
60g/Nm3および空間速度2000〜8000Hr-1の条件下で導通
され、ジメチル無水フタル酸副生率1重量%以下で110
〜125重量%の収率で無水ピロメリット酸が得られる。
When producing pyromellitic anhydride from durene, the catalyst is filled into a tube having an inner diameter of 15 to 30 mm, preferably 15 to 27 mm, at a height of 1 to 5 meters, preferably 1.5 to 4 meters,
300-450 ° C, preferably 350-400 ° C depending on the heat medium
At a temperature of 10 to 10% with a ratio of durene / air or molecular oxygen-containing gas with air or molecular oxygen-containing gas (oxygen 5 to 21% by volume) using durene as an oxidizing agent.
Conducted under the conditions of 60 g / Nm 3 and space velocity of 2,000 to 8000 Hr −1 , and with a dimethyl phthalic anhydride by-product rate of 1% by weight or less, 110
Pyromellitic anhydride is obtained in a yield of ~ 125% by weight.

以下、実施例に基づき、本発明触媒について、さらに
詳しく説明する。
Hereinafter, the catalyst of the present invention will be described in more detail based on examples.

実施例1 常法に基きイルメナイトより含水酸化チタンをえ、こ
れを800℃の温度で空気流通化下で4時間焼成し、平均
粒子径0.5ミクロンでBET法比表面積22m2/gの多孔性アナ
ターゼ型TiO2を調製した。
Example 1 Hydrous titanium oxide was obtained from ilmenite based on a conventional method, and this was calcined at a temperature of 800 ° C. for 4 hours under air circulation, and a porous anatase having an average particle diameter of 0.5 micron and a BET specific surface area of 22 m 2 / g. A type TiO 2 was prepared.

水6400ccに酸200gを溶解させ、これにメタバナジン
酸アンモニウム42.73g、第1リン酸アンモニウム5.98
g、塩化ニオブ18.79g、硫酸セシウム7.11gおよび三酸化
アンチモン36.94gを添加し充分撹拌したのち、上記TiO2
1800gを加え乳化機により触媒スラリー液を調製した。
Dissolve 200 g of acid in 6400 cc of water and add 42.73 g of ammonium metavanadate and 5.98 of ammonium monophosphate.
g, niobium chloride 18.79 g, cesium sulfate 7.11 g and antimony trioxide 36.94 g were added and sufficiently stirred, and then the TiO 2
1800 g was added and a catalyst slurry liquid was prepared with an emulsifier.

外部加熱式の回転炉中に、見掛気孔率35%、円筒の大
きさが外径7mm、内径4mm、高さ7mmであり、且つその円
筒形外面に、その高さ方向にほぼ平行に高さ0.7mm、平
均厚み0.6mmのその断面形状が半円状の突起部を4ケ有
する形状のSiC自焼結多孔性担体200ccを入れ200〜250℃
に予熱し、これに上記触媒液を噴霧し触媒活性物質を16
0g担持せしめ、空気流通下で570℃の温度にて6時間焼
成した。このようにしてえられた触媒を触媒−Aとす
る。一方、第1リン酸アンモニウムの添加量を17.94gと
した以外は触媒−Aの調製法と同様にし触媒−Bを調製
した。350℃に保持された内径25mm、長さ3.5メートルの
鉄製反応管に先ず触媒−Bを1.5メートルの層高に充填
し、その上に触媒−Aを1.5メートル充填した。
In an externally heated rotary furnace, the apparent porosity is 35%, the size of the cylinder is 7 mm in outer diameter, 4 mm in inner diameter, and 7 mm in height, and the height is almost parallel to the outer surface of the cylinder. 200 to 250 ° C with 200cc of SiC self-sintering porous carrier of 0.7mm in thickness and 0.6mm in average thickness with 4 semi-circular protrusions in cross section
Preheat, and spray the above catalyst solution onto it to remove the catalytically active substance.
0 g of the product was supported, and the mixture was baked at a temperature of 570 ° C. for 6 hours while circulating air. The catalyst thus obtained was designated as catalyst-A. On the other hand, a catalyst-B was prepared in the same manner as in the preparation method of the catalyst-A, except that the addition amount of the first ammonium phosphate was changed to 17.94 g. An iron reaction tube having an inner diameter of 25 mm and a length of 3.5 meters maintained at 350 ° C. was first charged with catalyst-B at a bed height of 1.5 meters, and catalyst-A was charged thereon with 1.5 meters.

反応管上部よりオルトキシレン/空気の比が75g/Nm3
である120℃に予熱された混合ガスを空間速度3000Hr-1
(STP)で通じたところ初期113.4重量%、6ケ月後113.
2重量%の収率で無水フタル酸が得られ、その際のフタ
ライド副生率は各々0.04重量%、0.05重量%であった。
担体として円筒形外面に突起部の無い以外は前記と同形
状の担体にかえた以外は触媒−Aおよび触媒−Bの調製
法に準じてそれぞれ比較触媒を調製し、前記に基づきオ
ルトキシレンの酸化を行なったところ357℃の温度で初
期112.3重量%、6ケ月後111.7重量%の無水フタル酸収
率しか達成できず、その際のフタライド副生率は各々0.
09重量%、0.01重量%であった。
Ortho-xylene / air ratio is 75 g / Nm 3 from the top of the reaction tube
At a space velocity of 3000 hr -1
According to (STP), the initial value was 113.4% by weight, and 6 months later 113.
Phthalic anhydride was obtained in a yield of 2% by weight, and the phthalide by-product rates at that time were 0.04% by weight and 0.05% by weight, respectively.
Comparative catalysts were prepared in accordance with the preparation methods of Catalyst-A and Catalyst-B, respectively, except that the carrier having the same shape as that described above was used except that the support had no protrusions on the outer surface of the cylinder. The yield of phthalic anhydride was 112.3% by weight at the initial temperature and 111.7% by weight after 6 months, and the phthalide by-product ratio was 0.
It was 09% by weight and 0.01% by weight.

実施例2 実施例1におけると同様にしてえた含水酸化チタンを
650℃の温度で空気流通下、4時間焼成し平均粒子径0.4
6ミクロン、BET法比表面積38m2/gの多孔性アナターゼ型
TiO2を得た。水6400ccに酸200gを溶解させ、これにメ
タバナジン酸アンモニウム96.43g、第1リン酸アンモニ
ウム12.15g、塩化ニオブ38.09g、硫酸カリウム13.87gお
よび三酸化アンチモン18.75gを添加し充填撹拌したのち
上記TiO21800gを加え乳化機により触媒スラリー液を調
製した。外部加熱式の回転炉中に円筒の大きさが外径7m
m、内径4mm、高さ7mmであり、且つその円筒形外面に、
その高さ方向にほぼ平行に高さ0.7mm、平均厚み0.6mmの
その断面形状が楕円状の突起部を4ケ有する形状でAl2O
3含有量3重量%、SiC含有量84重量%、残部SiO2よりな
る見掛気孔率40%の多孔性担体2000ccに上記触媒液を噴
霧し触媒活性物質を140g担持せしめ空気流通下540℃で
3時間焼成して触媒−Cを得た。
Example 2 Hydrous titanium oxide obtained in the same manner as in Example 1 was used.
Calcined at 650 ° C for 4 hours under air flow, average particle size 0.4
6 micron, porous anatase type with BET specific surface area of 38 m 2 / g
TiO 2 was obtained. Water 6400cc was to dissolve the acid 200 g, this ammonium metavanadate 96.43G, first ammonium phosphate 12.15 g, niobium chloride 38.09G, the TiO 2 After stirring filled by adding potassium sulfate 13.87g and antimony trioxide 18.75g 1800g was added and the catalyst slurry liquid was prepared with the emulsifier. The outer diameter of the cylinder is 7m in a rotary furnace with external heating
m, inner diameter 4 mm, height 7 mm, and on its cylindrical outer surface,
Al 2 O having a height of 0.7 mm and an average thickness of 0.6 mm and four protrusions having an elliptical cross section, which are substantially parallel to the height direction.
3 Content 3% by weight, SiC content 84% by weight, balance of SiO 2 with a apparent porosity of 40% 2000 cc of porous carrier was sprayed with the above catalyst solution to support 140 g of the catalytically active substance, and at 540 ° C. under air flow. It was calcined for 3 hours to obtain catalyst-C.

また、第1リン酸アンモニウムの添加量を36.44gとし
た以外は触媒−Cの調製法と同様にし触媒−Dを得た。
Catalyst D was obtained in the same manner as in the preparation of Catalyst C, except that the amount of the monobasic ammonium phosphate was changed to 36.44 g.

347℃に保持された内径25mm、長さ3.5メートルの鉄製
反応管に先ず触媒−Dを1.8メートルの層高に、その上
に触媒−Cを1.2メートル充填した。
First, catalyst-D was filled to a bed height of 1.8 m, and catalyst-C was filled thereon to 1.2 m in an iron reaction tube having an inner diameter of 25 mm and a length of 3.5 m maintained at 347 ° C.

反応管上部よりイオウ含有量0.65重量%、純度95%の
タール系ナフタリンを70g/Nm3の割合で空気と混合し120
℃に予熱したものを空間速度3000Hr-1(STP)で通じた
ところ1,4−ナフトキノン副生率0.4重量%で105.0重量
%の収率で無水フタル酸が得られた。担体として円筒形
外面に突起部の無い以外は前記と同形状の担体にかえて
比較触媒を調製し前記に基づきナフタレンの酸化を行な
ったところ353℃の温度で103.5重量%の無水フタル酸収
率しか達成できず、その際の1,4−ナフトキノン副生率
は0.5重量%であった。
From the top of the reaction tube, a tar-based naphthalene with a sulfur content of 0.65% by weight and a purity of 95% was mixed with air at a ratio of 70 g / Nm 3 and 120
When it was preheated to ℃, the phthalic anhydride was obtained in a yield of 105.0% with a by-product ratio of 1,4-naphthoquinone of 0.4% by weight at a space velocity of 3000 Hr -1 (STP). As a carrier, a comparative catalyst was prepared by replacing the carrier having the same shape as the above with the exception of having no protrusions on the outer surface of the cylinder, and naphthalene was oxidized based on the above. The yield of phthalic anhydride was 103.5% by weight at a temperature of 353 ° C. However, the by-product ratio of 1,4-naphthoquinone was 0.5% by weight.

実施例3 水1500ccに酸258gを溶解し、つづいてメタバナジン
酸アンモニウム230g、モリブデン酸アンモニウム139g、
リン酸三ナトリウム22.4g、塩化ナトリウム3.5gおよび
硫酸カリウム5.2gを順次溶解して触媒液とした。
Example 3 258 g of acid was dissolved in 1500 cc of water, followed by 230 g of ammonium metavanadate, 139 g of ammonium molybdate,
22.4 g of trisodium phosphate, 3.5 g of sodium chloride and 5.2 g of potassium sulfate were sequentially dissolved to prepare a catalyst solution.

外部加熱式の回転炉中に、見掛気孔率45%、円筒の大
きさが外径9mm、内径6mm、高さ4mmであり、且つその円
筒形外面に、その高さ方向にほぼ平行に高さ1.0mm、平
均厚み1.0mmのその断面形状が半円状の突起部を4ケ有
する形状の、アルミナ含有量95.5重量%、不純物および
結合剤よりの成分としてSiO23.5重量%、Fe2O30.2重量
%、CaO0.2重量%、MgO0.1重量%、Na2O+K2O0.15重量
%よりなる多孔性担体2000ccに上記触媒液を噴霧し触媒
活性物質を200g担持させ空気流通下で420℃にて6時間
焼成して触媒−Eをえた。
In an externally heated rotary furnace, the apparent porosity is 45%, the size of the cylinder is 9 mm outside diameter, 6 mm inside diameter, and 4 mm height, and the height is almost parallel to the outside surface of the cylinder. Alumina content 95.5% by weight, SiO 2 3.5% by weight as a component from impurities and binder, Fe 2 O having a thickness of 1.0 mm and an average thickness of 1.0 mm and having four semicircular protrusions 3 0.2 wt%, CaO0.2 wt%, MgO0.1 wt%, Na 2 O + K 2 O0.15 sprayed catalytically active substance of the catalyst solution on a porous carrier 2000cc consisting wt% under air flow at to 200g carry The catalyst-E was obtained by calcining at 420 ° C. for 6 hours.

また、硫酸カリウムの添加量を1.1gとした以外は触媒
−Eの調製法と同様にして触媒−Fをえた。
Further, a catalyst-F was obtained in the same manner as in the preparation of the catalyst-E except that the amount of potassium sulfate added was 1.1 g.

360℃に保持された内径25mm、長さ3.5メートルのステ
ンレス反応管に先ず触媒−Fを充填層高1.25メートルに
詰め、さらにそのうえに触媒−Eを1.25メートルの高さ
に充填した。反応管上部よりベンゼン/空気の割合が55
g/Nm3である混合ガスを120℃に予熱し、空間速度2600Hr
-1(STP)で通じたところ98.5重量%の収率で無水マレ
イン酸が得られ、パラベンゾキノンの副生率は0.01重量
%であった。担体として円筒形状外面に突起部の無い以
外は前記と同形状の担体にかえて比較触媒を調製し、前
記に基づきベンゼンの酸化を行なったところ温度365℃
で96.0重量%の無水マレイン酸収率しか達成できず、そ
の際のパラベンゾキノンの副生量は0.20重量%であっ
た。
A stainless reaction tube having an inner diameter of 25 mm and a length of 3.5 m held at 360 ° C. was first packed with catalyst-F at a packed bed height of 1.25 m, and further, catalyst-E was packed at a height of 1.25 m. 55 benzene / air ratio from top of reaction tube
g / Nm 3 mixed gas preheated to 120 ° C, space velocity 2600Hr
-1 (STP) gave maleic anhydride in a yield of 98.5% by weight, and the by-product rate of parabenzoquinone was 0.01% by weight. As a carrier, a comparative catalyst was prepared by replacing the carrier having the same shape as the above with the exception that there was no protrusion on the outer surface of the cylindrical shape, and benzene was oxidized based on the above temperature 365 ° C.
The yield of maleic anhydride was 96.0% by weight, and the amount of para-benzoquinone by-product was 0.20% by weight.

実施例4 水6400ccに酸514gを溶解させ、これにメタバナジン
酸アンモニウム257g、第1リン酸アンモニウム19.4g、
塩化ニオブ12.2g、硝酸ルビジウム3.2gおよび三酸化ア
ンチモン120gを添加し充分撹拌したのち、実施例1で得
られたのと同じTiO21800gを加え乳化機により触媒スラ
リー液とした。
Example 4 514g of acid was dissolved in 6400cc of water, and 257g of ammonium metavanadate, 19.4g of monobasic ammonium phosphate,
After adding 12.2 g of niobium chloride, 3.2 g of rubidium nitrate and 120 g of antimony trioxide and stirring them well, 1800 g of the same TiO 2 as obtained in Example 1 was added to prepare a catalyst slurry liquid by an emulsifier.

外部加熱式の回転炉に、円筒の大きさが外径6mm、内
径3mm、高さ5mmであり、且つその円筒形外面に、その高
さ方向にほぼ平行に高さ0.4mm、平均厚み0.5mmのその断
面形状が角形の突起部を4個有する形状のSiC80重量
%、MgO6重量%、SiO214重量%よりなる見掛気孔率45%
の多孔性担体2000ccに触媒活性物質を80g担持せしめ空
気流通下560℃の温度で6時間焼成して触媒−Gをえ
た。同様にして触媒活性物質の担持量を180gとしたもの
を触媒−Hとしてえた。
External heating type rotary furnace, the size of the cylinder is 6mm outer diameter, 3mm inner diameter, 5mm height, and 0.4mm height, 0.5mm average thickness, almost parallel to the height direction on the cylindrical outer surface. 45% apparent porosity consisting of 80% by weight of SiC, 6% by weight of MgO, and 14% by weight of SiO 2 in a shape having four protrusions with a rectangular cross section
80 g of the catalytically active substance was supported on 2000 cc of the porous carrier of Example 1 and calcined at a temperature of 560 ° C. for 6 hours under air flow to obtain a catalyst-G. In the same manner, a catalyst-H having a loading amount of the catalytically active substance of 180 g was obtained.

370℃に保持された内径25mm、長さ3.5メートルの鉄製
反応管に先ず触媒−Hを1.5メートルの高さに充填し、
次いでその上に触媒−Gを1.0メートルの高さに充填し
た。
First, catalyst-H was filled to a height of 1.5 meters in an iron reaction tube having an inner diameter of 25 mm and a length of 3.5 meters maintained at 370 ° C,
Then Catalyst-G was filled thereon to a height of 1.0 meter.

反応管上部よりデュレン/空気の割合が30g/Nm3であ
る混合ガスを120℃に予熱し空間速度5000Hr-1(STP)で
通じたところ113.8重量%の収率で無水ピロメリット酸
が得られ、ジメチル無水フタル酸の副生量は0.3重量%
であった。
From the upper part of the reaction tube, when a mixed gas with a durene / air ratio of 30 g / Nm 3 was preheated to 120 ° C and passed through at a space velocity of 5000 Hr -1 (STP), pyromellitic dianhydride was obtained with a yield of 113.8% by weight. The by-product amount of dimethyl phthalic anhydride is 0.3% by weight
Met.

担体として円筒形外面に突起部の無い以外は前記と同
形状の担体にかえて比較触媒を調製し、前記に基づきデ
ュレンの酸化を行なったところ375℃の温度で112.7重量
%の無水ピロメリット酸収率しか達成出来ず、その際、
ジメチル無水フタル酸の副生量は0.6重量%であった。
As a carrier, a comparative catalyst was prepared by replacing the carrier having the same shape as the above with the exception of having no protrusions on the outer surface of the cylinder, and oxidation of durene was carried out based on the above, and 112.7% by weight of pyromellitic dianhydride at a temperature of 375 ° C. Only yield can be achieved,
The by-product amount of dimethyl phthalic anhydride was 0.6% by weight.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明触媒において使用する担体の平面図、第
2図は縦断面図である。
FIG. 1 is a plan view of a carrier used in the catalyst of the present invention, and FIG. 2 is a vertical sectional view.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 信也 兵庫県姫路市網干区興浜字西沖992番地 の1 日本触媒化学工業株式会社触媒研 究所内 審査官 新居田 知生 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinya Tanaka, No. 1 992, Nishioki, Nishihama, Kohama, Aboshi-ku, Himeji-shi, Hyogo Pref.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円筒形の外面に突起部を有する円筒形状の
担体であって、円筒の大きさが外径4〜11mm、内径2〜
9mm、高さ3〜11mmであり、且つその円筒形外面に、そ
の高さ方向にほぼ平行に、突起部高さ/内径=0.05〜0.
3、突起部平均厚み/内径=0.1〜0.2を満足する突起部
を有する担体に触媒成分を担持したことを特徴とする触
媒。
1. A cylindrical carrier having a protrusion on its outer surface, the cylinder having an outer diameter of 4 to 11 mm and an inner diameter of 2 to 2.
9 mm in height and 3 to 11 mm in height, and substantially parallel to the height direction of the cylindrical outer surface, the height of the protrusion / inner diameter = 0.05 to 0.
3. A catalyst characterized in that a catalyst component is supported on a carrier having protrusions satisfying the average thickness of protrusions / inner diameter = 0.1 to 0.2.
【請求項2】担体が無機質不活性担体であり、これに触
媒成分を被覆してなる請求項1記載の触媒。
2. The catalyst according to claim 1, wherein the carrier is an inorganic inert carrier, which is coated with a catalyst component.
【請求項3】無機質不活性担体が、10〜50%の範囲の気
孔率を有し、かつアルミニウム含有量がAl2O3として10
%重量以下でシリコンカーバイド(SiC)含有量が50重
量%以上であることを特徴とする請求項1または2記載
の触媒。
3. An inorganic inert carrier having a porosity in the range of 10 to 50% and an aluminum content of Al 2 O 3 of 10%.
% Or less, and content of silicon carbide (SiC) is 50% by weight or more.
【請求項4】無機質不活性担体が、10〜50%の範囲の気
孔率を有し、かつSiC自焼結担体よりなることを特徴と
する請求項1ないし3記載の触媒。
4. The catalyst according to claim 1, wherein the inorganic inert carrier has a porosity in the range of 10 to 50% and is composed of a SiC self-sintering carrier.
【請求項5】触媒成分の被覆を触媒成分を含むスラリー
を担体に吹きつけて行う請求項1ないし4記載の触媒。
5. The catalyst according to claim 1, wherein the catalyst component is coated by spraying a slurry containing the catalyst component onto a carrier.
JP63282430A 1988-11-10 1988-11-10 Catalyst Expired - Lifetime JP2563995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63282430A JP2563995B2 (en) 1988-11-10 1988-11-10 Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63282430A JP2563995B2 (en) 1988-11-10 1988-11-10 Catalyst

Publications (2)

Publication Number Publication Date
JPH02131141A JPH02131141A (en) 1990-05-18
JP2563995B2 true JP2563995B2 (en) 1996-12-18

Family

ID=17652312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282430A Expired - Lifetime JP2563995B2 (en) 1988-11-10 1988-11-10 Catalyst

Country Status (1)

Country Link
JP (1) JP2563995B2 (en)

Also Published As

Publication number Publication date
JPH02131141A (en) 1990-05-18

Similar Documents

Publication Publication Date Title
US6362345B1 (en) Method for producing phthalic anhydride by means of catalytic vapor-phase oxidation of o-xylol/naphthalene mixtures
US6700000B1 (en) Method for producing phthalic anhydride
US4879387A (en) Method for manufacture of phthalic anhydride
US3509179A (en) Process for the production of phthalic anhydride
KR100553285B1 (en) Multilayered Shell Catalysts for Catalytic Gaseous Phase Oxidation of Aromatic Hydrocarbons
JP3490684B2 (en) Gas phase oxidation method and method for producing phthalic anhydride
US7851398B2 (en) Catalytic titanium dioxide mixtures, catalysts and catalyst systems containing the same, processes for making the same, and uses therefor
US7371893B2 (en) Production of aldehydes, carboxylic acids and/or carboxylic acid anhydrides by means of catalysts containing vanadium oxide, titanium dioxide, and antimony oxide
US6274763B1 (en) Shell catalyst for producing acetic acid by gas phase oxidation of unsaturated C4 -hydrocarbons
US6458970B1 (en) Method for producing acid phthalic anhydride and an appropriate shell catalyst containing titanium-vanadium-cesium
JPH08318160A (en) Supported catalyst for gas phase oxidation reaction
JPS6026790B2 (en) Process for producing phthalic anhydride from O-xylol or naphthalene
US6281385B1 (en) Process for preparing acetic acid by gas-phase oxidation of saturated C4-hydrocarbons and their mixtures with unsaturated C4-hydrocarbons
US4324694A (en) Supported catalysts containing vanadium pentoxide, titanium dioxide, phosphorus, rubidium and/or cesium, with or without zirconium dioxide
KR20040086396A (en) Method for Producing Phthalic Anhydride
JP2592490B2 (en) Aromatic hydrocarbon oxidation method
JP4557378B2 (en) Method for producing phthalic anhydride
JP2563995B2 (en) Catalyst
JPS6037108B2 (en) Method for producing phthalic anhydride
JPS6278A (en) Production of maleic anhydride
JPH0371173B2 (en)
JPH0153853B2 (en)
JP3130681B2 (en) Method for producing phthalic anhydride by gas phase oxidation of a mixture of orthoxylene and naphthalene
US6452021B1 (en) Process for producing pyromellitic anhydride
JPS6125642A (en) Catalyst for manufacturing pyromellitic anhydride

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13