JP2548637B2 - Operating method of supercooled water production equipment - Google Patents

Operating method of supercooled water production equipment

Info

Publication number
JP2548637B2
JP2548637B2 JP3152268A JP15226891A JP2548637B2 JP 2548637 B2 JP2548637 B2 JP 2548637B2 JP 3152268 A JP3152268 A JP 3152268A JP 15226891 A JP15226891 A JP 15226891A JP 2548637 B2 JP2548637 B2 JP 2548637B2
Authority
JP
Japan
Prior art keywords
water
heat transfer
container
supercooled water
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3152268A
Other languages
Japanese (ja)
Other versions
JPH04353376A (en
Inventor
時雄 小此木
光彦 竹村
裕紀 白石
栄 菊地
一典 衛藤
充 守屋
正幸 谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP3152268A priority Critical patent/JP2548637B2/en
Publication of JPH04353376A publication Critical patent/JPH04353376A/en
Application granted granted Critical
Publication of JP2548637B2 publication Critical patent/JP2548637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,空調用の熱源水を氷の
形態で蓄熱するようにした氷蓄熱設備において製氷のた
めの過冷却水製造装置の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a supercooled water production apparatus for ice making in an ice heat storage facility in which heat source water for air conditioning is stored in the form of ice.

【0002】[0002]

【従来の技術】建物内に配設したフアンコイルユニット
や水熱源ヒートポンプユニットの水側熱交換器に冷温水
を循環させて冷暖房を行なうさいに,冷房時の冷熱を蓄
熱槽内において氷の形態で蓄えるいわゆる氷蓄熱方式が
注目されており,一部稼働されるようになった。これ
は,例えば夜間電力で冷凍機を駆動して製氷し,氷の状
態で多量の冷熱を蓄熱槽で蓄えたうえ,冷房運転時にそ
の氷の冷熱を冷水として取出して二次側熱交換器に循環
するものであり,水の潜熱を利用するので小規模装置で
も多量の冷熱を蓄えることができる。
2. Description of the Related Art In cooling and heating by circulating cold and hot water through a water-side heat exchanger of a fan coil unit and a water heat source heat pump unit disposed in a building, the cooling heat generated during cooling is stored in an ice storage tank. Attention has been paid to what is called the ice thermal storage method, which is used for storage at the plant. For example, a refrigerator is driven by nighttime electric power to make ice, a large amount of cold heat is stored in a heat storage tank in the state of ice, and during cooling operation, the cold heat of the ice is taken out as cold water and supplied to a secondary heat exchanger. Since it circulates and uses the latent heat of water, even small-scale equipment can store a large amount of cold heat.

【0003】この氷蓄熱方式には,製氷法の相違によっ
て蓄える氷の形態が氷塊状 (ソリッド状) のものとシャ
ーベット状 (微細氷と水とが混在したリキッド状または
スラリー状) のものとに分けられる。両者にはそれぞれ
得失があるが,氷塊方式では氷塊を蓄熱水槽で生成させ
る (熱交換器の表面で生成させる) 場合に氷層が厚くな
るとそれに伴って熱の伝導が低下するので大きな厚みに
することには限界があり,したがって,氷の充填率 (I.
P.F.) は10%前後にしかならず, 蓄熱効率が悪くなるこ
とは避けられない。I.P.F.を向上させるために添加剤を
加えた特殊溶液を使用したり,蓄熱水槽自体を圧力容器
に構成する例なども報告されているが,既設建物の蓄熱
式の水熱源冷暖房設備をそのまま氷蓄熱方式に適用する
には問題が多い。
[0003] In this ice heat storage method, the form of ice to be stored depending on the ice making method is divided into an ice block (solid) and a sherbet (liquid or slurry in which fine ice and water are mixed). Divided. Although both have advantages and disadvantages, in the case of the ice block method, when the ice block is generated in the heat storage water tank (generated on the surface of the heat exchanger), the thicker the ice layer, the lower the heat conduction, and the larger the thickness. Is limited, and therefore the ice filling rate (I.
PF) is only around 10%, and it is inevitable that the heat storage efficiency will deteriorate. Although it has been reported that a special solution containing an additive is used to improve the IPF and the heat storage water tank itself is configured as a pressure vessel, the heat storage type water heat source cooling and heating equipment of an existing building is used as it is for ice heat storage. There are many problems when applied to the method.

【0004】一方シャーベット状の氷を製造する場合に
はI.P.F.は非常に大きくすることができるが,大容量の
水をシャーベット状にするには一般には非常に大規模な
設備を必要とする。このシャーベット状の蓄熱方式につ
いては,例えば特開昭63-123968〜9号公報, 特開昭63-1
29274〜5号公報に記載のものなどが知られている。また
同一出願人に係る特開昭63-217171号公報および特開昭6
3-231157号公報に過冷却水からから微細な氷を製氷する
方法および装置を提案し,この過冷却水を伝熱管で連続
製造することを要件として,それらの改善等について,
特開昭63-271074号公報, 特開昭64-75869号公報, 特開
昭64-90973号公報, 特開平1-114682号公報, 実開昭63-1
39459号公報, 実開平1-88235号公報, 実開平1-88236号
公報, 実開平1-88237号公報, 実開平1-97135号公報,実
開平1-112345号公報, 実開平1-120022号公報, 実開平1-
125940号公報, 実開平1-136832号公報, 実開昭1-148538
号公報, 実開平1-178528号公報, 実開平2-527号公報等
に様々な提案を行った。
On the other hand, when producing sherbet-like ice, the IPF can be made very large. However, in order to make large-volume water into a sherbet-like form, a very large-scale facility is generally required. Regarding this sherbet-like heat storage method, for example, JP-A-63-123968-9 and JP-A-63-1
Those described in the publications 29274-5 are known. Further, Japanese Patent Application Laid-Open Nos. 63-217171 and 6 related to the same applicant
3-231157 proposes a method and an apparatus for making fine ice from supercooled water, and on the condition that the supercooled water is continuously manufactured by a heat transfer tube, the improvement thereof is required.
JP 63-271074, JP 64-75869, JP 64-90973, JP 1-114682, JP 63-1
No. 39459, No. 1-88235, No. 1-88236, No. 1-88237, No. 1-97135, No. 1-112345, No. 1-120022 Bulletin, Actual Kaihei
No. 125940, No. 1-136832, No. 1-48538
Various proposals have been made to the official gazette, the utility model 1-178528, the utility model 2-527, etc.

【0005】いずれにしても,これらに提案した過冷却
水からシャーベット状の氷を製造する製氷システムの過
冷却器は,水がその中を通水する伝熱管を冷却容器内に
配置し,この冷却容器内に冷却媒体として冷凍機のブラ
インを通液するか,或いは冷却容器をヒートポンプ装置
の蒸発器として機能するように構成するものである。こ
れらを総称して本発明では過冷却器とよぶ。過冷却器内
の伝熱管の内壁温度を零度℃以下ではあるが−5.8℃以
上に維持すれば水の入口温度や流量等の変動に拘わらず
管内で凍結を起こすことなく伝熱管の吐出口から過冷却
水の連続流れを取り出すことができることも既に明らか
にした(例えば前記の特開平1-114682号公報) 。
In any case, the supercooler of the ice making system for producing sherbet-like ice from the supercooled water proposed in these publications has a heat transfer tube through which water flows, disposed in a cooling vessel. Either brine of a refrigerator is passed through the cooling vessel as a cooling medium, or the cooling vessel is configured to function as an evaporator of a heat pump device. These are collectively called a supercooler in the present invention. Although the inner wall temperature of the heat transfer tube in the subcooler is below 0 ° C but maintained at -5.8 ° C or higher, it does not freeze within the tube regardless of fluctuations in the inlet temperature and flow rate of water. It has already been clarified that a continuous flow of supercooled water can be taken out (for example, Japanese Patent Application Laid-Open No. 1-114682).

【0006】[0006]

【発明が解決しようとする課題】過冷却器の伝熱管の吐
出口から過冷却水を連続流れとして吐出させる場合,伝
熱管を横方向に配置した場合には,該吐出流は大気中を
放物線を描いて落下することになる。この放物線は終端
近くでは流線の広がりを起こすし,吐出圧や流量によっ
て放物線自体が変化し,また多数本の伝熱管から同時に
吐出させる場合にはその吐出流が相互に触れ合うことも
ある。このようなことから,伝熱管を横置き式にした過
冷却器は,管内流れに対して重力の作用を軽微にするこ
とができるという利点はあるものの,吐出流の広がりや
変化が起こり易く,このために槽内への受入れ面積を比
較的広くとることが必要となる。また飛沫が伝熱管の吐
出口付近に跳ね返り,吐出口近辺の管外に氷が付着成長
するという事態が生ずることもある。
When the supercooled water is discharged as a continuous flow from the discharge port of the heat transfer tube of the subcooler, when the heat transfer tube is arranged in the lateral direction, the discharge flow is parabolic in the atmosphere. Will draw and fall. This parabola causes the streamline to spread near the end, the parabola itself changes depending on the discharge pressure and flow rate, and when discharged from many heat transfer tubes simultaneously, the discharge flows may touch each other. For this reason, a supercooler in which heat transfer tubes are placed horizontally has the advantage that the effect of gravity on the flow inside the tubes can be reduced, but the discharge flow tends to spread or change. For this reason, it is necessary to make the receiving area in the tank relatively large. In addition, the splash may rebound near the discharge port of the heat transfer tube, and ice may adhere and grow outside the pipe near the discharge port.

【0007】伝熱管を縦方向にして過冷却水を垂直方向
に落下させれば,横置き式の前記の問題は解決できる。
本発明者らは,多数本の伝熱管を縦型にして試験を繰り
返したが,伝熱管内を流れる水が重力の作用を受けて各
管に均一に水が流れず,過冷却水を安定して製造できな
いことを経験した。この不均一がひどい場合には或る管
では凍結トラブルを見た。先に挙げた特開昭63-271074
号公報, 特開昭64-75869号公報,実開平1-88236号公報
等には縦型伝熱管をもつ過冷却器の例を提案したが,こ
の場合にも同様の問題が生ずることがある。
If the supercooled water is dropped in the vertical direction with the heat transfer tube set in the vertical direction, the above-mentioned problem of the horizontal type can be solved.
The present inventors repeated the test by making a large number of heat transfer tubes vertical, but the water flowing in the heat transfer tubes was subjected to the action of gravity so that the water did not flow evenly in each tube and the supercooled water was stabilized. I experienced that I could not manufacture it. When this non-uniformity was severe, one tube saw freezing problems. JP-A-63-271074 mentioned above
In Japanese Patent Laid-Open Publication No. 64-75869, Japanese Utility Model Laid-Open No. 1-88236, etc., an example of a subcooler with a vertical heat transfer tube was proposed, but similar problems may occur in this case as well. .

【0008】本発明はこのような縦型過冷却器によって
も安定して過冷却水を製造できる条件を見いだすべくな
されたものである。
The present invention has been made in order to find the conditions under which stable production of supercooled water is possible even with such a vertical subcooler.

【0009】[0009]

【課題を解決するための手段】 本発明によれば,冷却
媒体が通流する冷却容器内に,この容器の上下壁を貫通
して多数本の伝熱管を縦方向に配置し,この冷却容器の
上部に設けたヘッダ容器内に各伝熱管の上端を開口させ
ると共に該伝熱管の下端を冷却容器下壁近傍において大
気に開口させ,該ヘッダ容器に連続通水することにより
各伝熱管の下端開口から零゜C以下に冷却された過冷却
水を連続的に吐出させるようにした過冷却水製造装置
(過冷却器)を用いて空調用氷蓄熱のための製氷を行う
にさいし,該ヘッダ容器内の圧力を検出し,過冷却水製
造装置(過冷却器)の運転中において該圧力が負圧とな
らないに充分な水量を該ヘッダ容器内に強制的に圧送
続けることを特徴とする。
According to the present invention, in a cooling container in which a cooling medium flows, a large number of heat transfer tubes are vertically arranged, penetrating through the upper and lower walls of the container. The upper end of each heat transfer tube is opened in the header container provided in the upper part of the heat transfer tube, the lower end of the heat transfer tube is opened to the atmosphere near the lower wall of the cooling container, and the lower end of each heat transfer tube is continuously supplied to the header container. When performing ice making for ice heat storage for air conditioning using a supercooled water production device (subcooler) that continuously discharges supercooled water cooled to below 0 ° C from the opening, the header detecting the pressure in the vessel, forcibly pumping sufficient amount of water to the header vessel pressure during the operation of the supercooled water production apparatus (subcooler) does not become negative pressure
It continued and said Rukoto.

【0010】[0010]

【実施例】図1は,本発明法を適用する空調用氷蓄熱設
備の例を示したものである。1は蓄熱槽,2は過冷却
器,3は循環ポンプであり,蓄熱槽1内の水はポンプ3
の駆動により水路4を経て過冷却器2に連続供給され,
この過冷却器2によって零度℃以下の過冷却水5となっ
て大気中に吐出し,この過冷却水5の吐出流は,分散板
6に衝突したうえ蓄熱槽1内に落下する。この分散板6
への落下衝撃により過冷却状態が解除されて微細な氷と
なり,蓄熱槽1内にはシヤーベット状の氷7が溜まる。
EXAMPLE FIG. 1 shows an example of an ice storage facility for air conditioning to which the method of the present invention is applied. 1 is a heat storage tank, 2 is a supercooler, 3 is a circulation pump, and the water in the heat storage tank 1 is a pump 3
Is continuously supplied to the subcooler 2 through the water channel 4 by
The supercooler 2 turns into supercooled water 5 at a temperature of 0 ° C. or below and discharges it into the atmosphere. The discharge flow of the supercooled water 5 collides with the dispersion plate 6 and drops into the heat storage tank 1. This dispersion plate 6
The supercooled state is released by the impact of falling onto the ice cubes, and the ice cubes become fine ice.

【0011】図示のように,過冷却器2は,多数本の伝
熱管 (チユーブ)9をシエル10内に垂直に配置した縦型
のシエルアンドチユーブ熱交換器からなっている。各チ
ユーブ9 (以下,伝熱管9と言う) は, シエル10 (以
下, 冷却容器10と呼ぶ) の上下壁を貫通して配置され,
上端はヘッダ容器11内に開口し,下端は大気に開放して
いることから,ヘッダ容器11に導入された水は各伝熱管
9内を垂直に流下して下端の吐出口15より大気中に垂直
に吐出する。各伝熱管9は流水中はその内壁温度が零℃
以下で−5.8℃以上の温度に維持されるように制御され
る。
As shown, the subcooler 2 comprises a vertical shell-and-tube heat exchanger in which a large number of heat transfer tubes (tubes) 9 are vertically arranged in a shell 10. Each tube 9 (hereinafter referred to as heat transfer tube 9) is arranged so as to penetrate through the upper and lower walls of a shell 10 (hereinafter referred to as a cooling container 10),
Since the upper end opens into the header container 11 and the lower end opens to the atmosphere, the water introduced into the header container 11 flows vertically down each heat transfer tube 9 and enters the atmosphere from the discharge port 15 at the lower end. Discharge vertically. The inner wall temperature of each heat transfer tube 9 is 0 ° C in running water.
Below, the temperature is controlled to be maintained at a temperature of -5.8 ° C or higher.

【0012】シエル側の冷却容器10は, 各伝熱管9の内
壁温度が零℃以下であって−5.8℃以上となるように,
各伝熱管9をその外壁から冷却するものである。この冷
却媒体としては,冷凍機で製造したブラインを使用する
こともできるが,図示の例ではヒートポンプ装置の蒸発
器として機能させている。すなわち, 蒸発器 (つまり冷
却容器10), 圧縮機12, 凝縮器13, 膨脹弁14, 蒸発器10
を順に経る冷媒回路をもってヒートポンプ装置が構成さ
れている。このヒートポンプ装置の駆動により冷却容器
10が蒸発器となり,各伝熱管9を前記温度に冷却する。
なお,この冷却容器10内を冷媒液で満たし, この液冷媒
を伝熱管9からの受熱によって沸騰させる沸騰型の蒸発
器となるようにヒートポンプ装置を組立てることもでき
る。
In the shell side cooling container 10, the inner wall temperature of each heat transfer tube 9 is set to 0 ° C. or lower and −5.8 ° C. or higher.
Each heat transfer tube 9 is cooled from its outer wall. As the cooling medium, brine manufactured by a refrigerator can be used, but in the illustrated example, it functions as an evaporator of a heat pump device. That is, evaporator (that is, cooling vessel 10), compressor 12, condenser 13, expansion valve 14, evaporator 10
, A heat pump device is configured with a refrigerant circuit that sequentially passes through the heat pump device. The cooling vessel is driven by driving this heat pump device.
10 serves as an evaporator and cools each heat transfer tube 9 to the above temperature.
It should be noted that the heat pump device can be assembled so as to form a boiling evaporator that fills the cooling container 10 with a refrigerant liquid and boil the liquid refrigerant by the heat received from the heat transfer tube 9.

【0013】このようにして,本発明では多数本の伝熱
管9を縦方向に配置した縦型過冷却器とし,その吐出口
15から過冷却水を垂直吐出流として蓄熱槽1に落下させ
るのであるが,先述のように,多数の伝熱管9(例えば
81本) を配置した過冷却器を用いて実施した場合に,各
伝熱管9から吐出する過冷却水の温度を測定してみる
と,バラツキが生ずることを経験した。また, 或るとき
には或る管が凍結することもあった。
In this way, according to the present invention, a vertical subcooler in which a large number of heat transfer tubes 9 are arranged in the vertical direction is provided, and its discharge port
Although supercooled water is dropped from 15 into the heat storage tank 1 as a vertical discharge flow, as described above, a large number of heat transfer tubes 9 (for example,
When the temperature of the supercooling water discharged from each heat transfer tube 9 was measured when using a subcooler in which (81 pieces) were arranged, it was experienced that variations occurred. At other times, some tubes may freeze.

【0014】この問題は,ヘッダ容器11内が負圧となら
ないような水量をポンプ3から送液すると言う簡単な処
法で解決できることがわかった。すなわち,ヘッダ容器
11内に供給された水が各伝熱管9を流下するさいに,そ
の落水による吸引作用でヘッダ容器11内が負圧になると
或る伝熱管では開口端15から空気を誘引するような現象
が生じることがその原因であると推察されるが,管端15
から吐出する過冷却水の過冷度にバラツキが生じる結果
となるが,ヘッダ容器11内を正圧に維持すればこのバラ
ツキは完全に回避できることがわかった。したがって,
本発明によれば過冷却器の運転中は,ヘッダ容器11内を
正圧に維持するに充分な水量をポンプ3から強制的に且
つ連続的に圧入する。
It has been found that this problem can be solved by a simple method of sending a water amount from the pump 3 so that the header container 11 does not have a negative pressure. That is, the header container
When the water supplied to the inside of the header 11 flows down through each heat transfer tube 9, if a negative pressure is generated in the header container 11 due to the suction action of the falling water, a phenomenon such that a certain heat transfer tube attracts air from the open end 15 may occur. It is presumed that the cause is that
As a result, the degree of supercooling of the supercooled water discharged from the tank varies, but it was found that this fluctuation can be completely avoided by maintaining the positive pressure in the header container 11. Therefore,
According to the present invention, during operation of the subcooler, a sufficient amount of water for maintaining the positive pressure in the header container 11 is forcedly and continuously injected from the pump 3.

【0015】 本発明の実施にあたっては,ヘッダ容器
11内の圧力を検出する圧力計16を取り付け,この圧
力計16の指示値が何らかの原因によって負圧になった
場合にはポンプ3を停止し,ヒートポンプ装置も停止す
るようにするのが好ましい。また,ポンプ3を回転数可
変ポンプを使用し,圧力計16が所定の正圧を維持する
ようにポンプの回転数を維持し,その状態で冷却容器内
の必要な冷却容量を制御するという制御機構を採用する
こともできる。いずれにしても,本発明の実施にあたっ
ては,図1に示すように,ヘッダ容器11は大気に開放
されるような開口を有していない方がよい。すなわち,
大気に開放される開口は各伝熱管9の開口端15のみと
して,例えば前掲の特開昭63−271074号公報や
特開平1−114682号公報に記載されているような
オーバーフロー管をヘッダ容器11に設けない方がよ
い。
In carrying out the present invention, a pressure gauge 16 for detecting the pressure in the header container 11 is attached, and when the indicated value of the pressure gauge 16 becomes a negative pressure for some reason, the pump 3 is stopped, It is preferable to stop the heat pump device as well. Further, the pump 3 is a variable rotation speed pump, the rotation speed of the pump is maintained so that the pressure gauge 16 maintains a predetermined positive pressure, and in that state, the required cooling capacity in the cooling container is controlled. A mechanism can also be adopted. In any case, the implementation of the present invention
As shown in FIG. 1, the header container 11 is open to the atmosphere.
It is better not to have such an opening. That is,
Only the open end 15 of each heat transfer tube 9 is opened to the atmosphere.
Then, for example, Japanese Patent Laid-Open No. 63-271074,
As described in JP-A-1-114682
It is better not to install the overflow pipe in the header container 11.
Yes.

【0016】ヘッダ容器11内の圧力は, 伝熱管9の内壁
と水との摩擦抵抗と,水量 (水速)に依存する。このこ
とは管数, 管径, 管長, 管材料, ヘッダ容器の容量 (水
頭)などとも関係することになる。本発明によれば,か
ような多数の因子がどのようなものであろうとも,ヘッ
ダ容器11内の圧力だけを指示値として,これが負圧にな
らないように供給水量を維持するのであり,たったこれ
だけの制御因子だけで縦型過冷却器の凍結トラブルを回
避できることがわかった。
The pressure in the header container 11 depends on the frictional resistance between the inner wall of the heat transfer tube 9 and water and the amount of water (water speed). This is also related to the number of pipes, pipe diameter, pipe length, pipe material, header container capacity (head), etc. According to the present invention, whatever the number of such factors is, only the pressure in the header container 11 is used as an indication value, and the supplied water amount is maintained so as not to become a negative pressure. It was found that the freezing trouble of the vertical subcooler can be avoided with only such control factors.

【0017】例えば,図2に示した各部の寸法が, L(伝熱管9の冷却長さ)=3950mm, M(ヘッダ容器11の内部高さ) =350mm, N(ヘッダ容器給水口17の高さ) =225mm であり,内径=7.5mm, 外径=9.5mmの伝熱管を81本使用
した過冷却器では,循環水量が約460l /minのところで
ヘッダ容器内の圧力が0mAq となり,これ以下では負
圧, これ以上では正圧となり, この正圧を維持するかぎ
り, 過冷度のバラツキが生じないことが判明した。
For example, the dimensions of each part shown in FIG. 2 are: L (cooling length of heat transfer tube 9) = 3950 mm, M (internal height of header container 11) = 350 mm, N (height of header container water supply port 17) ) = 225 mm, inner diameter = 7.5 mm, outer diameter = 9.5 mm In a supercooler that uses 81 tubes, the pressure inside the header container becomes 0 mAq at a circulating water volume of about 460 l / min, and below It became clear that the negative pressure became positive and the positive pressure became higher than this, and as long as this positive pressure was maintained, there was no variation in supercooling degree.

【0018】同様に, L(伝熱管9の冷却長さ)=3960mm, M(ヘッダ容器11の内部高さ) =347mm, N(ヘッダ容器給水口17の高さ) =222mm であり,内径=8.0 mm, 外径=9.0mm の伝熱管を81本使
用した過冷却器では,循環水量が約550l /minのところ
でヘッダ容器内の圧力が0mAq となり,これ以下では負
圧, これ以上では正圧となり, この正圧を維持するかぎ
り, 過冷度のバラツキが生じないことがわかった。
Similarly, L (cooling length of heat transfer tube 9) = 3960 mm, M (internal height of header container 11) = 347 mm, N (height of header container water supply port 17) = 222 mm, inner diameter = With a supercooler that uses 81 heat transfer tubes with an outer diameter of 8.0 mm and an outer diameter of 9.0 mm, the pressure inside the header container becomes 0 mAq when the circulating water flow rate is about 550 l / min. Below this pressure is negative pressure, above this pressure is positive pressure. Therefore, it was found that the supercooling did not fluctuate as long as this positive pressure was maintained.

【0019】このように,過冷却器の形状寸法が異なっ
ても, ヘッダ容器内圧力が負圧とならないような水量を
確保する制御を行えば多数本の伝熱管9から吐出する過
冷却水の温度のバラツキを回避することができ,縦型の
過冷却器2から安定して垂直下向の過冷却水流れを取出
すことができる。この過冷却水は分散板6に衝突反射し
て過冷却状態が解除され, 生成する氷滴は蓄熱槽1内に
分散して落下し,蓄熱槽1内にはシヤーベット状の氷7
が溜まる。
As described above, even if the shape and size of the supercooler are different, if control is performed to secure the amount of water such that the pressure in the header container does not become a negative pressure, the supercooled water discharged from the multiple heat transfer tubes 9 Variations in temperature can be avoided, and the vertically downward supercooling water flow can be stably taken out from the vertical subcooler 2. The supercooled water collides and reflects on the dispersion plate 6 to release the supercooled state, and the ice droplets generated disperse and fall into the heat storage tank 1, and the sheared ice 7
Accumulates.

【0020】なお,蓄熱槽1内において氷7と共存する
水(冷水)は,図示されてはいないが,建物内に配置さ
れるフアンコイルユニットやヒートポンプユニットの水
側熱交換器に循環され,空調用の熱源水(冷熱源)に供
され,再びこの蓄熱槽1内に戻される。過冷却水の製造
装置の運転(熱源機器の運転)と空調運転(負荷側の運
転)を同時に行うこともできるし,前者を安価な夜間電
力を利用して行うことにより夜間に蓄熱しこれを昼間の
冷房に利用してもよい。また,暖房運転の場合には,過
冷却水の製造装置は休止し,図示されていない熱源機器
例えばボイラーやヒートポンプ装置によって蓄熱槽1内
に温水を蓄え,この温水を負荷側に供給する。
Water (cold water) coexisting with the ice 7 in the heat storage tank 1 is circulated to the water side heat exchanger of a fan coil unit or a heat pump unit arranged in the building, though not shown. It is supplied to the heat source water (cold heat source) for air conditioning and is returned to the inside of the heat storage tank 1 again. The operation of the supercooled water production system (operation of the heat source equipment) and the air conditioning operation (operation of the load side) can be performed simultaneously, and the former can be stored at night by using inexpensive nighttime electric power and stored. It may be used for cooling in the daytime. In the heating operation, the supercooled water production device is stopped, hot water is stored in the heat storage tank 1 by a heat source device (not shown) such as a boiler or a heat pump device, and the hot water is supplied to the load side.

【0021】なお,図1ではヒートポンプ装置の蒸発器
を冷却容器とした例を示したが,この冷却容器には冷凍
機で製造したブラインを連続供給して伝熱管9を冷却す
るようにしてもよい。
Although FIG. 1 shows an example in which the evaporator of the heat pump device is used as a cooling container, brine produced by a refrigerator is continuously supplied to the cooling container to cool the heat transfer tube 9. Good.

【0022】[0022]

【発明の効果】本発明によると,過冷却器の伝熱管を縦
型とし,この伝熱管から過冷却水を垂直下向きに吐出さ
せるようにしたので,吐出流が曲線を描くことがなくな
って水流パターンが安定する。そして縦型であっても多
数本の伝熱管から吐出する過冷却水は過冷度のバラツキ
がなくなり,凍結トラブルを回避しながら過冷却水を安
定製造できる。この縦型過冷却器の採用によって,横型
過冷却器に比べて蓄熱槽の開口面積は小さくて済み,こ
のため縦長の蓄熱槽に構築することができる。縦長の蓄
熱槽では氷と水の比重差分離を行う上で有利であり,氷
の充填率も高くすることができるし,設置面積も少なく
て済む。このため,小型でも十分な蓄熱容量をもつ氷蓄
熱装置に構成することができる。
According to the present invention, since the heat transfer tube of the subcooler is of a vertical type and the supercooled water is discharged vertically downward from the heat transfer tube, the discharge flow does not draw a curve and the water flow is eliminated. The pattern is stable. Even in the vertical type, the supercooled water discharged from a large number of heat transfer tubes has no variation in the degree of supercooling, and it is possible to stably produce supercooled water while avoiding freezing troubles. By adopting this vertical type supercooler, the opening area of the heat storage tank is smaller than that of the horizontal type subcooler, and therefore it can be constructed as a vertically long heat storage tank. A vertically long heat storage tank is advantageous in separating the specific gravity of ice and water, and can increase the filling rate of ice and reduce the installation area. Therefore, even if it is small, it can be configured as an ice heat storage device having a sufficient heat storage capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用する空調用氷蓄熱設備の全体を示
す略断面図である。
FIG. 1 is a schematic sectional view showing an entire ice storage facility for air conditioning to which the present invention is applied.

【図2】図1の過冷却器の寸法を説明するための正面図
である。
FIG. 2 is a front view for explaining the dimensions of the supercooler of FIG.

【符号の説明】[Explanation of symbols]

1 蓄熱槽 2 過冷却器 3 ポンプ 5 過冷却水の連続流れ 6 分散板 7 シャーベット状の氷 9 伝熱管 10 冷却容器 11 上部ヘッダー 12 圧縮機 13 凝縮器 14 膨脹弁 16 圧力計 17 ヘッダ容器給水口 1 heat storage tank 2 supercooler 3 pump 5 continuous flow of supercooled water 6 dispersion plate 7 sherbet ice 9 heat transfer tube 10 cooling vessel 11 upper header 12 compressor 13 condenser 14 expansion valve 16 pressure gauge 17 header vessel water inlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 衛藤 一典 東京都町田市森野4−15−12 寺田ビル 森野B−311 (72)発明者 守屋 充 神奈川県座間市相模ケ丘3−7−25 サ ンライトヒルズ203 (72)発明者 谷野 正幸 神奈川県相模原市共和2−8−21−101 (56)参考文献 特開 昭63−271074(JP,A) 特開 平1−114682(JP,A) 実開 平2−527(JP,U) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazunori Eto 4-15-12 Morino, Machida, Tokyo Terada Building Morino B-311 (72) Inventor Mitsuru Moriya 3-7-25 Sagamigaoka, Zama, Kanagawa Prefecture Sunlight Hills 203 (72) Inventor Masayuki Tanino 2-8-21-101 Kyowa, Sagamihara-shi, Kanagawa (56) Reference JP-A-63-271074 (JP, A) JP-A-1-114682 (JP, A) Actual Kaihei 2-527 (JP, U)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷却媒体が通流する冷却容器内に,この
容器の上下壁を貫通して多数本の伝熱管を縦方向に配置
し,この冷却容器の上部に設けたヘッダ容器内に各伝熱
管の上端を開口させると共に該伝熱管の下端を冷却容器
下壁近傍において大気に開口させ,該ヘッダ容器に連続
通水することにより各伝熱管の下端開口から零゜C以下
に冷却された過冷却水を連続的に吐出させるようにした
過冷却水製造装置を用いて空調用氷蓄熱のための製氷を
行うにさいし,該ヘッダ容器内の圧力を検出し,過冷却
水製造装置の運転中において該圧力が負圧とならないに
充分な水量を該ヘッダ容器内に強制的に圧送し続けるこ
とを特徴とする過冷却水製造装置の運転方法。
1. A plurality of heat transfer tubes are vertically arranged in a cooling container in which a cooling medium flows, penetrating through the upper and lower walls of the container, and each heat transfer pipe is provided in a header container provided on the upper part of the cooling container. The upper end of each heat transfer tube was opened and the lower end of the heat transfer tube was opened to the atmosphere in the vicinity of the lower wall of the cooling container, and water was continuously passed through the header container to cool the heat transfer tube to below 0 ° C from the lower end opening. When performing ice making for ice heat storage for air conditioning using a supercooled water production device that continuously discharges supercooled water , the pressure in the header container is detected to operate the supercooled water production device. how the operation of the supercooled water production apparatus sufficient amount of water to the pressure does not become negative pressure, characterized in Rukoto continued forcibly pumped into the header vessel at medium.
【請求項2】 過冷却水製造装置は蓄熱槽の水面より上
に設置され,各伝熱管から吐出する過冷却水を分散板
突させたうえで蓄槽に落下させる請求項1に記載の
過冷却水製造装置の運転方法。
Wherein the supercooled water production apparatus is installed above the water surface of the heat storage tank, the supercooled water which discharges into a separating diffusion plate from the heat transfer tube
How the operation of the supercooled water production apparatus according to claim 1 for dropping the thermal storage tank after having allowed to collision.
【請求項3】 ヘッダ容器に供給される水は,氷蓄熱槽
内の水がポンプによって強制的に圧送される請求項1ま
たは2に記載の過冷却水製造装置の運転方法。
3. The method for operating a supercooled water producing apparatus according to claim 1, wherein the water supplied to the header container is the water in the ice heat storage tank which is forcibly pumped by a pump.
【請求項4】 各伝熱管は,その内壁温度が零℃以下で
−5.8℃以上の温度に維持される請求項1,2または
に記載の過冷却水製造装置の運転方法
4. A heat transfer tubes are according to claim 1 in which the inner wall temperature is maintained at a temperature of more than -5.8 ° C. at zero ° C. or less, 2 or
3. The method for operating the supercooled water producing apparatus according to item 3 .
JP3152268A 1991-05-29 1991-05-29 Operating method of supercooled water production equipment Expired - Fee Related JP2548637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152268A JP2548637B2 (en) 1991-05-29 1991-05-29 Operating method of supercooled water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152268A JP2548637B2 (en) 1991-05-29 1991-05-29 Operating method of supercooled water production equipment

Publications (2)

Publication Number Publication Date
JPH04353376A JPH04353376A (en) 1992-12-08
JP2548637B2 true JP2548637B2 (en) 1996-10-30

Family

ID=15536783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152268A Expired - Fee Related JP2548637B2 (en) 1991-05-29 1991-05-29 Operating method of supercooled water production equipment

Country Status (1)

Country Link
JP (1) JP2548637B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2044825C (en) * 1991-06-18 2004-05-18 Marc A. Paradis Full-range, high efficiency liquid chiller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376854A (en) * 1986-09-18 1988-04-07 Kawasaki Steel Corp Heat resistant ferritic steel having superior strength at high temperature
JPH0615942B2 (en) * 1987-04-28 1994-03-02 高砂熱学工業株式会社 Ice storage device for heat storage
JPH01114682A (en) * 1987-10-29 1989-05-08 Takasago Thermal Eng Co Ltd Ice making method and device for accumulating heat

Also Published As

Publication number Publication date
JPH04353376A (en) 1992-12-08

Similar Documents

Publication Publication Date Title
US4509344A (en) Apparatus and method of cooling using stored ice slurry
EP0603182B1 (en) Liquid chiller
US20110048058A1 (en) Thermal energy storage and cooling system with enhanced heat exchange capability
SE442779B (en) MELT HEATING CUMULATOR WITH A HEAT TRANSMISSION FLUID IN DIRECT CONTACT WITH THE STORAGE MEDIUM
US4254635A (en) Installation for the storage of continuously generated coldness and for the intermittent emission of at least a portion of the stored cold
US4321802A (en) Ice and water-making refrigeration apparatus
JP2548637B2 (en) Operating method of supercooled water production equipment
JP3122223B2 (en) Ice storage device
JP3197051B2 (en) Load storage water return method for ice storage system
JP2523349B2 (en) Ice storage and cooling equipment for multi-storey buildings
JP2532578Y2 (en) Ice storage device for air conditioning
CN220567553U (en) Supercooled water ice slurry manufacturing system
JPH0438176Y2 (en)
KR20200001489U (en) Liquid Phase Beverage Supercooling Device
JPH0744923Y2 (en) Supercooler for ice storage device for air conditioning
JPH086945B2 (en) Supercooled water production equipment for ice heat storage equipment for air conditioning
JP2911710B2 (en) Prevention method of ice freezing heat exchanger for ice storage in supercooled ice making method
JP2002048457A (en) Slurry storage device and supercooled water utilizing system
JPH0438177Y2 (en)
JPH0615242Y2 (en) Ice storage device for air conditioning
JPH0615942B2 (en) Ice storage device for heat storage
JPH0438179Y2 (en)
JPH0615243Y2 (en) Ice storage device for air conditioning
JPH051834A (en) Ice cold-heat storage method for air-conditioning
JPH065537Y2 (en) Ice making equipment for air conditioning

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees