JP2555046B2 - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JP2555046B2
JP2555046B2 JP62012361A JP1236187A JP2555046B2 JP 2555046 B2 JP2555046 B2 JP 2555046B2 JP 62012361 A JP62012361 A JP 62012361A JP 1236187 A JP1236187 A JP 1236187A JP 2555046 B2 JP2555046 B2 JP 2555046B2
Authority
JP
Japan
Prior art keywords
exposure
pattern
substrate
image
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62012361A
Other languages
Japanese (ja)
Other versions
JPS63181318A (en
Inventor
稔彦 田中
宏 福田
三郎 野々垣
昇雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62012361A priority Critical patent/JP2555046B2/en
Priority to US07/144,065 priority patent/US4904569A/en
Publication of JPS63181318A publication Critical patent/JPS63181318A/en
Application granted granted Critical
Publication of JP2555046B2 publication Critical patent/JP2555046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、たとえば半導体素子,磁気バブル素子,超
電導素子等の作製における投影露光法を用いた微細パタ
ーン形成方法に係り、特に縮小投影露光法に有効なパタ
ーン系平方法に関する。
Description: TECHNICAL FIELD The present invention relates to a fine pattern forming method using a projection exposure method in the production of, for example, a semiconductor element, a magnetic bubble element, a superconducting element, etc., and in particular, a reduced projection exposure method. It relates to a pattern-based flattening method effective for

〔従来の技術〕 周知のように、半導体装置や磁気バブルメモリ装置な
どの各種微細パターン形成には、投影露光法が広く用い
られている。投影露光法、特に縮小投影露光法は微細の
パターン形成に有用である。投影露光法ではレンズの開
口数の増加および露光波長の短波長化により解像度が向
上する。しかし、従来の投影露光法においては、露光光
学系の焦点深度は投影レンズの開口数と露光波長に強く
依存していた。投影レンズの焦点深度はその開口数の2
乗に反比例し、露光波長に比例するため、解像度を上げ
るために開口数を大きくしたり、短波長化を行なつたり
すると、それにともなつて焦点深度は浅くなつてしま
う。このため、投影レンズの像面歪や基板表面の凹凸段
差によつて生ずる障害への対処が次第に困難となつてき
ている。比較的微細なパターンによつて生ずる段差によ
る障害については、これまで周知の多層レジスト法によ
る平滑化によつて対処されてきた。しかし、この方法を
用いても大面積パターンによつて生じた段差を完全に平
坦化することはできず、段差の上部もしくた下部に結像
不良が生ずるのは避けられなかつた。
[Prior Art] As is well known, a projection exposure method is widely used for forming various fine patterns in semiconductor devices and magnetic bubble memory devices. The projection exposure method, especially the reduction projection exposure method is useful for forming a fine pattern. In the projection exposure method, the resolution is improved by increasing the numerical aperture of the lens and shortening the exposure wavelength. However, in the conventional projection exposure method, the depth of focus of the exposure optical system strongly depends on the numerical aperture of the projection lens and the exposure wavelength. The depth of focus of the projection lens is 2 of its numerical aperture.
It is inversely proportional to the power and proportional to the exposure wavelength. Therefore, if the numerical aperture is increased or the wavelength is shortened in order to increase the resolution, the depth of focus becomes shallow accordingly. For this reason, it is becoming increasingly difficult to deal with the obstacles caused by the image plane distortion of the projection lens and the unevenness of the substrate surface. An obstacle caused by a step caused by a relatively fine pattern has been dealt with by smoothing by a well-known multilayer resist method. However, even if this method is used, the step caused by the large area pattern cannot be completely flattened, and it is unavoidable that an image defect occurs at the upper portion or the lower portion of the step.

なお、多層レジスト法については特開昭51−107775号
などに記載されている。
The multilayer resist method is described in JP-A-51-107775.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

近年の半導体集積回路の高集積化にともない、パター
ンの微細化と基板表面の凹凸段差が著しく増大し、それ
らへの対応が要求されている。パターン形成に投影露光
法を用いる場合、凹凸段差の増大に対応するためには、
露光光学系としてはより大きな焦点深度が必要となる。
しかし解像度を向上させるには投影レンズの開口数を大
きくする必要があるため、焦点深度は逆に浅くなつてい
る。また、投影レンズの像面歪により結像面は完全平面
ではないため、露光領域全面にわたり、その表面凹凸段
差に対応して焦点深度を確保するのが困難になつてきて
いる。
With the recent high integration of semiconductor integrated circuits, the miniaturization of patterns and the unevenness of irregularities on the substrate surface are remarkably increased, and it is required to cope with them. When using the projection exposure method for pattern formation, in order to cope with an increase in uneven steps,
A larger depth of focus is required for the exposure optical system.
However, in order to improve the resolution, it is necessary to increase the numerical aperture of the projection lens, so the depth of focus is conversely shallow. Further, because the image plane is not a perfect plane due to the image plane distortion of the projection lens, it is becoming difficult to secure the depth of focus corresponding to the unevenness of the surface over the entire exposure area.

前記従来技術では大面積パターンによつて生ずる凹凸
段差を完全に平坦化することはできず、また完全平坦化
が達成されたとしてもレンズの像面歪のため露光領域全
面にわたつてマスクパターンの結像面を基板表面と一致
させることができず、上記問題点に対処するのが困難で
あつた。
In the above-mentioned conventional technique, it is not possible to completely flatten the uneven steps caused by the large area pattern, and even if perfect flattening is achieved, the mask pattern is spread over the entire exposure region due to the image plane distortion of the lens. Since the image plane cannot be made to coincide with the substrate surface, it is difficult to deal with the above problems.

本発明の目的は段差が表面に存在しても、十分高い精
度で微細なパターンを形成できるパターン形成方法を提
供することである。本発明の他の目的はレンズを開口数
が大きい場合および露光波長が短かい場合にも光学系の
実質的の焦点深度の低下を防止し、段差の有無にかかわ
らず露光領域全面にわたつて結像不良のない良好な微細
パターンを形成することである。
An object of the present invention is to provide a pattern forming method capable of forming a fine pattern with sufficiently high accuracy even if a step exists on the surface. Another object of the present invention is to prevent the lens from having a substantial decrease in the depth of focus even when the lens has a large numerical aperture and an exposure wavelength is short, and to connect the lens over the entire exposure region regardless of the presence or absence of steps. It is to form a good fine pattern without image defects.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的はフオトレジストに露光光強度の増加にとも
ない感度が向上する性質を有する材料を使用し、絶像面
位置を変えて多重露光することにより達成される。
The above-mentioned object can be achieved by using a material having a property that the sensitivity is improved as the exposure light intensity is increased for the photoresist and performing multiple exposure by changing the image plane position.

露光光強度の増加にともない感度が向上するレジスト
としては、例えば短時間照射のほうが感度が向上する相
反則不軌性を有する材料がある。
As a resist whose sensitivity is improved as the exposure light intensity is increased, for example, there is a material having reciprocity law failure in which the sensitivity is improved by short-time irradiation.

〔作用〕[Action]

微細パターンの場合、結像位置から離れた位置での、
いわゆるデフオーカスした像の光強度分布は裾の広がつ
たゆるやかな山型となり、そのピーク強度は結像位置上
の像のピーク強度に比べ低下する。
In the case of a fine pattern, at a position away from the image formation position,
The light intensity distribution of a so-called defocused image has a gentle mountain shape with a wide skirt, and its peak intensity is lower than the peak intensity of the image at the imaging position.

フオトレジストに照射時間が短いほど感度が向上する
相反則不軌の性質がある場合、照射光強度が強いほど感
度が向上し、照射光強度が弱いと露光量が多くてもフオ
トレジストはほとんど感光しない。したがつて結像位置
を変えて多重露光し、かつ露光強度を適当に選択する
と、デフオーカスした像は光強度が弱いためフオトレジ
ストをほとんど感光させず、結像位置の合つた、いわゆ
るベストフオーカスの像のみがフオトレジストを感光さ
せる。デフオーカスした像を複数回露光するとデフオー
カスした像のトータル露光量は増え、ピントのあつた像
の露光量に比べ相対的に大きくなるが、それにもかかわ
らずフオトレジストの相反則不軌性、すなわち、感光現
象は露光強度で決まるという性質により、ベストピント
の像のみがフオトレジストを感光させる。
When the photoresist has the property of reciprocity law failure, in which the sensitivity increases as the irradiation time becomes shorter, the sensitivity increases as the irradiation light intensity increases, and when the irradiation light intensity is weak, the photoresist is hardly exposed even if the exposure amount is large. . Therefore, if the image formation position is changed and multiple exposure is performed, and the exposure intensity is appropriately selected, the defocused image has a weak light intensity and hardly exposes the photoresist. Image only exposes the photoresist. When the defocused image is exposed multiple times, the total exposure amount of the defocused image increases and becomes relatively larger than the exposure amount of the focused image, but nevertheless, the reciprocity law failure of the photoresist, that is, the exposure Due to the nature of the phenomenon being determined by exposure intensity, only the best focus image exposes the photoresist.

場所によりベストフオーカスの位置が異なる場合も結
像位置を変えて多重露光しているため、いずれかの露光
にベストフオーカスの像があり、その像のみ選択的にフ
オトレジストを感光させるので、基板段差にともなう焦
点ボケ、およびレンズの像面歪による焦点ボケの問題を
解決できる。
Even if the position of the best focus differs depending on the location, multiple exposure is performed by changing the image formation position, so there is an image of the best focus on either exposure, and only that image is exposed to the photoresist selectively, It is possible to solve the problems of defocus caused by the step of the substrate and defocus caused by the image plane distortion of the lens.

〔実施例〕〔Example〕

実施例1 以下、本発明の一実施例を第1図を用いて説明する。 Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to FIG.

第1図(a)に示すようにフオトレジストを段差のあ
る基板1上に塗布し、フオトレジスト層2を形成した。
ここで、フオトレジストとしてはOMR83(東京応化
(株)社商品名)を用い、高解像化を目的としてその平
坦面上での膜厚を約0.4μmとした。しかしレジスト膜
厚はこの値に限らず解像度とのかね合いで自由に選べ
る。OMR83の露光感度の露光強度依存性を第2図に示
す。露光強度2.5mW/cm2を越えると急激にOMR83の感度は
高くなる。
As shown in FIG. 1 (a), a photoresist was applied on the substrate 1 having a step to form a photoresist layer 2.
Here, OMR83 (trade name of Tokyo Ohka Co., Ltd.) was used as the photoresist, and the film thickness on its flat surface was set to about 0.4 μm for the purpose of achieving high resolution. However, the resist film thickness is not limited to this value and can be freely selected depending on the resolution. The dependence of the exposure sensitivity of OMR83 on the exposure intensity is shown in FIG. When the exposure intensity exceeds 2.5 mW / cm 2 , the sensitivity of OMR83 rapidly increases.

その後、第1図(a)に示すようにマスク3上に形成
されたマスクパターン4,4′を投影レンズ5を介して露
光した。この露光は次のようにして行なつた。まず基板
1の凸面7上に、マスクパターンの結像面6がくるよう
に、基板を固定したステージを移動し、その場所で1回
目の露光を行なつた。次に第1図(b)に示すように基
板1の凹面上8にマスクパターンの結像面6′がくるよ
うにステージを光軸方向に沿つて動かし、上記パターン
の二回目の露光を行なつた。なお、上記露光装置として
は日立RA101VL型縮小投影露光装置を使用し、露光強度
は約5mW/cm2とした。露光波長は365nm、レンズの開口数
は0.42である。
Thereafter, as shown in FIG. 1 (a), the mask patterns 4, 4'formed on the mask 3 were exposed through the projection lens 5. This exposure was performed as follows. First, the stage on which the substrate was fixed was moved so that the image plane 6 of the mask pattern was placed on the convex surface 7 of the substrate 1, and the first exposure was performed at that position. Next, as shown in FIG. 1 (b), the stage is moved along the optical axis so that the image plane 6'of the mask pattern is located on the concave surface 8 of the substrate 1, and the second exposure of the pattern is performed. Natsuta. A Hitachi RA101VL type reduction projection exposure apparatus was used as the exposure apparatus, and the exposure intensity was about 5 mW / cm 2 . The exposure wavelength is 365 nm and the lens numerical aperture is 0.42.

その後現像を行なつてレジストパターンを形成した。 After that, development was performed to form a resist pattern.

本方法により3μm以上の段差がある場合でも段差の
上下ともに0.6μmのライアンドスペースパターンを形
成することができた。一方、従来法では段差が約2μm
を越えると不良を生じた。またOFPR800(東京応化
(株)社商品名)などの相反則性が成り立つフオトレジ
ストを用いた場合は、段差の上下ともパターンは形成で
きるものの断面形状はゆるやかな山型となり、レジスタ
残膜率も低い劣化したレジストパターンした形成できな
かつた。このためレジストと基板とのエツチング選択性
の悪いエツチングに対しては、このレジストパターンは
マスクとしての機能をはたさなかつた。また、OMR83を
用いた場合でも、露光強度を2mW/cm2以下とした場合
は、OFPR800を用いた場合と同様に良好なパターンは形
成できなかつた。これはこの光強度領域では第2図から
明らかなように光強度による感度変化がほとんどないた
めである。
By this method, even if there was a step of 3 μm or more, a line and space pattern of 0.6 μm could be formed both above and below the step. On the other hand, the conventional method has a step difference of about 2 μm.
When it exceeded, a defect occurred. When using a photoresist with reciprocity such as OFPR800 (trade name of Tokyo Ohka Co., Ltd.), patterns can be formed both above and below the steps, but the cross-sectional shape becomes a gentle mountain shape, and the residual film rate of the register is also high. A low-deteriorated resist pattern could not be formed. Therefore, the resist pattern does not function as a mask for etching with poor etching selectivity between the resist and the substrate. Even when OMR83 was used, when the exposure intensity was 2 mW / cm 2 or less, a good pattern could not be formed as in the case where OFPR800 was used. This is because there is almost no change in sensitivity due to the light intensity in this light intensity region, as is apparent from FIG.

また、露光雰囲気を窒素リツチにすると強い光強度領
域で感光感度の向上がおこり、酸素リツチにすると比較
的弱い強度領域から感度があがりはじめる。雰囲気の酸
素量を制御することにより本露光に必要な光強度を選択
することができた。これはOMR83の相反則不軌感光機構
が大気からの酸素の拡散に支配されているためである。
同様にフオトレジストOMR83上に酸素を透過しにくいポ
リビニルアルコールなどの膜を適当な膜厚で形成するこ
とにより露光に必要な光強度を選択することができる。
Further, when the exposure atmosphere is a nitrogen etch, the photosensitivity is improved in a strong light intensity region, and when the exposure atmosphere is an oxygen etch, the sensitivity starts to rise from a relatively weak intensity region. By controlling the amount of oxygen in the atmosphere, the light intensity required for the main exposure could be selected. This is because the OMR83 reciprocity failure mechanism is governed by the diffusion of oxygen from the atmosphere.
Similarly, a light intensity necessary for exposure can be selected by forming a film of polyvinyl alcohol or the like, which does not easily transmit oxygen, on the photoresist OMR83 with an appropriate film thickness.

なお、上記実施例においてはフオトレジストとしてOM
R83を用いたが、これに限らずONNR20(東京応化(株)
社商品名),KTFR(コダツク社商品名),KPR(コダツク
社商品名),CBR(日本合成ゴム(株)社商品名)、およ
び環化ゴムビスアジドなどの相反則不軌性をもつフオト
レジストを用いることができた。また相反則不軌性を持
つポジタイプフオトレジストでも同様に効果がある。
It should be noted that in the above embodiment, OM is used as the photoresist.
R83 was used, but not limited to this, ONNR20 (Tokyo Ohka Co., Ltd.)
Company name), KTFR (Kodak company name), KPR (Kodak company name), CBR (Nippon Synthetic Rubber Co., Ltd. company name), and cyclized rubber bisazide, etc. I was able to. A positive type photoresist having reciprocity law failure is also effective.

また、本実施例では露光波長を365nm、レンズの開口
数を0.42としたが、これに限らない。例えば短波長光で
あるエキシマレーザー光も用いることができる。また、
本実施例では単層レジストの例を示したが、多層レジス
ト法と組み合わせることもできる。また、CEL(コント
ラスト エンハンスメント リソグラフイー:ontras
t nhancement ithography)法と組み合わせること
ができる。
Further, although the exposure wavelength is 365 nm and the numerical aperture of the lens is 0.42 in this embodiment, the present invention is not limited to this. For example, excimer laser light that is short-wavelength light can also be used. Also,
Although the example of the single-layer resist is shown in this embodiment, it may be combined with the multilayer resist method. In addition, CEL (contrast enhancement lithography E: C ontras
It can be combined with a t E nhancement L ithography) method.

実施例2 実施例1と同様に段差のある基板上にフオトレジスト
塗布,露光,現像を行なつてパターンお形成した。レジ
スト材料およびその処理は実施例1と同様とした。但し
下記に示すように、露光方法は実施例1と変えた。
Example 2 As in the case of Example 1, a photoresist was applied, exposed, and developed on a substrate having steps to form a pattern. The resist material and its treatment were the same as in Example 1. However, as shown below, the exposure method was changed from that in Example 1.

まず、基板表面の主平面が投影光学系の結像面より約
4μm下方(投影光学系から離れる方向)に位置するよ
うに設定して露光を行なつた後、基板を固定したステー
ジを光軸に沿つて約2.5μmずつ上方に移動させ、その
つど露光を行なつた。この操作を基板表面の主平面が結
像面より約5μm上方にくるまで続けた。
First, exposure is performed by setting the main plane of the substrate surface to be located about 4 μm below the image plane of the projection optical system (direction away from the projection optical system) and then exposing the stage with the substrate fixed to the optical axis. It was moved upward by about 2.5 μm along each line, and exposure was performed each time. This operation was continued until the principal plane of the substrate surface was located above the image plane by about 5 μm.

本実施例では基板段差が約3.5μm、投影光学レンズ
の像面歪が最大約2μm、基板の厚さの違いによる露光
面内の基板の傾きが、高さの差にして約1μmあり、投
影光学系に一番近い部分と一番遠い部分の基板表面の位
置の差は約6.5μmあつた。この高さの差にもかかわら
ず、露光面内全域にわたつて例えば0.6μmラインアン
ドスペースパターンのような微細なパターンを形成する
ことができた。一方、従来法では基板段差が約3μmを
こえると段差の上か下で解像不良が生じ、パターンを形
成できないばかりでなく、基板段差のない平坦面同士で
も像面歪および基板の傾きにより、露光周辺領域の一部
で解像不良が起こつた。
In this embodiment, the step difference of the substrate is about 3.5 μm, the image plane distortion of the projection optical lens is about 2 μm at maximum, and the inclination of the substrate in the exposure surface due to the difference in the thickness of the substrate is about 1 μm in terms of height difference. The difference in the position of the substrate surface between the part closest to the optical system and the part farthest from the optical system was about 6.5 μm. Despite this height difference, a fine pattern such as a 0.6 μm line-and-space pattern could be formed over the entire exposed surface. On the other hand, in the conventional method, if the substrate step exceeds about 3 μm, resolution failure occurs above or below the step, and not only a pattern cannot be formed, but also on flat surfaces having no substrate step due to image distortion and substrate tilt, A poor resolution occurred in a part of the exposed area.

本実施例では基板表面の主平面が投影光学系の結像面
より約4μm下方から順次上方に基板を移動させながら
露光を行なつたが、これに限らず、基板表面の最も高い
位置(投影光学系に最も近い位置)が結像面より約2μ
m上方にくるようにステージ位置を調整し、そこから順
次上方に移動させながら露光を行なつても効果があつ
た。また、逆に基板表面の最も低い位置が結像面より約
2μm下方にくるようにステージ位置を調整し、そこか
ら順次下方に移動させながら露光を行なつても効果があ
つた。2μmという値は一例であり、焦点深度内の値で
あれば効果がある。しかし焦点深度を越えた値を用いた
場合には、一部に解像不良が生じた。
In the present embodiment, the exposure was performed while the substrate was moved while the principal plane of the substrate surface was sequentially moved upward from about 4 μm below the image plane of the projection optical system, but the present invention is not limited to this, and the highest position on the substrate surface (projection The position closest to the optical system) is about 2μ from the image plane
It was also effective to adjust the stage position so that it would be above m, and to perform exposure while moving it from there sequentially. On the contrary, it was also effective to adjust the stage position so that the lowest position on the substrate surface was below the imaging plane by about 2 μm, and then perform the exposure while sequentially moving downward. The value of 2 μm is an example, and any value within the depth of focus is effective. However, when a value exceeding the depth of focus was used, poor resolution occurred in part.

本実施例では露光および基板の位置移動をステップ的
に行なつたが、露光中基板位置を連続的に光軸方向に沿
つて移動させてもよい。
In this embodiment, the exposure and the movement of the position of the substrate are performed stepwise, but the position of the substrate may be continuously moved along the optical axis during the exposure.

本実施例では、結像面と基板表面の相対的位置は、基
板をのせるステージの位置移動によつて変えていた。こ
の方法に限らず、マスクパターンの存在するレチクルを
光軸方向に移動させる,露光光学系中に空気と異なる屈
折率を有する物質を挿入する,露光光学系の全体または
一部を含む部分を気圧を変動させる,多焦点レンズと用
いる,設定結像面の異なる複数の光学系からの光を重ね
合わせる,同一光学系を用いて複数の異なるまたは連続
した波長の光により露光するなど、種々な方法を用いて
結像面と基板表面の相対的位置を変えてもよい。
In this embodiment, the relative position between the image plane and the substrate surface is changed by the movement of the stage on which the substrate is placed. Not limited to this method, a reticle having a mask pattern is moved in the optical axis direction, a substance having a refractive index different from that of air is inserted into the exposure optical system, and a portion including the whole or a part of the exposure optical system is pressurized. , A multifocal lens is used, light from a plurality of optical systems with different set image planes is superposed, and light of different or continuous wavelengths is used to expose the same optical system. May be used to change the relative position of the imaging surface and the substrate surface.

〔発明の効果〕〔The invention's effect〕

上記説明から明らかなように、本発明によれば投影露
光法における実効的焦点深度を増大させることができる
ので、投影レンズと高開口数化,像面歪,基板表面の凹
凸段差の増大に対応することが可能である。
As is clear from the above description, according to the present invention, the effective depth of focus in the projection exposure method can be increased, so that it is possible to cope with an increase in the projection lens, the numerical aperture, the image plane distortion, and the unevenness of the substrate surface. It is possible to

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)は本発明の一実施例を示す模式
図、第2図は本発明の効果を表わす曲線図である。 1……基板、2……フオトレジスト層、3……マスク、
4,4′……マスクパターン、5……投影レンズ、6,6′…
…マスクパターンの結像面上の像。
1 (a) and 1 (b) are schematic views showing an embodiment of the present invention, and FIG. 2 is a curve diagram showing the effect of the present invention. 1 ... Substrate, 2 ... Photoresist layer, 3 ... Mask,
4,4 '... Mask pattern, 5 ... Projection lens, 6,6' ...
... The image on the image plane of the mask pattern.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所望の形状を有するマスクパターンを介し
てレジスト膜へ投影露光し、その後現像を行なつてレジ
ストパターンを形成するパターン形成方法において、露
光強度の増加にともない感光感度が向上するレジストを
用い、かつ上記投影露光を上記マスクパターンを結像面
と上記レジスト膜の相対的に異なる光軸上の複数の位置
において行なうことを特徴とするパターン形成方法。
1. In a pattern forming method, wherein a resist film is projected and exposed through a mask pattern having a desired shape, and then developed to form a resist pattern, in which the photosensitivity is improved as the exposure intensity is increased. And the projection exposure is performed at a plurality of positions on the optical axis where the mask pattern is relatively different between the image plane and the resist film.
【請求項2】上記結像面の複数の位置が基板段差の凸面
および凹面近傍上に設定されていることを特徴とする特
許請求の範囲第1項記載のパターン形成方法。
2. The pattern forming method according to claim 1, wherein a plurality of positions of the image forming surface are set in the vicinity of the convex surface and the concave surface of the substrate step.
【請求項3】上記結像面が2箇所以上であり、その一方
が基板表面上の投影露光光学系に最も近い位置近傍に設
定され、他方が基板表面上の投影露光光学系から最も遠
い位置近傍に設定され、3箇所以上の場合は残りの結像
面がその両者の中間に設定されることを特徴とする特許
請求範囲第1項記載のパターン形成方法。
3. The image forming plane is provided at two or more places, one of which is set near a position closest to the projection exposure optical system on the substrate surface, and the other is a position farthest from the projection exposure optical system on the substrate surface. The pattern forming method according to claim 1, wherein the pattern forming method is set in the vicinity, and in the case of three or more positions, the remaining image planes are set in the middle of the two.
【請求項4】上記結像面の位置が少なくとも基板上面上
の投影露光光学系に最も近い位置から光学系から最も遠
い位置に至るまで上記基板位置あるいは結像面位置ある
いはその両方の位置を連続的に変化させながら上記露光
を行なうことを特徴とする特許請求の範囲第1項記載の
パターン形成方法。
4. The substrate position and / or the image plane position or both positions are continuous from the position where the image plane is closest to the projection exposure optical system on the upper surface of the substrate to the position farthest from the optical system. The pattern forming method according to claim 1, wherein the exposure is performed while changing the pattern.
JP62012361A 1986-08-08 1987-01-23 Pattern forming method Expired - Fee Related JP2555046B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62012361A JP2555046B2 (en) 1987-01-23 1987-01-23 Pattern forming method
US07/144,065 US4904569A (en) 1986-08-08 1988-01-15 Method of forming pattern and projection aligner for carrying out the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62012361A JP2555046B2 (en) 1987-01-23 1987-01-23 Pattern forming method

Publications (2)

Publication Number Publication Date
JPS63181318A JPS63181318A (en) 1988-07-26
JP2555046B2 true JP2555046B2 (en) 1996-11-20

Family

ID=11803132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62012361A Expired - Fee Related JP2555046B2 (en) 1986-08-08 1987-01-23 Pattern forming method

Country Status (1)

Country Link
JP (1) JP2555046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852158B2 (en) 2006-11-30 2010-12-14 Panasonic Corporation Operational amplifier

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100281116B1 (en) * 1998-05-27 2001-04-02 김영환 Manufacturing method of semiconductor device
JP2005122122A (en) * 2003-09-22 2005-05-12 Mitsubishi Chemicals Corp Method for forming resist image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852158B2 (en) 2006-11-30 2010-12-14 Panasonic Corporation Operational amplifier

Also Published As

Publication number Publication date
JPS63181318A (en) 1988-07-26

Similar Documents

Publication Publication Date Title
USRE36731E (en) Method of forming pattern and projection aligner for carrying out the same
US5780187A (en) Repair of reflective photomask used in semiconductor process
US20050147920A1 (en) Method and system for immersion lithography
US20110006401A1 (en) Method and system for combining photomasks to form semiconductor devices
US7575852B2 (en) Method of optically transferring a pattern from a mask having advanced oriented assist features for integrated circuit hole patterns
JP2555046B2 (en) Pattern forming method
US5982476A (en) Process of forming pattern and exposure apparatus
JP3177948B2 (en) Photomask for exposure
JPH0810666B2 (en) Pattern formation method
JPS6342122A (en) Pattern formation
JP2861642B2 (en) Method for manufacturing semiconductor device
JP3214455B2 (en) Projection exposure method
JPH01258419A (en) Pattern formation
JPH08254813A (en) Phase shift mask and production of semiconductor device using that
TW201502694A (en) Double-mask photolithography method minimizing the impact of substrate defects
JPH0936017A (en) Pattern forming method and semiconductor manufacturing method using the pattern forming method
JP2566567B2 (en) Pattern forming method
JP2654418B2 (en) Projection exposure equipment
JP2002164280A (en) Exposure method
JP3271227B2 (en) Method and apparatus for manufacturing original reticle for manufacturing semiconductor device
JPH0513308A (en) Manufacture of semicoductor device
JPH06267889A (en) Method and device for projection aligner
JPH06252033A (en) Method of forming resist pattern using multilayer resist
JPH07118442B2 (en) Lithography patterning method
JPH06342749A (en) Semiconductor wafer, and semiconductor integrated circuit device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees