JP2553808Y2 - Power factor control device - Google Patents

Power factor control device

Info

Publication number
JP2553808Y2
JP2553808Y2 JP1991059403U JP5940391U JP2553808Y2 JP 2553808 Y2 JP2553808 Y2 JP 2553808Y2 JP 1991059403 U JP1991059403 U JP 1991059403U JP 5940391 U JP5940391 U JP 5940391U JP 2553808 Y2 JP2553808 Y2 JP 2553808Y2
Authority
JP
Japan
Prior art keywords
capacitor
power factor
reactive power
static
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1991059403U
Other languages
Japanese (ja)
Other versions
JPH0512920U (en
Inventor
智之 洲崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP1991059403U priority Critical patent/JP2553808Y2/en
Publication of JPH0512920U publication Critical patent/JPH0512920U/en
Application granted granted Critical
Publication of JP2553808Y2 publication Critical patent/JP2553808Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】この考案は、静止型コンデンサの
投入制御によって力率を自動的に改善する力率制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power factor control device for automatically improving a power factor by controlling the input of a static capacitor.

【0002】[0002]

【従来の技術】一般に、負荷力率を改善すれば、電力損
失の低減、発電機の高効率運転など、電力会社側で設備
の効率的運用が図れるため、需要家の力率改善を促進す
る目的で力率料金制が定められている。また、需要家側
において力率を改善すれば線路電流が減少し、線路損失
が軽減するとともに、線路による電圧降下が少なくな
り、また負荷電流が減少する結果、同一設備で設備容量
の能力を最大限に活かすことができる。
2. Description of the Related Art In general, if a load power factor is improved, a power company can efficiently operate facilities such as a reduction in power loss and a highly efficient operation of a generator. A power factor rate system has been established for the purpose. Also, if the power factor is improved on the customer side, the line current will decrease, the line loss will decrease, the voltage drop across the line will decrease, and the load current will decrease. It can be used as much as possible.

【0003】そこで、従来は中央監視制御システムによ
って、負荷の無効電力分の変動に応じて静止型コンデン
サの投入制御を行い、受電点の力率を常に100%近く
に維持する力率制御が行われている。
Therefore, conventionally, a central monitoring and control system controls the input of a static capacitor in response to the variation of the reactive power of the load, and performs power factor control to always maintain the power factor at the receiving point close to 100%. Have been done.

【0004】従来のコンデンサの投入/遮断制御として
は、次の二方式の何れか一方が採択されている。
[0004] One of the following two systems has been adopted as the conventional on / off control of a capacitor.

【0005】(1)サイクリック方式 系統内のコンデンサ容量が全て等しいときに有効な方法
であり、コンデンサ用開閉器の動作回数が同一となるよ
うに、負荷の無効電力分の変動に応じてコンデンサの投
入/遮断をサイクリックに制御する。
(1) Cyclic system This is an effective method when the capacitors in the system are all the same. Is cyclically controlled.

【0006】(2)優先順位方式 系統内のコンデンサの容量が異なる場合に有効な方法で
あり、予め設定した優先順位に従って、負荷の無効電力
分の変動に応じて、順位の高い方から投入し、順位の低
い方から遮断する。
(2) Priority method This is an effective method when the capacitances of the capacitors in the system are different. The priority method is applied in accordance with a preset priority and in accordance with the variation of the reactive power of the load, from the higher order. , Cut off from the lower rank.

【0007】[0007]

【考案が解決しようとする課題】ところが、従来の力率
制御装置では、次のような解決すべき技術的課題があっ
た。すなわち、サイクリック方式では、1単位であるコ
ンデンサの容量毎にしか投入/遮断することができない
ため、1単位のコンデンサ容量が大きい場合には大まか
な力率制御しか行えない。1単位となるコンデンサ容量
を小さくして多数のコンデンサを設置すれば、このよう
な問題は解消されるが、制御対象の開閉器数が増えて設
備全体が大型化し、制御も複雑となる。また、優先順位
方式では、次に投入/遮断すべきコンデンサが決まって
いるため、例えば遅れ無効電力の場合、無効電力がその
コンデンサ容量に達しない限り投入されないため、制御
の自由度が制限される。仮に小容量のコンデンサを設置
したとしても、予め定めた順位の設定によって細かな制
御を行える範囲が決まってしまう。
However, the conventional power factor control apparatus has the following technical problems to be solved. That is, in the cyclic method, the power can be turned on / off only for each capacitance of one unit of the capacitor, so that when the capacitance of one unit of the capacitor is large, only rough power factor control can be performed. If a large number of capacitors are installed with a small capacitor capacity as one unit, such a problem is solved. However, the number of switches to be controlled increases, the whole equipment becomes large, and the control becomes complicated. Further, in the priority order method, the capacitor to be turned on / off next is determined. For example, in the case of delayed reactive power, the power is not turned on unless the reactive power reaches the capacitor capacity, so that the degree of freedom of control is limited. . Even if a small-capacity capacitor is installed, a range in which fine control can be performed is determined by setting a predetermined order.

【0008】この考案の目的は、小容量の静止型コンデ
ンサを多数設置することなく、少ない開閉器によって細
かな力率制御を行なえるようにした力率制御装置を提供
することにある。
An object of the present invention is to provide a power factor control device capable of performing fine power factor control with a small number of switches without installing many static capacitors having a small capacity.

【0009】[0009]

【課題を解決するための手段】この考案の力率制御装置
は、それぞれ開閉器を介して線路または負荷に並列に接
続した容量の異なる複数の静止型コンデンサと、無効電
力を計測する手段と、計測した無効電力が遅れ無効電力
であるとき、または計測した無効電力が進み無効電力で
且つ予め定めた不感帯を超えるとき、前記計測した無効
電力と現在投入中の静止型コンデンサの合成容量との和
から、必要な力率改善用コンデンサ容量を求めるととも
に、合成容量が前記力率改善用コンデンサ容量に近似す
る静止型コンデンサの選択/非選択の組合せを求める手
段と、各静止型コンデンサの選択/非選択に応じて前記
開閉器を制御する手段とを設けたことを特徴とする。
The power factor control device according to the present invention comprises a plurality of static capacitors having different capacities, each of which is connected in parallel to a line or a load via a switch, and means for measuring reactive power; The measured reactive power lags the reactive power
Or the measured reactive power is
And when exceeding a predetermined dead zone, the measured invalid
From the sum of the power and the combined capacitance of the static capacitors currently being supplied, a required power factor improving capacitor capacitance is determined, and selection / non-selection of a static capacitor whose combined capacitance approximates the power factor improving capacitor capacitance. And a means for controlling the switch according to the selection / non-selection of each static capacitor.

【0010】[0010]

【作用】この考案の力率制御装置では、容量の異なる複
数の静止型コンデンサが、それぞれ開閉器を介して線路
または負荷に並列に接続されている。そして、計測した
無効電力と現在投入中の静止型コンデンサの合成容量と
の和から必要な力率改善用コンデンサ容量が求められ、
合成容量が力率改善用コンデンサ容量に近似する静止型
コンデンサの選択/非選択の組合せが求められる。そし
て、各静止型コンデンサの選択/非選択に応じて各静止
型コンデンサの開閉器が制御される。このように、容量
の異なる複数の静止型コンデンサの選択/非選択の組合
せによって、最適な力率改善用コンデンサ容量が線路ま
たは負荷に投入される。複数の静止型コンデンサはそれ
ぞれ容量が異なるため、静止型コンデンサの数に比較し
て、その組合せの種類数は非常に多くなり、少ない静止
型コンデンサおよびその開閉器を用いて力率を細かく改
善することができる。また、計測した無効電力が進み無
効電力である場合には、予め定めた不感帯を超えるとき
に、合成容量が前記力率改善用コンデンサ容量に近似す
る静止型コンデンサの選択/非選択の組合せに応じて前
記開閉器が制御されるため、ハンチングを起こすことも
なく、安定した最適な力率が維持できる。
In the power factor control device according to the present invention, a plurality of static capacitors having different capacities are respectively connected in parallel to a line or a load via switches. Then, the required power factor improvement capacitor capacity is determined from the sum of the measured reactive power and the combined capacity of the currently applied static capacitor,
A combination of selection / non-selection of a static capacitor whose combined capacitance approximates the capacitance of the power factor improving capacitor is required. The switch of each static capacitor is controlled according to the selection / non-selection of each static capacitor. As described above, by selecting / non-selecting a combination of a plurality of static capacitors having different capacities, an optimum power factor improving capacitor capacity is supplied to a line or a load. Since multiple static capacitors have different capacities, the number of types of combinations is very large compared to the number of static capacitors, and the power factor is finely improved by using fewer static capacitors and their switches. be able to. In addition, the measured reactive power
In the case of active power, when exceeding a predetermined dead zone
In addition, the combined capacity is close to the power factor improving capacitor capacity.
Depending on the combination of static capacitor selection / non-selection
Since the switch is controlled, hunting may occur.
And a stable optimal power factor can be maintained.

【0011】[0011]

【実施例】この考案の実施例である中央監視制御装置の
構成をブロック図として図1に示す。図1において、C
PU1はROM2に予め書き込まれているプログラムを
実行することによって後述する力率制御を行う。RAM
3は無効電力の計測値、操作パネルの操作内容、操作パ
ネルへの表示内容および接点出力の出力内容などを記憶
する。操作パネル5はキースイッチと表示部からなり、
CPU1はインターフェース4を介してキースイッチの
操作内容を読み込み、また表示部へ所定の表示を行う。
無効電力計7は負荷の無効電力およびその遅れ/進みを
計測する。CPU1はインターフェース6を介して無効
電力計7の計測値を読み取る。補助リレーユニット9は
後述する電磁開閉器のコイルの通電制御を行う補助リレ
ーのユニットであり、CPU1は接点出力8の制御によ
って各補助リレーの制御を行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the configuration of a central monitoring and control device according to an embodiment of the present invention. In FIG. 1, C
The PU 1 performs a power factor control described later by executing a program written in the ROM 2 in advance. RAM
Reference numeral 3 stores a measured value of reactive power, operation contents of the operation panel, display contents on the operation panel, output contents of the contact output, and the like. The operation panel 5 includes a key switch and a display unit,
The CPU 1 reads the operation contents of the key switch via the interface 4 and performs a predetermined display on the display unit.
The reactive power meter 7 measures the reactive power of the load and its delay / lead. The CPU 1 reads a measured value of the reactive power meter 7 via the interface 6. The auxiliary relay unit 9 is an auxiliary relay unit that controls the energization of a coil of an electromagnetic switch described later, and the CPU 1 controls each auxiliary relay by controlling the contact output 8.

【0012】次に受電部における静止型コンデンサとそ
の開閉器の構成を図2に示す。図2においてLBSは高
圧負荷開閉器、CB1は負荷に対する高圧遮断器、CB
2は静止型コンデンサに対する高圧遮断器である。ま
た、SC0〜SC3はそれぞれ容量の異なる静止型コン
デンサであり、それぞれS0〜S3で示す電磁開閉器を
設けている。これらの電磁開閉器S0〜S3は図1に示
した補助リレーユニット9の出力による電磁開閉器のコ
イルの駆動によって、それぞれ独立して開閉制御され
る。
FIG. 2 shows the configuration of a stationary capacitor and its switch in the power receiving unit. In FIG. 2, LBS is a high-voltage load switch, CB1 is a high-voltage circuit breaker for the load, CB
2 is a high voltage circuit breaker for the static condenser. SC0 to SC3 are static capacitors having different capacities, and are provided with electromagnetic switches S0 to S3, respectively. These electromagnetic switches S0 to S3 are independently controlled to open and close by driving the coils of the electromagnetic switches by the output of the auxiliary relay unit 9 shown in FIG.

【0013】次に図1に示したCPU1の処理手順をフ
ローチャートとして図3および図4に示す。図3はメイ
ンルーチンに相当する処理であり、先ず操作パネルに対
し力率制御管理表を表示する。この管理表は不感帯係数
の値、監視周期、各機器の名称および各静止型コンデン
サの容量などからなる。続いてキースイッチの読み込み
を行う(n2)。その後、キー操作の内容に応じた各種
処理を行う。例えば不感帯係数の設定操作であれば、入
力された値を不感帯係数として記憶する(n3)。ま
た、監視周期の設定操作であれば、入力された値を監視
周期の時間として記憶するとともに、その値をタイマ割
り込みの周期として設定する(n4→n5)。また、機
器の登録操作であれば、各種機器の名称などを登録する
(n6)。
Next, the processing procedure of the CPU 1 shown in FIG. 1 is shown as a flow chart in FIGS. FIG. 3 shows a process corresponding to the main routine. First, a power factor control management table is displayed on the operation panel. The management table includes a value of a dead zone coefficient, a monitoring cycle, a name of each device, a capacity of each static capacitor, and the like. Subsequently, the key switch is read (n2). After that, various processes corresponding to the contents of the key operation are performed. For example, in the case of a setting operation of a dead zone coefficient, the input value is stored as a dead zone coefficient (n3). In the case of a monitoring cycle setting operation, the input value is stored as the monitoring cycle time, and the value is set as the timer interrupt cycle (n4 → n5). In the case of a device registration operation, the names of various devices are registered (n6).

【0014】またさらにコンデンサ容量の設定操作であ
れば、各静止型コンデンサ毎にその容量を記憶する(n
7)。
Further, in the case of the operation of setting the capacitor capacity, the capacity is stored for each static capacitor (n
7).

【0015】図4はタイマ割り込みがかかったときの割
り込み処理の手順であり、この処理によって力率制御を
行う。先ず、無効電力Qとその遅れ/進みを計測する
(n10)。無効電力が「遅れ」であれば、現在すでに
投入されているコンデンサの合成容量Qcに今回計測し
た無効電力Qを加算した値を必要な力率改善用コンデン
サ容量Qoとして求める(n11→n12)。この必要
な力率改善用コンデンサ容量Qoから最適なコンデンサ
の組合せを演算により求める(n13)。例えば、図2
に示した静止型コンデンサSC0〜SC3の容量が2の
べき乗の関係で異なる容量であれば、Qoの値を最低容
量の静止型コンデンサの容量値で除した値を4ビットの
2進コードで表したものが、4つの静止型コンデンサの
選択/非選択の組合せとなる。すなわち、最低容量の静
止型コンデンサの容量を最小単位とする16通りの組み
合わせが得られる。その後、各コンデンサの選択/非選
択の組合せに対応して接点出力の切換を行う(n1
4)。これにより、遅れ力率が改善される方向に新たな
組合せで静止型コンデンサが投入される。もし、計測し
た無効電力が進み無効電力であれば、計測した現在の無
効電力Qが現在投入中のコンデンサ容量に不感帯係数H
を加味した値を超えるか否か判定する(n15)。
FIG. 4 shows the procedure of an interrupt process when a timer interrupt occurs. Power factor control is performed by this process. First, the reactive power Q and its delay / advance are measured (n10). If the reactive power is “delayed”, a value obtained by adding the reactive power Q measured this time to the combined capacitance Qc of the capacitors already supplied is obtained as the required power factor improving capacitor capacitance Qo (n11 → n12). An optimum combination of capacitors is obtained by calculation from the necessary power factor improving capacitor capacitance Qo (n13). For example, FIG.
If the capacities of the static capacitors SC0 to SC3 shown in (1) and (2) are different in a power of two relationship, the value obtained by dividing the value of Qo by the capacitance value of the static capacitor having the lowest capacity is represented by a 4-bit binary code. The result is a combination of selection / non-selection of the four static capacitors. That is, there are obtained 16 combinations in which the capacitance of the static capacitor having the minimum capacitance is the minimum unit. Thereafter, the contact output is switched in accordance with the combination of selection / non-selection of each capacitor (n1
4). As a result, static capacitors are introduced in a new combination in a direction in which the delay power factor is improved. If the measured reactive power is advancing reactive power, the measured current reactive power Q is added to the capacitance of the capacitor currently being supplied by the dead zone coefficient H.
It is determined whether or not the value exceeds (n15).

【0016】計測した現在の無効電力が不感帯を超えれ
ば、現在投入中のコンデンサの合成容量Qcから計測し
た無効電力Qを減じて、必要な力率改善用コンデンサ容
量Qoを求める(n16)。続いて同様の新たなコンデ
ンサの組合せを演算により求め、接点出力を切り換える
(n13→n14)。もし、進み無効電力であっても、
不感帯内であれば、コンデンサの投入/遮断の変更は行
わない(n15→RETURN)。
If the measured current reactive power exceeds the dead zone, the measured reactive power Q is subtracted from the combined capacitance Qc of the currently applied capacitor to obtain a required power factor improving capacitor capacitance Qo (n16). Subsequently, a similar new combination of capacitors is obtained by calculation, and the contact output is switched (n13 → n14). Even if it is the reactive power,
If it is within the dead zone, no change is made in turning on / off the capacitor (n15 → RETURN).

【0017】[0017]

【考案の効果】この考案によれば、少ない静止型コンデ
ンサおよびその開閉器を用いるにも拘らず、その合成コ
ンデンサ容量が細かく切り換えられるため、より最適な
力率が維持される。しかも、計測した無効電力が進み無
効電力である場合には、予め定めた不感帯を超えるとき
に、合成容量が前記力率改善用コンデンサ容量に近似す
る静止型コンデンサの選択/非選択の組合せに応じて前
記開閉器が制御されるため、ハンチングを起こすことも
なく、安定した最適な力率が維持できる。これにより、
電力料金の低減、変圧器・配電線の損失軽減、設備容量
の増加および電圧降下の軽減などがより確実になされ
る。
According to the present invention, despite the use of a small number of static capacitors and their switches , the combined capacitor capacitance can be finely switched, so that a more optimal power factor is maintained. In addition, the measured reactive power is
In the case of active power, when exceeding a predetermined dead zone
In addition, the combined capacity is close to the power factor improving capacitor capacity.
Depending on the combination of static capacitor selection / non-selection
Since the switch is controlled, hunting may occur.
And a stable optimal power factor can be maintained. This allows
Reductions in power charges, reductions in transformer and distribution line losses, increases in equipment capacity, and reductions in voltage drop will be made more reliably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この考案の実施例である中央監視制御装置のブ
ロック図である。
FIG. 1 is a block diagram of a central monitoring and control device according to an embodiment of the present invention.

【図2】受電部における静止型コンデンサおよびその開
閉器の構成を示す図である。
FIG. 2 is a diagram illustrating a configuration of a stationary capacitor and a switch thereof in a power receiving unit.

【図3】メインルーチンに相当するCPUの処理手順を
表すフローチャートである。
FIG. 3 is a flowchart illustrating a processing procedure of a CPU corresponding to a main routine.

【図4】タイマ割り込みによりCPUの行う力率制御の
処理手順を表すフローチャートである。
FIG. 4 is a flowchart illustrating a processing procedure of power factor control performed by a CPU in response to a timer interrupt.

【符号の説明】[Explanation of symbols]

SC0〜SC3−静止型コンデンサ S0〜S3−電磁開閉器 SC0-SC3-Static capacitor S0-S3-Electromagnetic switch

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】それぞれ開閉器を介して線路または負荷に
並列に接続した容量の異なる複数の静止型コンデンサ
と、無効電力を計測する手段と、計測した無効電力が遅
れ無効電力であるとき、または計測した無効電力が進み
無効電力で且つ予め定めた不感帯を超えるとき、前記計
測した無効電力と現在投入中の静止型コンデンサの合成
容量との和から、必要な力率改善用コンデンサ容量を求
めるとともに、合成容量が前記力率改善用コンデンサ容
量に近似する静止型コンデンサの選択/非選択の組合せ
を求める手段と、各静止型コンデンサの選択/非選択に
応じて前記開閉器を制御する手段とからなる力率制御装
置。
1. A respective plurality of stationary capacitor having different capacities connected in parallel to the line or load via a switch, and means for measuring the reactive power, reactive power slow measured
When the measured reactive power is
When the reactive power exceeds a predetermined dead zone,
From the sum of the measured reactive power and the combined capacitance of the static capacitors that are currently being supplied, the required power factor improving capacitor capacitance is determined, and the static capacitor whose combined capacitance approximates the power factor improving capacitor capacitance is selected. A power factor control device comprising: means for determining a combination of / non-selection; and means for controlling the switch according to selection / non-selection of each static capacitor.
JP1991059403U 1991-07-29 1991-07-29 Power factor control device Expired - Lifetime JP2553808Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991059403U JP2553808Y2 (en) 1991-07-29 1991-07-29 Power factor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991059403U JP2553808Y2 (en) 1991-07-29 1991-07-29 Power factor control device

Publications (2)

Publication Number Publication Date
JPH0512920U JPH0512920U (en) 1993-02-19
JP2553808Y2 true JP2553808Y2 (en) 1997-11-12

Family

ID=13112282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991059403U Expired - Lifetime JP2553808Y2 (en) 1991-07-29 1991-07-29 Power factor control device

Country Status (1)

Country Link
JP (1) JP2553808Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462519B1 (en) * 2001-06-05 2002-10-08 Mcdaniel William D. Automatic power factor correction system
EP1721228A4 (en) * 2004-02-27 2008-01-02 William D Mcdaniel Automatic power factor correction using power measurement chip
JP6788833B2 (en) * 2016-11-22 2020-11-25 日新電機株式会社 Unit type capacitor device
JP7220581B2 (en) * 2019-02-08 2023-02-10 日鉄エンジニアリング株式会社 Power generation system, power generation control device, and power generation control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198843A (en) * 1983-04-26 1984-11-10 富士電機株式会社 Method of adjusting and controlling reactive power of condenser switching type

Also Published As

Publication number Publication date
JPH0512920U (en) 1993-02-19

Similar Documents

Publication Publication Date Title
US4747061A (en) Automatic transfer switch for a wide range of source voltage
CN1918769B (en) Scr-based static transfer switch device and method
US4645997A (en) Transient free solid state automatic power factor correction
US4894796A (en) Automatic transfer switch with programmable display
JP2553808Y2 (en) Power factor control device
US5210443A (en) Process and apparatus for parallel control of tapped transformers
US4494010A (en) Programmable power control apparatus responsive to load variations
Lind et al. Distribution system modelling for voltage stability studies
JPS615323A (en) Ac load power controller
CA1175479A (en) Multi-voltage transformer input circuits with primary reactor voltage control
JPH04248324A (en) Home control system
US4803379A (en) Circuit arrangement for power supply for electrical and electronic control or regulating devices
JPH09182295A (en) Power factor improvement device
JPH05130739A (en) Automatic power supply system
FI71029B (en) KOPPLINGSANORDNING FOER ANVAENDNING AV LJUSSIGNALANORDNINGAR
JPS5947932A (en) Automatic power factor controller
JPH01120610A (en) Clock input device for microprocessor
US2591605A (en) Electric power supply system
JP2566666B2 (en) Centralized load controller
JPH0787661A (en) Protective relay, tester and testing system
JPS5947934A (en) Automatic power factor controller
JP3475584B2 (en) Voltage adjustment method in substation
JPH0524966Y2 (en)
SU1758903A1 (en) Voltage regulator
SU1108407A1 (en) A.c. voltage stabilizer