JP2552433B2 - Method and apparatus for removing debris from laser plasma X-ray source - Google Patents

Method and apparatus for removing debris from laser plasma X-ray source

Info

Publication number
JP2552433B2
JP2552433B2 JP14926794A JP14926794A JP2552433B2 JP 2552433 B2 JP2552433 B2 JP 2552433B2 JP 14926794 A JP14926794 A JP 14926794A JP 14926794 A JP14926794 A JP 14926794A JP 2552433 B2 JP2552433 B2 JP 2552433B2
Authority
JP
Japan
Prior art keywords
plasma
fine particles
rays
ray
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14926794A
Other languages
Japanese (ja)
Other versions
JPH0817371A (en
Inventor
俊信 北田
千代衛 山中
貞雄 中井
博行 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Denryoku KK
Original Assignee
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Denryoku KK filed Critical Kansai Denryoku KK
Priority to JP14926794A priority Critical patent/JP2552433B2/en
Publication of JPH0817371A publication Critical patent/JPH0817371A/en
Application granted granted Critical
Publication of JP2552433B2 publication Critical patent/JP2552433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、金属ターゲットにレ
ーザー光を照射して生じるプラズマからX線を発生させ
るレーザープラズマX線源のデブリス除去方法及び装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for removing debris from a laser plasma X-ray source for generating X-rays from plasma produced by irradiating a metal target with laser light.

【0002】[0002]

【従来の技術】レーザプラズマX線源は、短パルスの高
出力レーザーを金属ターゲット物質に照射して高温、高
密度プラズマを生成し、このプラズマからX線を発生さ
せるものであり、X線ホログラフィーやX線顕微鏡など
種々の用途に利用される。
2. Description of the Related Art A laser plasma X-ray source is one which irradiates a metal target material with a high-power laser having a short pulse to generate high-temperature, high-density plasma, and generates X-rays from this plasma. It is used for various purposes such as X-ray microscope and X-ray microscope.

【0003】かかるレーザプラズマX線を発生させる装
置は、例えば特開昭64−6349号公報、特開平1−
109646号公報などに開示されている。第一の公報
は、液体又は固体状態のターゲット物質を集光点に連続
的に供給、移送する方法について開示している。第二の
公報は、ターゲット物質である液体金属をプラズマ発生
容器注で滴下させ供給する方法について開示している。
An apparatus for generating such a laser plasma X-ray is disclosed in, for example, Japanese Patent Application Laid-Open No. 64-6349 and Japanese Patent Application Laid-Open No.
It is disclosed in Japanese Patent Publication No. 109646 and the like. The first publication discloses a method of continuously supplying and transferring a liquid or solid target material to a condensing point. The second publication discloses a method of dropping and supplying a liquid metal, which is a target substance, in a plasma generation container.

【0004】[0004]

【発明が解決しようとする課題】ところで、近年出力エ
ネルギ1J/1ns、繰返し周期1KHzの固体レーザ
ー、ガスレーザーが開発され、これらの高繰返し周期を
持つレーザーを用いたX線源の活用が課題となってきて
いる。上記レーザーを用いたX線発生装置では、レーザ
ー光は直径100μm〜500μm程度にレンズで集光
され、通常は固体レーザーに照射されて固体表面にプラ
ズマがピコ秒の時間スケールで生成される。
By the way, in recent years, solid-state lasers and gas lasers having an output energy of 1 J / 1 ns and a repetition period of 1 KHz have been developed, and utilization of an X-ray source using a laser having such a high repetition period has been a problem. It has become to. In the X-ray generator using the above laser, the laser light is condensed by a lens to have a diameter of about 100 μm to 500 μm, and is normally irradiated to the solid laser to generate plasma on the solid surface on a picosecond time scale.

【0005】上記高温(〜100eV)、高密度(10
21cm-3)のプラズマから放出されるX線源は、他の方式
によるX線源、例えば真空の放電管内に置かれた電極の
片側から気体を高速開閉バルブを介して超音速で吹き出
させ、管内に気体が広く拡散する前にZピンチを行なう
ガスパフZピンチ(放電プラズマ)による方式のもの、
あるいは電子線をターゲットにあててX線を発生する方
式のものに比べ桁違いに高い輝度を有し、上記高繰返し
周期のレーザーと結びついて平均パワー10W程度のX
線源が得られる。
High temperature (up to 100 eV), high density (10
The X-ray source emitted from the plasma of 21 cm -3 ) is an X-ray source of another method, for example, gas is blown from one side of an electrode placed in a vacuum discharge tube at a supersonic speed through a high-speed on-off valve. , Gas puff Z pinch (discharge plasma) system that performs Z pinch before gas widely diffuses in the tube,
Alternatively, an X-ray having an order of magnitude higher brightness than an X-ray generating system that applies an electron beam to a target, and an average power of about 10 W in combination with a laser having a high repetition period described above.
A radiation source is obtained.

【0006】しかしながら、上記レーザープラズマX線
源では、プラズマからX線が発生すると同時に、固定表
面からはデブリスと呼ばれる微粒子が飛散し、これがX
線源を構成する部材のフィルタ、X線多層膜ミラー、あ
るいはその他のX線光学素子に付着し、場合によっては
これら素子を傷付けることがある。
However, in the above laser plasma X-ray source, X-rays are generated from the plasma, and at the same time, fine particles called debris are scattered from the fixed surface, which causes X-rays.
It adheres to the filter of the member forming the radiation source, the X-ray multilayer film mirror, or other X-ray optical elements, and may damage these elements in some cases.

【0007】従って、レーザープラズマX線源にとって
は、このデブリスは極めて有害であり、デブリスの根本
的除去は、X線源の本格的活用にとって極めて重要な意
味を持つ。
Therefore, the debris is extremely harmful to the laser plasma X-ray source, and the fundamental removal of the debris is extremely important for the full-scale utilization of the X-ray source.

【0008】このような観点から、上述した第一の公報
では、レーザー加熱によって発生する金属蒸気(デブリ
ス)の蒸着を根本的に除去する方法として、Ar(アル
ゴン)、Kr(クリプトン)、Xe(キセノン)などの
不活性ガスをクライオ装置によるガス冷却技術によって
低温固化させクライオターゲットとし、これを高出力高
繰返しパルスレーザーで照射する方法を提案している。
不活性ガスは、常温では気体であり、化学的に安定で、
他の物質表面には室温で堆積しない点に着目しているの
である。
From such a viewpoint, in the above-mentioned first publication, Ar (argon), Kr (krypton), and Xe (Xe) are used as a method for fundamentally removing the vapor deposition of metal vapor (debris) generated by laser heating. We have proposed a method in which an inert gas such as xenon is solidified at a low temperature by a gas cooling technology using a cryo device to be a cryo target, and this is irradiated with a high power and high repetition pulse laser.
Inert gas is a gas at room temperature, chemically stable,
They are paying attention to the fact that they do not deposit on the surface of other materials at room temperature.

【0009】しかしながら、実際には金属蒸気の微粒子
の蒸発時間、残留ガスによるX線吸収の効果、超低温冷
却装置や過大な真空排気等を必要とし装置が大がかりと
なり、コストアップの要因になるなど必ずしも全ての条
件を満足できるものではない。又、固体ターゲット材料
の種類も常温で気体に限られるなどの問題もある。
However, in reality, the evaporation time of the fine particles of the metal vapor, the effect of X-ray absorption by the residual gas, the ultra-low temperature cooling device and the excessive vacuum evacuation are required, and the size of the device becomes large, which causes a cost increase. Not all conditions can be satisfied. There is also a problem that the type of solid target material is limited to gas at room temperature.

【0010】この発明は、上述した従来のレーザープラ
ズマX線源のデブリス除去の問題点に留意して、固体タ
ーゲットから生じるデブリスを比較的簡単な方法で根本
的に除去することのできるデブリス除去方法及び装置を
提案することを課題とする。
The present invention takes note of the above-mentioned problem of debris removal of a conventional laser plasma X-ray source, and is capable of fundamentally removing debris generated from a solid target by a relatively simple method. And to propose a device.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する手段
としてこの発明は、レーザー光をターゲット物質に集光
照射してプラズマ化し、そのプラズマからX線と共に発
生する微粒子に対しX線が所定方向に導かれる経路の任
意の位置で上記微粒子に紫外線を照射して電荷を付与
し、この荷電微粒子を一対の電位の異なる電極による電
界と一対の極性の異なる磁極による磁場とが直交する電
磁場を通過させてX線の経路外に導くようにしたことか
ら成るレーザープラズマX線源のデブリス除去方法とし
たのである。
As a means for solving the above problems, the present invention is directed to a method in which a target material is focused and irradiated with a laser beam to form a plasma, and X-rays are emitted in a predetermined direction from fine particles generated together with the X-rays from the plasma. The particles are irradiated with ultraviolet rays at an arbitrary position on the path to be charged to give an electric charge, and the charged particles pass through an electromagnetic field in which an electric field formed by a pair of electrodes having different potentials and a magnetic field formed by a pair of magnetic poles having different polarities are orthogonal to each other. The debris removal method of the laser plasma X-ray source is configured by guiding the X-rays out of the X-ray path.

【0012】又、上記方法を実施する手段として、レー
ザー光を集光照射して真空チャンバ内に設けたターゲッ
ト物質の表面に生成されるプラズマから発生されるX線
を取出窓から取り出す経路に沿って紫外線源から成る電
荷付与手段と、一対の電極と一対の磁極を有する電磁石
とから成る電磁場形成手段とを設け、電磁場形成手段は
一対の電極による電界と一対の磁極による磁界とが互い
に直交するように形成し、さらに電磁場形成手段により
X線の経路から外れた微粒子を排除する排除手段を備え
て成るデブリス除去装置を採用することができる。
Further, as means for carrying out the above method, X-rays generated from plasma generated on the surface of the target material provided in the vacuum chamber by converging and irradiating laser light are taken out along the path taken out from the extraction window. And an electromagnetic field forming means composed of a pair of electrodes and an electromagnet having a pair of magnetic poles are provided. The electromagnetic field forming means has an electric field formed by the pair of electrodes and a magnetic field formed by the pair of magnetic poles orthogonal to each other. It is possible to employ a debris removing device which is formed as described above and further comprises an excluding means for excluding fine particles deviated from the X-ray path by the electromagnetic field forming means.

【0013】この場合、前記X線の取出窓の直前にX線
を通過させ他の微粒子の通過を遮断するための機械的シ
ャッタ機構を設けるのが好ましい。
In this case, it is preferable to provide a mechanical shutter mechanism for allowing the X-rays to pass therethrough and blocking the passage of other fine particles immediately before the X-ray extraction window.

【0014】又、少なくとも前記紫外線源と電磁石のそ
れぞれの電源をプラズマからの微粒子の発生タイミング
に同調して高速でオン、オフ自在とすることができる。
Further, at least the respective power sources of the ultraviolet ray source and the electromagnet can be turned on and off at high speed in synchronization with the timing of generation of particles from plasma.

【0015】[0015]

【作用】上記の方法とした第一の発明のデブリス除去方
法によると、プラズマからX線と同時に発生する中性微
粒子に紫外線を照射することによって電荷が与えられ
る。この中性微粒子はプラズマが完全プラズマ状態でな
い場合は、プラズマ中に中性粒子が含まれ、これがX線
の発生と共にプラズマ外へ飛散することによって生じ
る。
According to the debris removing method of the first aspect of the present invention described above, electric charges are given by irradiating the neutral fine particles generated simultaneously with X-rays from the plasma with ultraviolet rays. When the plasma is not in the complete plasma state, the neutral particles are generated by the neutral particles contained in the plasma and being scattered out of the plasma with the generation of X-rays.

【0016】紫外線は光子エネルギが10eV(電子ボ
ルト)程度あり、物質に照射すると電子を放出し物質が
イオン化又は電荷を帯びて荷電微粒子となる。紫外線を
選んだのは光子エネルギと波長が微粒子の照射に最も適
する帯域にあるからである。
Ultraviolet rays have a photon energy of about 10 eV (electron volt). When a substance is irradiated, electrons are emitted, and the substance is ionized or charged to become charged fine particles. UV light was chosen because its photon energy and wavelength are in the most suitable band for irradiation of the particles.

【0017】上記荷電微粒子が直交電磁場に入ると電磁
場による作用でX線の進行方向と直角な方向の力を受け
て軌道が曲げられ、X線の経路外へ排出されるのであ
る。これによって、X線の経路に設けられるフィルタ、
取出窓、X線多層膜ミラー等のX線光学素子の保護が図
られる。
When the charged fine particles enter the orthogonal electromagnetic field, the orbit is bent by the force of the electromagnetic field in the direction perpendicular to the traveling direction of the X-rays, and the particles are discharged out of the X-ray path. As a result, a filter provided in the X-ray path,
The X-ray optical element such as the extraction window and the X-ray multilayer mirror can be protected.

【0018】第二の発明は上記方法を実施するための除
去装置であり、紫外線源により電荷が中性微粒子に与え
られ、荷電微粒子が電磁場形成手段による電磁場に突入
すると、電磁場の作用で軌道が曲げられX線の経路外へ
排出される。
A second invention is a removing device for carrying out the above method, wherein when an electric charge is given to the neutral fine particles by an ultraviolet source and the charged fine particles plunge into the electromagnetic field by the electromagnetic field forming means, the orbit is generated by the action of the electromagnetic field. It is bent and discharged out of the X-ray path.

【0019】このとき、電磁場形成手段から荷電微粒子
が排出される方向に排除手段を設けてこれを捕集あるい
は排気することにより微粒子を除去する。捕集は、例え
ば排出方向に捕集板を設けてこれに付着させて行ない、
一定時間毎に真空チャンバ内から取り出せばよい。又、
排気方法を用いる場合は排出方向に沿って設けた排気管
により外部へ排出することができる。
At this time, the removing means is provided in the direction in which the charged fine particles are discharged from the electromagnetic field forming means, and the fine particles are removed by collecting or discharging the charged fine particles. For collection, for example, a collection plate is provided in the discharge direction and attached to this,
It may be taken out from the vacuum chamber at regular intervals. or,
When the exhaust method is used, it can be exhausted to the outside by an exhaust pipe provided along the exhaust direction.

【0020】第三の発明では、取出窓の直前に機械的シ
ャッタを設けて微粒子を取り除くようにしている。
In the third invention, a mechanical shutter is provided immediately before the extraction window to remove fine particles.

【0021】プラズマから発生する中性微粒子には6〜
10×103 cm/s以上の軽くて高速で飛行するもの
と、上記速度以下の低速で飛行し粒径が大きいものとが
含まれている。
The neutral fine particles generated from plasma have 6 to 6 parts.
It includes those that fly lightly and at a high speed of 10 × 10 3 cm / s or more, and those that fly at a low speed less than the above speed and have a large particle size.

【0022】上記高速のものは第二の発明によるデブリ
ス除去装置により完全に取り除かれるが、紫外線照射し
ても粒径の大きいものは電荷/質量比が小さく電磁場形
成手段による電磁力では軌道を十分に曲げることができ
ない。
The above-mentioned high-speed ones can be completely removed by the debris removing device according to the second aspect of the invention, but those having a large particle size even when irradiated with ultraviolet rays have a small charge / mass ratio and the electromagnetic force generated by the electromagnetic field forming means can sufficiently orbit. I can't bend it.

【0023】そこで、残る粒径が大きい低速のものは機
械的シャッタによる取り除くのである。この粒子の速度
は103 cm/s程度であるから、X線の飛行間隔に合せ
てシャッタを開きX線の通過後直ちにシャッタを閉じれ
ば粒子の大部分をシャッタにより遮断できる。
Therefore, low-speed particles having a large remaining particle size are removed by a mechanical shutter. Since the velocity of the particles is about 10 3 cm / s, most of the particles can be blocked by the shutter by opening the shutter according to the flight interval of the X-rays and closing the shutter immediately after passing the X-rays.

【0024】第四の発明では、駆動電源をプラズマから
の微粒子の発生タイミングに同調して高速度でオン、オ
フする。この駆動電源は、少なくとも紫外線源用と電磁
石用のものをオン、オフするのが好ましく、電極につい
ては静電界としてもよいし、あるいはこれも同調するよ
うにオン、オフしてもよい。
In the fourth aspect of the invention, the driving power source is turned on and off at a high speed in synchronization with the timing of generation of particles from plasma. It is preferable to turn on and off at least those for the ultraviolet ray source and the one for the electromagnet, and the driving power source may be an electrostatic field for the electrodes, or may be turned on and off so as to be synchronized.

【0025】いずれの場合も、駆動電源をオン、オフす
ることにより同一コストでより大きな磁界、電界が得ら
れ、高いピーク強度の作用を与えることができるのであ
る。
In either case, by turning on and off the driving power supply, a larger magnetic field and electric field can be obtained at the same cost, and a high peak intensity can be exerted.

【0026】[0026]

【実施例】以下この発明の実施例について図面を参照し
て説明する。図1はデブリス除去方法を実施するための
装置の全体概略図である。1は真空チャンバであり、図
示省略しているが、吸引装置が別途設置され、その接続
管によって内部は真空状態に維持されている。この真空
チャンバ1内に、短波長高繰返しパルスのレーザー光を
発生するレーザー装置2からパルスレーザー光3が透過
窓4を介してターゲット物質5に集光照射され、ターゲ
ット物質5の表面にプラズマPsを生成する。そしてこ
のプラズマPsで発生したX線は取出し窓6を通り外部
へ取出される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall schematic view of an apparatus for carrying out the debris removing method. Reference numeral 1 denotes a vacuum chamber, which is not shown in the drawing, but a suction device is separately installed, and the inside thereof is maintained in a vacuum state by its connecting pipe. Into this vacuum chamber 1, a pulsed laser light 3 is focused and irradiated onto a target material 5 through a transmission window 4 from a laser device 2 which generates a laser light having a short wavelength and a high repetition pulse, and a plasma Ps is applied to the surface of the target material 5. To generate. Then, the X-rays generated by the plasma Ps are extracted to the outside through the extraction window 6.

【0027】なお、上記レーザープラズマX線源の構成
は、代表的な例を図示しているが、その構成については
他にも種々のものがありレーザープラズマによりX線を
発生する構成のものであればいずれの形式のものでもよ
い。例えばターゲット物質5は液体金属を連続的に供給
する形式のものなどがある。
The structure of the laser plasma X-ray source is shown as a typical example, but there are various other structures and the structure is such that X-rays are generated by laser plasma. Any format is acceptable as long as it is available. For example, the target material 5 may be of a type in which liquid metal is continuously supplied.

【0028】上記レーザープラズマX線源のターゲット
物質5とX線の取出し窓6との間に、実施例のデブリス
除去装置を設けている。
The debris removing device of the embodiment is provided between the target material 5 of the laser plasma X-ray source and the X-ray extraction window 6.

【0029】ターゲット物質5の表面のプラズマから発
生するX線の経路には、X線と同時に発生する中性微粒
子(デブリス)に対し、まず紫外線照射により微粒子を
イオン化又は電荷を付与するための紫外線ランプ11が
図示の例では左右一対設けられ、それぞれ集光レンズ1
2を介して照射する。紫外線ランプ11は、最小限1組
あればよく、2組以上いくら設けてもよい。又、紫外線
ランプ11は電源13からスイッチ14を介してパルス
電源を加える。スイッチ14は高速トランジスタ等を用
いて超高速に開閉できる形式のものである。
In the path of the X-rays generated from the plasma on the surface of the target material 5, neutral particles (debris) generated at the same time as the X-rays are irradiated with ultraviolet rays so as to be ionized or charged with an ultraviolet ray. In the illustrated example, a pair of lamps 11 is provided on the left and right, and each of them has a condenser lens 1
Irradiate via 2. The ultraviolet lamps 11 may be provided in at least one set, and may be provided in any number of two or more. Further, the ultraviolet lamp 11 is supplied with a pulse power source from the power source 13 via the switch 14. The switch 14 is of a type that can be opened and closed at an extremely high speed by using a high speed transistor or the like.

【0030】次に、X線の経路に沿って一対のメッシュ
状の電極15、15を設け、電源16、スイッチ17を
介して+、−に印加し電界をX線の進行方向に所定領域
に形成する。メッシュ状の電極15、15はX線を透過
させかつ電界を断面積内で平均化して形成するのに有利
である。
Next, a pair of mesh-shaped electrodes 15 and 15 are provided along the path of the X-ray, and applied to + and-via a power source 16 and a switch 17 to apply an electric field to a predetermined region in the traveling direction of the X-ray. Form. The mesh-shaped electrodes 15 and 15 are advantageous for transmitting X-rays and averaging the electric field within the cross-sectional area.

【0031】なお、上記電界はスイッチ17により断続
的に形成するものとしているが、必ずしも断続的とする
必要はなく、所定電位差に連続して保持するようにして
もよい。
Although the electric field is intermittently formed by the switch 17, it need not always be intermittent and may be held continuously at a predetermined potential difference.

【0032】さらに、上記一対の電極15と15の間に
は電磁石18がその磁極18aと18b間の磁場の向き
が上記電界の向きと直交するように設けられ、電源1
9、スイッチ20、21を介して高速繰返しで開閉され
て磁場が形成される。上記電界、磁界用のスイッチ1
7、20、21は互いに連動して開閉するのが好まし
い。
Further, an electromagnet 18 is provided between the pair of electrodes 15 and 15 so that the direction of the magnetic field between the magnetic poles 18a and 18b is orthogonal to the direction of the electric field.
9. The magnetic field is formed by opening and closing at high speed through the switches 20 and 21. Switch 1 for the above electric and magnetic fields
It is preferable that 7, 20, 21 are opened and closed in conjunction with each other.

【0033】以上の構成とした実施例のデブリス除去装
置によりX線の光学経路上に飛散する微粒子が次のよう
にして除去される。
The debris removing device of the embodiment having the above-mentioned structure removes fine particles scattered on the X-ray optical path as follows.

【0034】ターゲット物質5の表面にレーザー光の照
射により生成される高温、高密度プラズマからX線が発
生すると同時に中性微粒子が発生し、紫外線ランプ11
により紫外線を照射してこの中性微粒子に電荷を与え
る。
X-rays are generated from the high-temperature, high-density plasma generated by the irradiation of the laser beam on the surface of the target material 5, and at the same time neutral particles are generated, and the ultraviolet lamp 11
To irradiate ultraviolet rays to give an electric charge to the neutral fine particles.

【0035】イオン化又は電荷を帯びた荷電微粒子はメ
ッシュ電極15に突入すると、一対の電極15、15に
よる電界(E)と電磁石18の磁極18aと18b間の
磁界(B)が直交する(E×B)電磁場内に入り、図2
に示すように、F=q(E+V×B)で表わされる力を
受けて微粒子はその進行方向が直角に曲げられX線の経
路外へ除去される。
When the ionized or charged charged fine particles enter the mesh electrode 15, the electric field (E) by the pair of electrodes 15, 15 and the magnetic field (B) between the magnetic poles 18a and 18b of the electromagnet 18 are orthogonal (E ×). B) Entering the electromagnetic field,
As shown in, the fine particles are subjected to a force represented by F = q (E + V × B), the traveling direction of the fine particles is bent at a right angle, and the fine particles are removed out of the X-ray path.

【0036】VE =(E×B)/B2 はこの電磁場で受
ける横方向の速度である。大文字は全てベクトル、小文
字はスカラー量である。
V E = (E × B) / B 2 is the lateral velocity experienced by this electromagnetic field. Uppercase letters are all vectors, lowercase letters are scalar quantities.

【0037】こうして、荷電微粒子は電荷の正負に関係
なく一方向に軌道を曲げられて飛行する。従って、電磁
場を一定領域に設置し、そこから軌道を曲げられて排除
される微粒子を捕集する、あるいは排気して真空チャン
バ1から排出するようにすれば2枚目のメッシュ電極1
5には微粒子は殆んど到達しなくなる。
In this way, the charged fine particles fly with their trajectories bent in one direction regardless of whether the charge is positive or negative. Therefore, if the electromagnetic field is set in a certain area, and the fine particles whose trajectory is bent and removed from the area are collected or exhausted and discharged from the vacuum chamber 1, the second mesh electrode 1
Most of the particles do not reach 5.

【0038】上記捕集による方法では、例えば真空チャ
ンバ1内に捕集板を設けこれに微粒子を付着させて一定
時間毎にチャンバ内から取り出すようにすればよい。排
気方法による場合は排気ダクトをチャンバに接続して直
接微粒子を外部へ排出する。
In the above-mentioned method of collecting, for example, a collecting plate may be provided in the vacuum chamber 1 and fine particles may be attached to the collecting plate and taken out from the chamber at regular intervals. In the case of the exhaust method, the exhaust duct is connected to the chamber to directly discharge the fine particles to the outside.

【0039】ところで、上記デブリス除去装置で微粒子
をX線の経路から除去する際に、各構成部の動作タイミ
ングが問題となる。
By the way, when the fine particles are removed from the X-ray path by the debris removing device, the operation timing of each component becomes a problem.

【0040】使用されるレーザー光は、例えば1ナノ秒
程度の超短パルス幅であるが、プラズマはピコ秒の時間
スケールで、従ってX線についても同じ時間スケールで
生成される。そして、このとき微粒子がターゲット物質
から飛散し続ける時間は、衝撃波、熱波の伝播、減衰時
間により決まり、一般的には数μs(マイクロ秒)であ
る。
The laser light used has an ultrashort pulse width of, for example, about 1 nanosecond, but the plasma is generated on the picosecond time scale, and thus on the same time scale for X-rays. At this time, the time during which the fine particles continue to be scattered from the target material is determined by the propagation time of the shock wave, the heat wave, and the decay time, and is generally several μs (microsecond).

【0041】従って、紫外線ランプ11、電磁石18、
電極15の立上がり時間、接続時間はms(ミリ秒)程
度とし、レーザー照射タイミングの少なくとも約1ms
前にこれらのスイッチをONにすればよい。
Therefore, the ultraviolet lamp 11, the electromagnet 18,
The rise time and connection time of the electrode 15 are about ms (milliseconds), and the laser irradiation timing is at least about 1 ms.
These switches may be turned on before.

【0042】さて以上は、主として発生した微粒子の中
で軽くて高速のもの(6〜10×103 cm/s以上)に
ついて除去する方法であるが、微粒子の中には粒径が大
きく(例えば直径>50μm)、飛行速度も低いものが
あり、この場合は紫外線ランプ11により電荷を与えて
も電荷(q)と質量(m)の比q/mが小さく電磁力の
効果が及び難いため軌道を曲げることができない。
The above is the method for removing mainly light and high-speed particles (6 to 10 × 10 3 cm / s or more) among the generated particles, but the particles have a large particle size (for example, Some have a diameter> 50 μm) and have a low flight speed. In this case, even if an electric charge is given by the ultraviolet lamp 11, the ratio q / m of the electric charge (q) and the mass (m) is small, and the effect of the electromagnetic force is difficult to exert. Can't bend.

【0043】上記微粒子の軽くて高速のものと粒径大で
低速のものとの割合は、ターゲット物質の種類によって
異なるが、例えば前者が90%程度の割合(質量比)と
いう場合もあり、いずれの割合であれ後者のものを取り
除くことができればデブリスの除去はほぼ完全に除去で
きることになる。
The ratio of the above-mentioned fine particles of light and high speed to that of large and low particle size depends on the type of the target substance, but in some cases, the former may be about 90% (mass ratio). If the latter can be removed even if the ratio is, the debris can be removed almost completely.

【0044】そこで、例えば図3に示すような機械的な
シャッタ(チョッパ)機構を図1のX線の取出窓6の直
前に設けることができる。このシャッタ機構は、回転円
板31に取出窓6に対応する口径の開口32を設け、こ
れをモータ33により高速回転して取出窓6を開閉する
方法であり、開口32が取出窓6に一致するとX線が透
過され、それ以外の回転位相では微粒子などの通過が遮
断される。
Therefore, for example, a mechanical shutter (chopper) mechanism as shown in FIG. 3 can be provided immediately in front of the X-ray extraction window 6 in FIG. This shutter mechanism is a method in which a rotary disc 31 is provided with an opening 32 having a diameter corresponding to the take-out window 6, and the take-out window 6 is opened and closed by rotating this at a high speed by a motor 33. The opening 32 coincides with the take-out window 6. Then, the X-rays are transmitted, and the passage of fine particles and the like is blocked in other rotation phases.

【0045】この場合も、その動作タイミングが問題と
なるが、次のように処理される。
In this case as well, the operation timing is a problem, but it is processed as follows.

【0046】X線は光速C=3×1010cm/sの速度で
取出窓6へ飛来するが、微粒子は速いものでも103 cm
/s程度の速度で飛行する。この速度では微粒子は1cm
移動するのに1ms(ミリ秒)かかる。従って、X線の
飛来間隔に合せてシャッタを開き、X線通過後は数10
0μs(マイクロ秒)の時間でシャッタを閉じるように
すると、X線のみが支障なく通過し、遅れて到達する速
度の低い微粒子の大部分はシャッタ板に付着し、取出窓
6やその後方の光学系素子に達することはなくなる。
X-rays fly to the extraction window 6 at a speed of light C = 3 × 10 10 cm / s, but even fine particles are 10 3 cm.
Fly at a speed of about / s. Fine particles are 1 cm at this speed
It takes 1 ms (milliseconds) to move. Therefore, the shutter is opened according to the X-ray arrival interval, and after passing the X-ray, several tens of
When the shutter is closed for a time of 0 μs (microseconds), only X-rays pass through without any trouble, and most of the low-velocity particles that arrive late adhere to the shutter plate, and the extraction window 6 and the optics behind it. It will never reach the system element.

【0047】なお、回転円板31の開口32は、複数個
設ければモータの回転を遅くできる。又、シャッタ機構
は回転円板方式だけでなく、シャッタ板が左右に往復動
できるものやその他種々の形式のものを採用できること
は明らかであろう。
The rotation of the motor can be slowed by providing a plurality of openings 32 of the rotary disc 31. Further, it will be apparent that the shutter mechanism is not limited to the rotary disk system, and that the shutter plate can reciprocate left and right and various other types can be adopted.

【0048】[0048]

【効果】以上詳細に説明したように、第一の発明のデブ
リス除去方法では、ターゲット物質表面のプラズマから
X線と共に発生する中性微粒子に紫外線により電荷を与
え、この荷電微粒子を電界と磁界が直交する電磁場を通
過させるようにしたから、中性微粒子は結局直交電磁場
により軌道を曲げられてX線の経路外に排除され、これ
によりX線の経路上に設けられるフィルタ、取出窓、X
線多層膜ミラー等のX線光学素子を保護することができ
るという利点が得られる。
As described in detail above, in the debris removing method of the first invention, the neutral particles generated together with the X-rays from the plasma on the surface of the target material are charged with ultraviolet rays, and the charged particles are separated by an electric field and a magnetic field. Since the orthogonal electromagnetic fields are allowed to pass through, the neutral fine particles are eventually bent by the orthogonal electromagnetic fields to be excluded from the X-ray path, so that the filter, extraction window, X-axis provided on the X-ray path.
There is an advantage that an X-ray optical element such as a linear multilayer mirror can be protected.

【0049】第二の発明は、上記方法を実施するための
装置であり、紫外線源と電磁場形成手段と微粒子の排除
手段とを備え、第一の発明の方法により軌道を曲げられ
た微粒子が排除手段により経路外に集められ又は装置か
ら排出される。従って、比較的簡易な手段により微粒子
がX線光学素子に付着するのを大部分除去でき、根本的
に微粒子を除去できる経済的で簡易な手段が得られX線
光学素子を保護すると共にその機能を高効率に発揮させ
ることができるという種々の利点が得られる。
A second invention is an apparatus for carrying out the above method, which comprises an ultraviolet source, an electromagnetic field forming means, and a means for eliminating fine particles, and eliminates the fine particles whose orbit is bent by the method of the first invention. By means of being collected out of the path or discharged from the device. Therefore, most of the fine particles can be removed from the X-ray optical element by a relatively simple means, and an economical and simple means for fundamentally removing the particles can be obtained to protect the X-ray optical element and its function. It is possible to obtain various advantages that the above can be exhibited with high efficiency.

【0050】第三の発明では機械的シャッタを取出窓の
直前に設けて微粒子のうち粒径が大きく飛行速度の低い
ものを取り除くことができ、第二の発明の電磁場形成手
段では取り除くことができずこれを通過するものがあっ
ても機械的シャッタによりX線のみを通過させ微粒子は
遮断するから、これにより微粒子を完全に除去できると
いう利点が得られる。
In the third invention, the mechanical shutter is provided immediately before the extraction window to remove fine particles having a large particle diameter and a low flight speed, and the electromagnetic field forming means of the second invention can remove them. Even if there is something that passes through this, since only the X-rays are passed through by the mechanical shutter and the fine particles are blocked, this has the advantage that the fine particles can be completely removed.

【0051】第四の発明では、駆動電源を高速度で微粒
子の発生タイミングに同調してオン、オフ自在とし、こ
れにより経済的なコストでより大きな電界、磁界を形成
し高いピーク作用を与えて高効率に微粒子除去を行なう
ことができるという利点が得られる。
In the fourth aspect of the invention, the driving power source can be turned on and off at high speed in synchronization with the timing of generation of particles, whereby a larger electric field and magnetic field can be formed and a high peak effect can be given at an economical cost. The advantage that fine particles can be removed with high efficiency is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】レーザープラズマX線源にデブリス除去装置を
設けた実施例の全体概略図
FIG. 1 is an overall schematic view of an embodiment in which a laser plasma X-ray source is provided with a debris removing device.

【図2】同上の作用の説明図FIG. 2 is an explanatory diagram of the same operation as above.

【図3】シャッタ機構の概略図FIG. 3 is a schematic view of a shutter mechanism.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 2 レーザー発生装置 3 レーザー光 4 透過窓 5 ターゲット物質 6 取出窓 11 紫外線ランプ 12 集光レンズ 13、16、19 電源 14、17、20、21 スイッチ 15 電極 18 電磁石 18a、18b 磁極 1 Vacuum Chamber 2 Laser Generator 3 Laser Light 4 Transmission Window 5 Target Material 6 Extraction Window 11 Ultraviolet Lamp 12 Condensing Lens 13, 16, 19 Power Supply 14, 17, 20, 21 Switch 15 Electrode 18 Electromagnet 18a, 18b Magnetic Pole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山中 千代衛 大阪市西区靭本町1丁目8番4号 財団 法人レーザー技術総合研究所内 (72)発明者 中井 貞雄 大阪府茨木市北春日丘3丁目6番45号 (72)発明者 大道 博行 高槻市日吉台1番町10番41号 (56)参考文献 特開 平5−119199(JP,A) 特開 昭63−292553(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Chiyoe Yamanaka 1-8-4 Tsutomucho, Nishi-ku, Osaka City Laser Technology Research Institute (72) Inventor Sadao Nakai 3-6 Kitakasugaoka, Ibaraki-shi, Osaka No. 45 (72) Hiroyuki Odo No. 10-41 Hiyoshidai 1-cho, Takatsuki-shi (56) References JP-A-5-119199 (JP, A) JP-A-63-292553 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レーザー光をターゲット物質に集光照射
してプラズマ化し、そのプラズマからX線と共に発生す
る微粒子に対しX線が所定方向に導かれる経路の任意の
位置で上記微粒子に紫外線を照射して電荷を付与し、こ
の荷電微粒子を一対の電位の異なる電極による電界と一
対の極性の異なる磁極による磁場とが直交する電磁場を
通過させてX線の経路外に導くようにしたことから成る
レーザープラズマX線源のデブリス除去方法。
1. A target material is focused and irradiated with laser light to form a plasma, and the fine particles generated from the plasma together with the X-rays are irradiated with ultraviolet rays at an arbitrary position in a path along which the X-rays are guided in a predetermined direction. Then, an electric field is applied to the charged fine particles, and the charged fine particles are guided out of the X-ray path by passing an electromagnetic field in which an electric field generated by a pair of electrodes having different potentials and a magnetic field generated by a pair of magnetic poles having different polarities are orthogonal to each other. A method for removing debris from a laser plasma X-ray source.
【請求項2】 レーザー光を集光照射して真空チャンバ
内に設けたターゲット物質の表面に生成されるプラズマ
から発生されるX線を取出窓から取り出す経路に沿って
紫外線源から成る電荷付与手段と、一対の電極と一対の
磁極を有する電磁石とから成る電磁場形成手段とを設
け、電磁場形成手段は一対の電極による電界と一対の磁
極による磁界とが互いに直交するように形成し、さらに
電磁場形成手段によりX線の経路から外れた微粒子を排
除する排除手段を備えて成るデブリス除去装置。
2. A charge applying means comprising an ultraviolet ray source along a path for extracting X-rays generated from plasma generated on the surface of a target material provided in a vacuum chamber by converging and irradiating laser light. And an electromagnetic field forming means composed of a pair of electrodes and an electromagnet having a pair of magnetic poles. The electromagnetic field forming means forms an electric field by the pair of electrodes and a magnetic field by the pair of magnetic poles at right angles to each other, and further forms an electromagnetic field. A debris removing device comprising an excluding means for excluding fine particles deviated from the X-ray path by the means.
【請求項3】 前記X線の取出窓の直前にX線を通過さ
せ他の微粒子の通過を遮断するための機械的シャッタ機
構を設けたことを特徴とする請求項2に記載のレーザー
プラズマX線源のデブリス除去装置。
3. The laser plasma X according to claim 2, further comprising a mechanical shutter mechanism for allowing X-rays to pass therethrough and blocking passage of other fine particles immediately before the X-ray extraction window. Debris removal device for radiation source.
【請求項4】 少なくとも前記紫外線源と電磁石のそれ
ぞれの電源をプラズマからの微粒子の発生タイミングに
同調して高速でオン、オフ自在としたことを特徴とする
請求項2又は3に記載のレーザープラズマX線源のデブ
リス除去装置。
4. The laser plasma according to claim 2, wherein at least the respective power sources of the ultraviolet ray source and the electromagnet are turned on and off at high speed in synchronization with the timing of generation of particles from plasma. Debris removal device for X-ray source.
JP14926794A 1994-06-30 1994-06-30 Method and apparatus for removing debris from laser plasma X-ray source Expired - Fee Related JP2552433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14926794A JP2552433B2 (en) 1994-06-30 1994-06-30 Method and apparatus for removing debris from laser plasma X-ray source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14926794A JP2552433B2 (en) 1994-06-30 1994-06-30 Method and apparatus for removing debris from laser plasma X-ray source

Publications (2)

Publication Number Publication Date
JPH0817371A JPH0817371A (en) 1996-01-19
JP2552433B2 true JP2552433B2 (en) 1996-11-13

Family

ID=15471509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14926794A Expired - Fee Related JP2552433B2 (en) 1994-06-30 1994-06-30 Method and apparatus for removing debris from laser plasma X-ray source

Country Status (1)

Country Link
JP (1) JP2552433B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197456A (en) * 2004-01-07 2005-07-21 Komatsu Ltd Light source device and exposing device using the same
US7271401B2 (en) 2004-09-09 2007-09-18 Komatsu Ltd. Extreme ultra violet light source device
JP2010514156A (en) * 2006-12-13 2010-04-30 エーエスエムエル ネザーランズ ビー.ブイ. Radiation system and lithographic apparatus
JP2012502414A (en) * 2008-09-09 2012-01-26 エーエスエムエル ネザーランズ ビー.ブイ. Radiation system and lithographic apparatus
JP4881444B2 (en) * 2006-12-14 2012-02-22 エーエスエムエル ネザーランズ ビー.ブイ. Plasma radiation source, method for forming plasma radiation source, apparatus for projecting a pattern from a patterning device onto a substrate, and device manufacturing method
US8436328B2 (en) 2008-12-16 2013-05-07 Gigaphoton Inc. Extreme ultraviolet light source apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221499A (en) * 1997-02-07 1998-08-21 Hitachi Ltd Laser plasma x-ray source and device and method for exposing semiconductor using the same
EP1083777A4 (en) 1998-05-29 2004-03-05 Nippon Kogaku Kk Laser-excited plasma light source, exposure apparatus and its manufacturing method, and device manufacturing method
CN1272989C (en) * 2000-07-28 2006-08-30 杰特克公司 Method and apparatus for generating X-ray or EUV radiation
TWI255394B (en) 2002-12-23 2006-05-21 Asml Netherlands Bv Lithographic apparatus with debris suppression means and device manufacturing method
TWI237733B (en) * 2003-06-27 2005-08-11 Asml Netherlands Bv Laser produced plasma radiation system with foil trap
KR101123187B1 (en) * 2004-03-31 2012-03-19 에이에스엠엘 네델란즈 비.브이. Method and device for removing particles generated by means of a radiation source during generation of short-wave radiation
JP4696478B2 (en) * 2004-06-09 2011-06-08 株式会社Ihi Plasma X-ray generator
JP5156193B2 (en) * 2006-02-01 2013-03-06 ギガフォトン株式会社 Extreme ultraviolet light source device
US8071963B2 (en) * 2006-12-27 2011-12-06 Asml Netherlands B.V. Debris mitigation system and lithographic apparatus
JP5108367B2 (en) * 2007-04-27 2012-12-26 ギガフォトン株式会社 Extreme ultraviolet light source device
JP2011023712A (en) 2009-06-19 2011-02-03 Gigaphoton Inc Euv light source device
JP2011192965A (en) 2010-02-22 2011-09-29 Komatsu Ltd Chamber apparatus and extreme ultraviolet light generating device
JP5758153B2 (en) * 2010-03-12 2015-08-05 エーエスエムエル ネザーランズ ビー.ブイ. Radiation source apparatus, lithographic apparatus, radiation generation and delivery method, and device manufacturing method
DE102011089779B4 (en) 2011-12-23 2019-09-05 Carl Zeiss Smt Gmbh Device for suppressing foreign body components entrained with a light bundle along a beam path

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197456A (en) * 2004-01-07 2005-07-21 Komatsu Ltd Light source device and exposing device using the same
US6987279B2 (en) 2004-01-07 2006-01-17 Komatsu Ltd. Light source device and exposure equipment using the same
JP4535732B2 (en) * 2004-01-07 2010-09-01 株式会社小松製作所 Light source device and exposure apparatus using the same
US7271401B2 (en) 2004-09-09 2007-09-18 Komatsu Ltd. Extreme ultra violet light source device
JP2010514156A (en) * 2006-12-13 2010-04-30 エーエスエムエル ネザーランズ ビー.ブイ. Radiation system and lithographic apparatus
JP2012109613A (en) * 2006-12-13 2012-06-07 Asml Netherlands Bv Radiation system and lithographic apparatus
JP4881444B2 (en) * 2006-12-14 2012-02-22 エーエスエムエル ネザーランズ ビー.ブイ. Plasma radiation source, method for forming plasma radiation source, apparatus for projecting a pattern from a patterning device onto a substrate, and device manufacturing method
JP2012502414A (en) * 2008-09-09 2012-01-26 エーエスエムエル ネザーランズ ビー.ブイ. Radiation system and lithographic apparatus
US9411250B2 (en) 2008-09-09 2016-08-09 Asml Netherlands B.V. Radiation system and lithographic apparatus
US8436328B2 (en) 2008-12-16 2013-05-07 Gigaphoton Inc. Extreme ultraviolet light source apparatus
US8558202B2 (en) 2008-12-16 2013-10-15 Gigaphoton Inc. Extreme ultraviolet light source apparatus

Also Published As

Publication number Publication date
JPH0817371A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
JP2552433B2 (en) Method and apparatus for removing debris from laser plasma X-ray source
JP2942544B2 (en) Plasma Focus High Energy Photon Source
JP5448775B2 (en) Extreme ultraviolet light source device
US6377651B1 (en) Laser plasma source for extreme ultraviolet lithography using a water droplet target
JP4578901B2 (en) Extreme ultraviolet light source device
JP5454881B2 (en) Extreme ultraviolet light source device and method for generating extreme ultraviolet light
JP5426317B2 (en) Extreme ultraviolet light source device
JP5559562B2 (en) Extreme ultraviolet light source device
JP4535732B2 (en) Light source device and exposure apparatus using the same
JP5580032B2 (en) Extreme ultraviolet light source device
JP5108367B2 (en) Extreme ultraviolet light source device
CN111406303A (en) High brightness L PP source and method for generating radiation and reducing debris
US20090224182A1 (en) Laser Heated Discharge Plasma EUV Source With Plasma Assisted Lithium Reflux
JPH10221499A (en) Laser plasma x-ray source and device and method for exposing semiconductor using the same
US5432670A (en) Generation of ionized air for semiconductor chips
JP2004340761A (en) Extreme ultraviolet light generator
KR100745704B1 (en) Method for obtaining an extreme ultraviolet radiation, radiation source and use in lithography
JPS5846340B2 (en) Assisting ion generation method and device
RU2743572C1 (en) High-brightness source of short-wave radiation (options)
JPH0744020B2 (en) X-ray extractor for plasma X-ray source
JPH09245992A (en) X-ray generating device
US5567935A (en) Velocity selected laser ablation metal atom source
JPH1055899A (en) X-ray generator
JP4221755B2 (en) Laser neutralizing and charging method and apparatus
JPH11202098A (en) X-ray generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100822

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100822

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20110822

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20130822

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20130822

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 17

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees