JP2548429B2 - Control valve - Google Patents

Control valve

Info

Publication number
JP2548429B2
JP2548429B2 JP2165389A JP16538990A JP2548429B2 JP 2548429 B2 JP2548429 B2 JP 2548429B2 JP 2165389 A JP2165389 A JP 2165389A JP 16538990 A JP16538990 A JP 16538990A JP 2548429 B2 JP2548429 B2 JP 2548429B2
Authority
JP
Japan
Prior art keywords
valve
valve body
split
flow
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2165389A
Other languages
Japanese (ja)
Other versions
JPH0454383A (en
Inventor
治正 戸崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAZU KOGYO KK
Original Assignee
HAZU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAZU KOGYO KK filed Critical HAZU KOGYO KK
Priority to JP2165389A priority Critical patent/JP2548429B2/en
Publication of JPH0454383A publication Critical patent/JPH0454383A/en
Application granted granted Critical
Publication of JP2548429B2 publication Critical patent/JP2548429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は水道管路等の配水管路において、昼夜での
需要量差や、地域的な需要量差に対する対応、高所、低
所における給水量の標準化、水槽内における一定水位の
保持、節水時の給水量管理、緊急時における管路の自動
遮断等を目的として装設される制御弁に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a water distribution pipeline, such as a water pipeline, to cope with a demand difference between day and night and a regional demand difference, in high places and low places. The present invention relates to a control valve installed for the purpose of standardizing the amount of water supply, maintaining a constant water level in a water tank, managing the amount of water supply when saving water, and automatically shutting off a pipeline in an emergency.

[従来の技術] 流水口を絞って流液の圧力、流量を制御する場合に、
管路の口径(呼び口径)とほぼ等しい口径を有する流水
口を弁体によって開閉する大口径形制御弁や、多数個の
流水孔を有する板状乃至円筒状の弁体を移動させて開孔
度を増減し、流量を制御する多孔形制御弁等が使用され
ている。
[Prior Art] When controlling the pressure and flow rate of the flowing liquid by squeezing the flowing water port,
A large-diameter control valve that opens and closes a water flow port having a diameter approximately equal to the diameter of the pipe (nominal diameter) by a valve body, or a plate-shaped or cylindrical valve body that has a large number of water flow holes to open the hole. A porous control valve or the like that controls the flow rate by increasing or decreasing the degree is used.

[発明が解決しようとする課題] 前記大口径形制御弁では流水口の口径とほぼ等しい直
径を有する弁座と弁体とによって流水口を開閉するの
で、圧力及び流量の精細な制御が困難で、止水性や耐久
性が低下する不具合があり、また、前記多孔形制御弁で
は弁体の全開孔面積が管路面積の約30%に止まり、圧力
損失及び流量損失が大きくなる不具合があり、また、弁
体の全開孔面積を100%に拡大した場合には弁機構全体
の構造が過大となってコスト高となる不具合や、流量不
足のために主管路には設置し得ない不具合や、弁の構造
上圧力に対する歪みが大きくなって水密性が低下する等
の不具合があった。
[Problems to be Solved by the Invention] In the large-diameter control valve, since the water flow port is opened and closed by the valve seat and the valve body having a diameter substantially equal to the diameter of the water flow port, it is difficult to precisely control the pressure and the flow rate. , There is a problem that the waterproofness and durability are lowered, and in the porous control valve, there is a problem that the total opening area of the valve body is about 30% of the pipeline area, resulting in a large pressure loss and a large flow loss. Also, if the total opening area of the valve body is expanded to 100%, the structure of the entire valve mechanism becomes too large and the cost is high, and the problem that it cannot be installed in the main pipeline due to insufficient flow rate, Due to the structure of the valve, there was a problem that the strain on the pressure increased and the watertightness decreased.

本発明の課題は前記不具合を解消して精細な制御が可
能で制御システムの多様化を図り得る制御弁を提供する
ことである。
An object of the present invention is to provide a control valve that can solve the above-mentioned problems and can perform fine control and can diversify the control system.

[課題を解決するための手段] 本発明の制御弁は、上流側管路に接続される流入口
と、下流側流路に接続される流出口とを有する弁箱内に
はこの弁箱内を前記流入口に連通された流入室と、前記
流出口に連通された流出室とに区画する仕切り壁を形成
してこの仕切り壁には前記流入口の開口面積をほぼ等分
した開口面積を有する上分割流液口および下分割流液口
が開口された少なくとも1対の上下環体を同心状に取付
け、この上下環体に対向して設置され、制御モータによ
って駆動されて昇降する弁棒には前記上分割流液口を開
閉する上分割弁体を連結するとともに、前記弁棒の下方
には前記下環体内に密嵌状に嵌挿されて前記下分割流液
口内を流通する流液の流量を調整する羽根部と、前記下
環体の下弁座に接離するシール面とを有する下分割弁体
を設置し、前記上分割弁体には前記上環体の内径より拡
大された内径を有する円筒状の嵌合部が外周部に形成さ
れて前記弁棒に固定された第1弁体と、この第1弁体の
下方に設置されてスプリングによって閉止方向側へ付勢
され、前記下分割弁体に連結された第2弁体とを設けて
前記上分割弁体の内部には前記第1弁体と前記第2弁体
とによって囲まれた内圧弁室を形成し、前記第2弁体に
は前記嵌合部内に上下方向への摺動可能に密嵌されたピ
ストンと、前記上環体内に密嵌状に嵌挿されて前記上分
割流液口内を流通する流液の流量を調整する羽根部と、
前記上環体の上弁座に接離するシール面と、前記内圧弁
室と前記上分割流液口の入口部とを連通する連通孔とを
形成した構成を有する。
[Means for Solving the Problems] The control valve of the present invention has a valve box having an inflow port connected to an upstream pipe line and an outflow port connected to a downstream flow channel. Is formed into an inflow chamber that communicates with the inflow port and an outflow chamber that communicates with the outflow port, and an opening area that divides the opening area of the inflow port into substantially equal parts is formed in the partition wall. A valve rod which is concentrically mounted with at least one pair of upper and lower annular bodies having upper and lower divided flow ports and which is installed so as to face the upper and lower annular bodies and which is driven by a control motor to move up and down. Is connected to an upper split valve body that opens and closes the upper split flow port, and a flow that flows through the lower split flow port is tightly fitted in the lower ring below the valve rod. A lower part having a blade part for adjusting the flow rate of the liquid and a sealing surface for contacting with and separating from the lower valve seat of the lower ring body. A first valve body, in which a split valve body is installed, and a cylindrical fitting portion having an inner diameter larger than the inner diameter of the upper ring body is formed on the outer peripheral portion of the upper split valve body and fixed to the valve rod. And a second valve body which is installed below the first valve body and is urged toward the closing direction by a spring and which is connected to the lower split valve body. An internal pressure valve chamber surrounded by a first valve body and the second valve body, and a piston tightly fitted to the second valve body so as to be vertically slidable in the fitting portion; A blade portion that is fitted in a tight fit in the upper annulus to adjust the flow rate of the liquid flowing through the upper divided liquid flow opening,
The upper ring body has a structure in which a sealing surface that comes into contact with and separates from the upper valve seat and a communication hole that communicates the internal pressure valve chamber with the inlet portion of the upper split liquid flow port are formed.

(作用) 上記した構成を有する制御弁において、弁棒が制御モ
ータによって駆動されて上下分割弁体とともに昇降する
と、上下分割流液口を流通する流液の流量が上下分割弁
体の各羽根部によって同様に調整される。上下分割流液
口を全閉するに際し、上下分割弁体が下降端へ下降して
上下分割弁体の各シール面が上下環体の上下弁座にそれ
ぞれ密接すると、上分割弁体の第2弁体がスプリングの
弾発力に抗して上方へ押動されて反閉止方向側へ一旦変
位してから、第2弁体の羽根部を押上げる上分割流液口
内の液圧と、連通孔を通じて内圧弁室内へ流入した流液
が第2弁体のピストンを押下げる液圧との差圧によって
第2弁体が閉止方向側へ押し戻され、第2弁体のシール
面が上環体の上弁座に圧接するとともに、第2弁体と同
様に挙動する下分割弁体のシール面が下環体の下弁座に
圧接して上下分割流液口が同期して密閉される。
(Operation) In the control valve having the above-described configuration, when the valve rod is driven by the control motor to move up and down together with the upper and lower split valve bodies, the flow rate of the liquid flowing through the upper and lower split liquid flow ports is reduced by the blade portions of the upper and lower split valve bodies. Adjusted as well. When the upper and lower split valve bodies are fully closed, the upper and lower split valve bodies descend to the lower end and the respective seal surfaces of the upper and lower split valve bodies come into close contact with the upper and lower valve seats of the upper and lower annular bodies respectively. The valve body is pushed upward against the elastic force of the spring and is once displaced in the direction opposite to the closing direction, and then communicates with the hydraulic pressure in the upper split flow port that pushes up the blade of the second valve body. The pressure difference between the liquid flowing into the internal pressure valve chamber through the hole and the liquid pressure pushing down the piston of the second valve body pushes the second valve body back toward the closing direction side, and the sealing surface of the second valve body becomes the upper ring body. While being pressed against the upper valve seat, the sealing surface of the lower split valve body, which behaves similarly to the second valve body, is pressed against the lower valve seat of the lower ring body, and the upper and lower split flow ports are synchronously sealed.

[発明の効果] 本発明は前記したように構成したことによって、弁箱
内へ流入した流液が縮少された開口面積を有する各分割
流液口内を分配されて流通し、各分割流液口が各分割弁
体によって個々に開閉されるので、流液の圧力や流量の
急激な変化を抑制して流液の圧力や流量を精細に調整す
ることができ、また全体構造の大型化を抑制して全開時
の通液面積を確保することができる。
[Advantages of the Invention] With the present invention configured as described above, the flowing liquid flowing into the valve box is distributed and circulated through the respective divided flowing liquid ports having the reduced opening area, and the divided flowing liquids are distributed. Since the mouth is individually opened and closed by each split valve element, it is possible to finely adjust the pressure and flow rate of the liquid flow by suppressing sudden changes in the pressure and flow rate of the liquid flow, and to increase the overall structure. It is possible to suppress and secure the liquid passing area when fully opened.

また、上下分割流液口を全閉するに際し、上下分割弁
体の各シール面が上下弁座に弾性的に当接して、上分割
弁体の第2弁体および下分割弁体が上方へ一旦逃避移動
してから、第2弁体および下分割弁体が下方へ押し戻さ
れて前記各シール面が上下弁座にそれぞれ圧接するの
で、上下分割弁体が上下弁座に突き当るときの衝撃を効
果的に吸収および緩衝することができるとともに、上分
割弁体のシール面が上弁座に当接するタイミングと、下
分割弁体のシール面が下弁座に当接するタイミングとが
ずれたり上下分割弁体の間隔が摩耗等によって経時的に
変動しても、上下分割弁体の各シール面をそれぞれ適切
な接圧で上下弁座に圧接させて、上下分割流液口を上下
分割弁体によってそれぞれ的確に密閉することができ、
上下分割流液口を全閉したときの液洩れを無くすことか
できる。
Further, when the upper and lower split flow ports are fully closed, the respective sealing surfaces of the upper and lower split valve bodies elastically contact the upper and lower valve seats, and the second valve body and the lower split valve body of the upper split valve body move upward. After the escape movement once, the second valve body and the lower split valve body are pushed back downward, and the respective sealing surfaces come into pressure contact with the upper and lower valve seats respectively, so the impact when the upper and lower split valve bodies hit the upper and lower valve seats. Can be effectively absorbed and buffered, and the timing at which the seal surface of the upper split valve body contacts the upper valve seat and the timing at which the seal surface of the lower split valve body contacts the lower valve seat may shift or Even if the distance between the split valve elements changes over time due to wear, etc., the upper and lower split valve bodies are brought into contact with the upper and lower split valve bodies by pressing the respective seal surfaces of the upper and lower split valve elements against the upper and lower valve seats with appropriate contact pressures. Can be properly sealed by
It is possible to prevent liquid leakage when the upper and lower split flow liquid ports are fully closed.

従って、制御モータによる弁棒および上下分割弁体の
自動昇降制御および上下分割流液口の自動開閉制御が可
能となって制御弁を各種の流量制御システムに組込むこ
とができ、下流圧力の一定制御、末端圧力の一定制御、
上流水位乃至下流水位の一定制御等の各種制御を経済的
に遂行することができる。
Therefore, the control motor can automatically control the vertical movement of the valve rod and the upper and lower split valve bodies and the automatic opening and closing control of the upper and lower split flow ports, and the control valve can be incorporated into various flow control systems, and the constant control of the downstream pressure can be achieved. , Constant control of end pressure,
Various controls such as constant control of the upstream water level to the downstream water level can be economically performed.

また、分割弁体対の個数及び各対の分割弁体の駆動態
様を目的に合わせて変更して流液の圧力及び流量の制御
態様を多様化することができる。
Further, the number of split valve element pairs and the driving mode of each pair of split valve elements can be changed according to the purpose to diversify the control modes of the pressure and flow rate of the flowing liquid.

[実施例] 次に、本発明が2連形の制御弁に適用された一実施例
を第1図、第2図に従って説明する。
[Embodiment] Next, an embodiment in which the present invention is applied to a double control valve will be described with reference to FIGS. 1 and 2.

配水管路内を流通する流液の圧力及び流量をコントロ
ールするために装設された制御弁Vにおいて、配水管路
の途中に接続されたほぼ横形円筒状の弁箱1上には回転
動作を昇降動作に変換する伝動機構2a,2aがそれぞれ内
設された1対のヨーク2,2が設置され、右側のヨーク2
上にはサーボモータ等の制御モータ4が付設されて制御
モータ4によって回転駆動される減速機3Aが設置される
とともに、左側のヨーク2上には制御モータ4の出力軸
に連結された入力軸によってモータ付減速機3Aと同期し
て回転駆動される減速機3Bが設置され、両伝動機構2aの
下端には並行状に垂設されて下端部が弁箱1内に突入さ
れた1対の弁棒5,5の上端部がそれぞれ連結されてい
る。
In the control valve V installed to control the pressure and flow rate of the liquid flowing in the water distribution pipe, the rotary operation is performed on the substantially horizontal cylindrical valve box 1 connected in the middle of the water distribution pipe. A pair of yokes 2 and 2 in which transmission mechanisms 2a and 2a for converting to a lifting operation are installed respectively are installed, and the right yoke 2
A control motor 4 such as a servo motor is attached above the speed reducer 3A, which is rotationally driven by the control motor 4, and an input shaft connected to the output shaft of the control motor 4 on the left yoke 2. A speed reducer 3B, which is driven to rotate in synchronism with the speed reducer 3A with a motor, is installed, and a pair of transmission mechanisms 2a are vertically installed in parallel at the lower ends of the transmission mechanisms 2a, the lower ends of which are projected into the valve box 1. The upper ends of the valve rods 5, 5 are connected to each other.

弁箱1の左右端部には上流側管路に接続された流入口
1aと、下流側管路に接続された流出口1bとがそれぞれ開
口されるとともに、弁箱1内には上下に離隔してそれぞ
れ水平状に形成された上下水平部6a,6aと、断面が円弧
状に形成されて両水平部6aの左端部にそれぞれ連接され
た湾曲部6bと、両水平部6aの右端部と弁箱1の上下内壁
面とに傾斜状態でそれぞれ連接された上下1対の傾斜部
6c,6cとを有する仕切り壁6が形設されている。
At the left and right ends of the valve box 1, there are inlets connected to the upstream pipe line.
1a and an outlet 1b connected to the downstream side pipeline are respectively opened, and upper and lower horizontal portions 6a, 6a formed horizontally in the valve box 1 are vertically separated from each other. A curved portion 6b formed in an arc shape and connected to the left end portions of both horizontal portions 6a, and a pair of upper and lower portions connected to the right end portions of both horizontal portions 6a and the upper and lower inner wall surfaces of the valve box 1 in an inclined state. Slope of
A partition wall 6 having 6c and 6c is formed.

弁箱1内には流入口1aに連通された流入室14と、流出
口1bに連通された流出室15とが仕切り壁6によって区画
形成されている。
An inflow chamber 14 communicating with the inflow port 1a and an outflow chamber 15 communicating with the outflow port 1b are defined by the partition wall 6 in the valve box 1.

仕切り壁6の上下水平部6aにはそれぞれ上下同心状に
並設された2対のリング状の上環体7Aおよび下環体7Bが
両弁棒5にそれぞれ対向して取付けられ、この上下環体
7A,7Bには流入口1aの開口面積を約4等分した開口面積
を有する上分割流液口9Aおよび下分割流液口9Bが開口さ
れ、本例では各分割流液口9A,9Bの開口面積は流入口1a
の開口面積の約1/4に設定されている。
Two pairs of ring-shaped upper annular bodies 7A and lower annular bodies 7B, which are arranged concentrically in the vertical direction, are mounted on the upper and lower horizontal portions 6a of the partition wall 6 so as to face both valve rods 5, respectively.
7A and 7B are provided with an upper split flow port 9A and a lower split flow port 9B each having an opening area obtained by dividing the open area of the flow inlet 1a into about four equal parts. In this example, each of the divided flow ports 9A and 9B is The opening area is the inlet 1a
It is set to about 1/4 of the opening area of.

各上環体7Aの上端面には上分割流液口9Aの出口部9bの
回りに周設された上弁座8Aがそれぞれ水平状に形成され
るとともに、各下環体7Bの内周面の上端縁には下分割流
液口9Bの出口部の回りに周設された下弁座8Bがそれぞれ
上弁座8Aと同心状に形成されている。
On the upper end surface of each upper annulus 7A, the upper valve seats 8A circumferentially provided around the outlet portion 9b of the upper split flow inlet 9A are formed horizontally, and the inner peripheral surface of each lower annulus 7B is formed. At the upper edge, lower valve seats 8B that are provided around the outlet of the lower divided liquid flow port 9B are formed concentrically with the upper valve seat 8A.

2対の分割流液口9A,9Bを一斉に開閉制御するために
弁箱1内に装入されて制御モータ4によって同期的に駆
動制御される1対の複合弁機構12,12は弁棒5の下端に
組付けられて上分割流液口9Aを開閉する上分割弁体16と
上分割弁体16に取付けられて垂下された連結棒18を介し
て上分割弁体16に連結されて下分割流液口9Bを開閉する
下分割弁体17とをそれぞれ備えている。
A pair of compound valve mechanisms 12 and 12 are valve rods that are inserted into the valve box 1 to control the opening and closing of the two pairs of split liquid flow outlets 9A and 9B at the same time and are synchronously driven and controlled by the control motor 4. 5 is connected to the upper split valve body 16 through an upper split valve body 16 which is attached to the lower end of the valve 5 and opens and closes the upper split flow port 9A, and a connecting rod 18 which is attached to and suspended from the upper split valve body 16. A lower split valve body 17 that opens and closes the lower split flow port 9B is provided.

上分割弁体16は第1弁体20および第2弁体24を備え、
第1弁体20はその上端部に螺嵌された取付けねじ23によ
って弁棒5の下端に共同昇降動可能に連結され、この第
1弁体20の周縁部には円筒状で上弁座8の内径D1より拡
大された内径D2を有する嵌合部21が形成され、この嵌合
部21の下端には内方へ若干突出された掛止縁22が周状に
形成されている。
The upper split valve body 16 includes a first valve body 20 and a second valve body 24,
The first valve body 20 is connected to the lower end of the valve rod 5 by a mounting screw 23 screwed onto the upper end thereof so as to be able to move up and down together. The peripheral edge of the first valve body 20 has a cylindrical upper valve seat 8 A fitting portion 21 having an inner diameter D2 that is larger than the inner diameter D1 is formed, and at the lower end of the fitting portion 21, a hooking edge 22 that slightly protrudes inward is formed in a circumferential shape.

第1弁体20の下方に設置された第2弁体24には第1弁
体20の嵌合部21内に上下方向への摺動可能に密嵌されて
第1弁体20の掛止縁22によって下動端が規定されたピス
トン25と、上弁座8Aの内径(上還体7Aの内径)D1と等し
い外径を有し、上還体7A内に密嵌状に嵌挿されて上分割
流液口9A内を流通する流液の流量を調整する羽根部26と
が形成されている。
The second valve body 24 installed below the first valve body 20 is tightly fitted in the fitting portion 21 of the first valve body 20 so as to be slidable in the vertical direction, and the first valve body 20 is locked. The piston 25 having a lower moving end defined by the rim 22 and an outer diameter equal to the inner diameter of the upper valve seat 8A (inner diameter of the upper return body 7A) D1 are fitted in the upper return body 7A in a close-fitting manner. And a blade portion 26 for adjusting the flow rate of the liquid flowing through the upper split liquid flowing port 9A.

第2弁体24は弁棒5の下端に外嵌されて上分割弁体16
内に装入されたスプリング29によって閉止方向(下方)
へ付勢されている。
The second valve body 24 is externally fitted to the lower end of the valve rod 5 so that the upper split valve body 16
Closing direction (downward) due to spring 29 inserted inside
Has been energized.

ピストン25の下端の中心部には前記連結棒18の上端部
が螺嵌されたねじ部25aが形成され、羽根部26およびシ
ール部材27は連結棒18によってピストン25に締結され、
第2弁体24は連結棒18によって下分割弁体17に連結され
ている。
At the center of the lower end of the piston 25, a threaded portion 25a into which the upper end of the connecting rod 18 is screwed is formed, and the blade portion 26 and the seal member 27 are fastened to the piston 25 by the connecting rod 18.
The second valve body 24 is connected to the lower split valve body 17 by a connecting rod 18.

ピストン25の下面には弾性材で円輪板状に形成された
シール部材27が添設され、このシール部材27の下面には
上弁座8Aに接離するシール面28が環状に形成されてい
る。
A ring-shaped seal member 27 made of an elastic material is attached to the lower surface of the piston 25, and a ring-shaped seal surface 28 that contacts and separates from the upper valve seat 8A is formed on the lower surface of the seal member 27. There is.

第2弁体24の羽根部26には上分割弁体16が上昇および
下降するに伴って上分割流液口9Aを流通する流液の流量
が漸増および漸減するようにそれぞれほぼ逆V形状に切
欠れて切欠幅が上方から下方へ漸増した形状をそれぞれ
有し、周方向へ等間隔で配列された複数個の切欠部26a
が形成されている。
In the vane portion 26 of the second valve body 24, the flow rate of the liquid flowing through the upper split flow opening 9A gradually increases and decreases as the upper split valve body 16 moves up and down, respectively, so that the flow rate of the flow is substantially inverted V. A plurality of notches 26a each having a notch and a notch width gradually increasing from the upper side to the lower side and arranged at equal intervals in the circumferential direction.
Are formed.

ピストン25の上面の外周縁25bと、第1弁体20の本体
部の下面の外周縁20bとの間には上方への第2弁体24の
移動を許容する隙間30が形成されるとともに、上分割弁
体16の内部には第2弁体20と第2弁体24とによって囲ま
れた内圧弁室31が形成されている。
A gap 30 is formed between the outer peripheral edge 25b of the upper surface of the piston 25 and the outer peripheral edge 20b of the lower surface of the main body of the first valve body 20 to allow upward movement of the second valve body 24, and Inside the upper split valve body 16, an internal pressure valve chamber 31 surrounded by the second valve body 20 and the second valve body 24 is formed.

第2弁体24には内圧弁室31内と上分割流液口9Aの入口
部9aとを連通する連通孔32が垂直状に貫設され、内圧弁
室31内には連通孔32を通じて内圧弁室31内へ流入した流
液が充満される。
A communication hole 32 that vertically connects the inside of the internal pressure valve chamber 31 and the inlet portion 9a of the upper split flow opening 9A is vertically formed in the second valve body 24, and the inside of the internal pressure valve chamber 31 is connected through the communication hole 32. The liquid flowing into the pressure valve chamber 31 is filled.

弁棒5及び第1弁体20が上昇端へ移動したときには、
第2弁体24は第1弁体20との間の隙間30が最大となった
状態で第1弁体20とともに上昇端へ移動してシール面28
が上弁座8Aの上方へ変位しかつ羽根部26の下端部が上分
割流液口9A内に嵌挿されて上分割流液口9Aの流通面積が
最大となり、弁棒5及び第1弁体20が下降するに伴って
羽根部26と上分割流液口9Aとの相対位置が変化して上分
割流液口9Aの流通面積が漸減する。
When the valve rod 5 and the first valve body 20 move to the rising end,
The second valve body 24 moves to the ascending end together with the first valve body 20 in the state where the gap 30 between the second valve body 24 and the first valve body 20 is maximized and the sealing surface 28
Is displaced above the upper valve seat 8A and the lower end portion of the blade portion 26 is fitted into the upper split flow inlet 9A to maximize the flow area of the upper split flow outlet 9A, and the valve rod 5 and the first valve As the body 20 descends, the relative position between the blade portion 26 and the upper split flow liquid outlet 9A changes, and the flow area of the upper split flow liquid outlet 9A gradually decreases.

弁棒5及び第1弁体20が下降端へ移動してセンサの指
令によって停止すると、ピストン25のシール面28が上弁
座8Aに弾性的に密接してピストン25が反閉止方向側へス
プリング29の弾発力に抗して押動され、第2弁体24が反
閉止方向側へ弾性変位して一旦停止し、内圧弁室31内の
流液の一部が連通孔32を通じて上分割流液口9Aの入口部
9aへ流出する。第2弁体24が反閉止方向側へ押動されて
停止すると、内圧弁室31内の液圧が上分割流液口9Aの入
口部9a側の液圧と均等となるまで流液が上分割流液口9A
の入口部9aから連通孔32を通じて内圧弁室31内へ流入す
る。ピストン25の外径すなわち第1弁体20の嵌合部21の
内径D2は羽根部26の外径すなわち上弁座8Aの内径D1より
拡大されており、ピストン25を押下げる押圧面積は羽根
部26を押上げる押圧面積より増大されているので、ピス
トン25を押下げる液圧と羽根部26を押下げる液圧との差
圧によってピストン25が閉止方向側へ自動的に押圧され
てシール面28が弁座8に一定の接圧で圧接し、上分割流
液口9Aが第2弁体24によって密閉状に閉止される。
When the valve rod 5 and the first valve body 20 move to the lower end and stop according to a command from the sensor, the sealing surface 28 of the piston 25 elastically comes into close contact with the upper valve seat 8A, and the piston 25 springs in the anti-closing direction. The second valve body 24 is elastically displaced toward the anti-closing direction side and is temporarily stopped by being pushed against the elastic force of 29, and a part of the liquid flow in the internal pressure valve chamber 31 is divided upward through the communication hole 32. Inlet of the liquid outlet 9A
Outflow to 9a. When the second valve body 24 is pushed in the direction opposite to the closing direction and stopped, the liquid flow is increased until the liquid pressure in the internal pressure valve chamber 31 becomes equal to the liquid pressure on the inlet portion 9a side of the upper split flow liquid outlet 9A. Split flow port 9A
Flows into the internal pressure valve chamber 31 from the inlet 9a through the communication hole 32. The outer diameter of the piston 25, that is, the inner diameter D2 of the fitting portion 21 of the first valve body 20 is larger than the outer diameter of the blade portion 26, that is, the inner diameter D1 of the upper valve seat 8A, and the pressing area for pushing down the piston 25 is the blade portion. Since it is larger than the pressing area that pushes up the piston 26, the piston 25 is automatically pushed toward the closing direction by the pressure difference between the hydraulic pressure that pushes down the piston 25 and the hydraulic pressure that pushes down the blade portion 26, and the sealing surface 28 Is pressed against the valve seat 8 with a constant contact pressure, and the upper split flow opening 9A is closed by the second valve body 24 in a sealed manner.

下分割弁体17の中心部には連結棒18の下端部が貫挿さ
れるとともに、下分割弁体17は下部が弁箱1の下壁部に
取付けられた支持部材34によって上下スライド可能に支
持されて上端部が連結棒18の下端のねじ部18aに螺嵌さ
れた弁体押え35によって連結棒18に締結されている。下
分割弁体17の上端部の外周面には下弁座8Bに接離するシ
ール面17aが傾斜状に形成されるとともに、シール面17a
の下方には第2弁体24の羽根部26とほぼ等形状の羽根部
17bが形成されている。
The lower end of the connecting rod 18 is inserted through the central portion of the lower split valve body 17, and the lower portion of the lower split valve body 17 is supported by a support member 34 attached to the lower wall portion of the valve box 1 so as to be vertically slidable. The upper end portion is fastened to the connecting rod 18 by the valve body pressing member 35 screwed into the threaded portion 18a at the lower end of the connecting rod 18. On the outer peripheral surface of the upper end portion of the lower split valve body 17, a sealing surface 17a that comes in contact with and separates from the lower valve seat 8B is formed in an inclined shape, and the sealing surface 17a
Below the blade, the blade portion of the second valve body 24 has almost the same shape as the blade portion 26.
17b is formed.

下分割弁体17は連結棒18を介して上分割弁体16の第2
弁体24に共同上下動可能に連結され、上下分割流液口9
A,9Bは第2弁体24及び下分割弁体17によって同期的に開
閉される。
The lower split valve element 17 is connected to the second split valve element 16 via the connecting rod 18.
It is connected to the valve body 24 so that it can move up and down jointly, and the upper and lower split flow ports
A and 9B are opened and closed synchronously by the second valve body 24 and the lower split valve body 17.

制御モータ4はこの制御モータ4を回転制御して弁箱
1内を流通する流液の圧力及び流量をコントロールする
制御装置に接続され、この制御装置には制御弁Vより下
流の下流側管路内の流液の圧力を検出する圧力センサ
や、制御弁Vより上流の上流側管路内の流液の流量を検
出する流量センサや、上流側管路内の流液の圧力と上流
側管路内の流液の圧力との差圧を検出する差圧センサ
や、上流側管路もしくは下流側管路に接続された水槽内
の水位を検出する水位センサ等の検出信号と、各分割流
液口11A,11Bの開度を検出する開度センサの検出信号等
が入力され、制御装置の出力部がこれらの検出信号に基
づいて出力信号を発信して制御モータ4が回転制御され
る。
The control motor 4 is connected to a control device that controls the rotation and speed of the control motor 4 to control the pressure and flow rate of the liquid flowing in the valve box 1. The control device 4 has a downstream pipe line downstream of the control valve V. A pressure sensor for detecting the pressure of the flowing liquid inside, a flow sensor for detecting the flow rate of the flowing liquid in the upstream pipe upstream of the control valve V, a pressure of the flowing liquid in the upstream pipe and the upstream pipe Detection signals from the differential pressure sensor that detects the pressure difference with the pressure of the flowing liquid in the channel, the water level sensor that detects the water level in the water tank connected to the upstream pipeline or the downstream pipeline, and each split flow A detection signal of an opening sensor that detects the opening of the liquid ports 11A and 11B is input, and the output unit of the control device outputs an output signal based on these detection signals to control the rotation of the control motor 4.

続いて、上記した構成をもつ実施例の作用と効果を説
明する。
Next, the operation and effect of the embodiment having the above-mentioned configuration will be described.

本例では上流側管路に接続される流入口1aと、下流側
流路に接続される流出口1bとを有する弁箱1内にはこの
弁箱1内を前記流入口1aに連通された流入室14と、流出
口1bに連通された流出室15とに区画する仕切り壁6を形
成してこの仕切り壁6には流入口1aの開口面積を約4等
分した開口面積を有する上分割流液口9Aおよび下分割流
液口9Bが開口された2対の上下環体7A,7Bを同心状に取
付け、各対の上下環体7A,7Bにそれぞれ対向して設置さ
れ、制御モータ4によって駆動されて昇降する各弁棒5
には上分割流液口9Aを開閉する上分割弁体16をそれぞれ
連結するとともに、各弁棒5の下方には下環体7B内に密
嵌状に嵌挿されて下分割流液口9B内を流通する流液を調
整する羽根部17bと、下環体7Bの下弁座8Bに接離するシ
ール面17aとを有する下分割弁体17をそれぞれ設置し、
各上分割弁体16には上環体7Aの内径D1より拡大された内
径D2を有する円筒状の嵌合部21が外周部に形成されて弁
棒5に固定された第1弁体20と、この第1弁体20の下方
に設置されてスプリング29によって閉止方向側へ付勢さ
れ、下分割弁体17に連結された第2弁体24とをそれぞれ
設けて各上分割弁体16の内部には第1弁体20と第2弁体
24とによって囲まれた内圧弁室31をそれぞれ形成し、第
2弁体24には嵌合部21内に上下方向への摺動可能に密嵌
されたピストン25と、上環体7A内に密嵌状に嵌挿されて
上分割流液口9A内を流通する流液の流量を調整する羽根
部26と、上環体7Aの上弁座8Aに接離するシール面28と、
内圧弁室31と上分割流液口9Aの入口部9aとを連通する連
通孔32とを形成してある。
In this example, the inside of the valve box 1 having the inflow port 1a connected to the upstream pipe and the outflow port 1b connected to the downstream flow channel is communicated with the inflow port 1a. A partition wall 6 is formed which divides an inflow chamber 14 and an outflow chamber 15 communicating with the outflow port 1b, and the partition wall 6 has an opening area obtained by dividing the opening area of the inflow port 1a into four equal parts. Two pairs of upper and lower annular members 7A and 7B, which are provided with the liquid outlet 9A and the lower divided liquid outlet 9B, are concentrically attached to each other, and the upper and lower annular members 7A and 7B of each pair are opposed to each other. Each valve rod 5 driven by
Is connected to the upper split valve body 16 for opening and closing the upper split flow port 9A, and the lower split flow port 9B is tightly fitted in the lower ring body 7B below each valve rod 5. A blade portion 17b for adjusting the liquid flowing through the inside and a lower split valve body 17 having a seal surface 17a that comes in contact with and separates from the lower valve seat 8B of the lower ring body 7B are installed,
Each upper split valve body 16 has a first valve body 20 fixed to the valve rod 5 with a cylindrical fitting portion 21 having an inner diameter D2 which is larger than the inner diameter D1 of the upper ring body 7A, formed on the outer peripheral portion, The inside of each upper split valve body 16 is provided below the first valve body 20 and is urged toward the closing direction by a spring 29 and provided with a second valve body 24 connected to the lower split valve body 17. The first valve body 20 and the second valve body
An internal pressure valve chamber 31 surrounded by 24 and a piston 25 tightly fitted in the fitting portion 21 so as to be slidable in the vertical direction and a tight fit in the upper ring body 7A. A blade portion 26 that is fitted into the upper split liquid flow opening 9A to adjust the flow rate of the flowing liquid, and a sealing surface 28 that contacts and separates from the upper valve seat 8A of the upper ring body 7A,
A communication hole (32) is formed which connects the internal pressure valve chamber (31) and the inlet portion (9a) of the upper split flow liquid outlet (9A).

従って、弁箱1内へ流入した流液が縮少された開口面
積を有する各分割流液口9A,9B内を分配されて流通し、
各分割流液口9A,9Bが各分割弁体16,17によって個々に開
閉されるので、流液の圧力や流量の急激な変化を抑制し
て流液の圧力や流量を精細に調整することができ、また
全体構造の大型化を抑制して全開時の通液面積を確保す
ることができる。
Therefore, the liquid flowing into the valve box 1 is distributed and circulated in each of the divided liquid flow ports 9A and 9B having the reduced opening area,
Since each of the divided liquid flow ports 9A and 9B is individually opened and closed by the divided valve bodies 16 and 17, it is possible to finely adjust the pressure and flow rate of the liquid flow by suppressing sudden changes in the pressure and flow rate of the liquid flow. In addition, it is possible to prevent the overall structure from increasing in size and to secure a liquid passage area when fully opened.

また、上下分割流液口9A,9Bを全閉するに際し、上下
分割弁体16,17の各シール面28,17aが上下弁座8A,8Bに弾
性的に当接して、上分割弁体16の第2弁体24および下分
割弁体17が上方へ一旦逃避移動してから、第2弁体24お
よび下分割弁体17が下方へ押し戻されて各シール面28,1
7aが上下弁座8A,8Bにそれぞれ圧接するので、上下分割
弁体16,17が上下弁座8A,8Bに突き当るときの衝撃を効果
的に吸収および緩衝することができるとともに、上分割
弁体16のシール面28が上弁座8Aに当接するタイミング
と、下分割弁体17のシール面17aが下弁座8Bに当接する
タイミングとがずれたり、上下分割弁体16,17の間隔が
摩耗等によって経時的に変動しても、上下分割弁体16,1
7の各シール面28,17aをそれぞれ適切な接圧で上下弁座8
A,8Bに圧接させて、上下分割液流口9A,9Bを上下分割弁
体16、17によってそれぞれ的確に密閉することができ、
上下分割流液口9A,9Bを全閉したときの液洩れを無くす
ことができる。
Further, when the upper and lower split flow ports 9A, 9B are fully closed, the sealing surfaces 28, 17a of the upper and lower split valve bodies 16, 17 elastically abut the upper and lower valve seats 8A, 8B, and the upper split valve body 16 After the second valve body 24 and the lower split valve body 17 once escape and move upward, the second valve body 24 and the lower split valve body 17 are pushed back to the respective sealing surfaces 28, 1
Since 7a presses against the upper and lower valve seats 8A and 8B, respectively, it is possible to effectively absorb and cushion the impact when the upper and lower split valve bodies 16 and 17 strike the upper and lower valve seats 8A and 8B, and also to divide the upper split valve. The timing at which the sealing surface 28 of the body 16 contacts the upper valve seat 8A and the timing at which the sealing surface 17a of the lower split valve body 17 contacts the lower valve seat 8B are different, or the interval between the upper and lower split valve bodies 16, 17 is Even if it fluctuates over time due to wear, etc.
Each sealing surface 28, 17a of 7 with the appropriate contact pressure
By making pressure contact with A and 8B, the upper and lower split liquid outlets 9A and 9B can be accurately sealed by the upper and lower split valve bodies 16 and 17, respectively.
Liquid leakage when the upper and lower split flow ports 9A, 9B are fully closed can be eliminated.

従って、制御モータ4による弁棒5および上下分割弁
体16,17の自動昇降制御および上下分割流液口9A,9Bの自
動開閉制御が可能となって制御弁Vを各種の流量制御シ
ステムに組込むことができ、下流圧力の一定制御、末端
圧力の一定制御、上流水位乃至下流水位の一定制御等の
各種制御を経済的に遂行することができる。
Therefore, the control motor 4 can automatically control the vertical movement of the valve rod 5 and the upper and lower split valve bodies 16 and 17 and the automatic opening and closing control of the upper and lower split flow ports 9A and 9B, and incorporate the control valve V into various flow rate control systems. Therefore, various controls such as constant control of the downstream pressure, constant control of the end pressure, and constant control of the upstream water level or the downstream water level can be economically performed.

また、分割弁体対の個数及び各対の分割弁体の駆動態
様を目的に合わせて変更して流液の圧力及び流量の制御
態様を多様化することができる。
Further, the number of split valve element pairs and the driving mode of each pair of split valve elements can be changed according to the purpose to diversify the control modes of the pressure and flow rate of the flowing liquid.

なお、上記実施例では両弁棒5及び両複合弁機構12を
共通の制御モータ4によって同期的に駆動制御するよう
に構成したが、両弁棒5及び両複合弁機構12を別個の制
御モータによって経時的に駆動制御し、例えば一方の複
合弁機構12が一方の上下分割流液口9A,9Bを全開する位
置へ上動した時点で、他方の複合弁機構12が上動を開始
するようにしてもよい。
In the above embodiment, both valve rods 5 and both compound valve mechanisms 12 are configured to be synchronously driven and controlled by the common control motor 4, but both valve rods 5 and both compound valve mechanisms 12 are controlled separately. Drive control over time by, for example, when one composite valve mechanism 12 moves up to a position where one upper and lower split flow ports 9A, 9B are fully opened, the other composite valve mechanism 12 starts to move up. You may

また、両複合弁機構12を制御モータ4に代えてエアシ
リンダや油圧シリンダ等の他のアクチュエータによって
駆動制御するようにしてもよい。
Further, both the composite valve mechanisms 12 may be driven and controlled by another actuator such as an air cylinder or a hydraulic cylinder instead of the control motor 4.

次に、制御弁Vの他例について説明すると、第3図に
示す1連形の制御弁Vでは弁箱1Aの仕切り壁6Aには上下
1対の分割流液口9A,9Bが開口され、弁箱1A内には両分
割流液口9A,9Bを同期的に開閉する上下1対の分割弁体1
6,17が装入されている。
Next, another example of the control valve V will be explained. In the control valve V of the single type shown in FIG. 3, a pair of upper and lower split flow ports 9A, 9B are opened in the partition wall 6A of the valve box 1A, Inside the valve box 1A, a pair of upper and lower split valve bodies 1 that open and close both split flow ports 9A and 9B synchronously.
6,17 are charged.

第4図に示す3連形の制御弁Vでは弁箱1B内の仕切り
壁6Bには3対の分割流液口9A,9Bが開口され、弁箱1B内
には共通の制御モータ4によって同期的に駆動される3
つの弁棒5にそれぞれ連結されて3対の分割流液口9A,9
Bを同期的に開閉する3対の分割弁体16,17が装入されて
いる。
In the triple control valve V shown in FIG. 4, three pairs of split flow ports 9A and 9B are opened in the partition wall 6B in the valve box 1B, and a common control motor 4 synchronizes in the valve box 1B. Driven 3
Three pairs of split flow ports 9A, 9 respectively connected to one valve rod 5
Three pairs of split valve bodies 16 and 17 for opening and closing B synchronously are inserted.

第5図に示す3連1単動2連動形の制御弁Vでは弁箱
1C内の仕切り壁6Cには3対の分割流液口9A,9Bが開口さ
れ、弁箱1C内には1つの制御モータ4Aによって同期的に
駆動される2つの弁棒5にそれぞれ連結されて2対の分
割流液口9A,9Bを一斉に開閉する2対の分割弁体16,17
と、制御モータ4Bによって駆動される弁棒5にそれぞれ
連結されて1対の分割流液口9A,9Bを同期的に開閉する
1対の分割弁体16,17とが装入されている。
In the case of the control valve V shown in FIG.
The partition wall 6C in the 1C is provided with three pairs of split flow ports 9A and 9B, and the valve box 1C is connected to two valve rods 5 which are synchronously driven by one control motor 4A. Two pairs of split valve bodies 16 and 17 that simultaneously open and close two pairs of split flow ports 9A and 9B
And a pair of split valve bodies 16 and 17 which are respectively connected to the valve rod 5 driven by the control motor 4B and which synchronously open and close the pair of split flow ports 9A and 9B.

第6図に示す4連形の制御弁Vでは制御モータ4によ
って同期的に駆動制御される4つの複合弁機構が弁箱1D
内に装入されている。
In the quadruple control valve V shown in FIG. 6, four composite valve mechanisms that are synchronously driven and controlled by the control motor 4 have a valve box 1D.
It is charged inside.

上記した制御弁Vの流量制御特性と、従来のバタフラ
イ弁、及び仕切弁の流量制御特性を比較試験した結果で
は、開度K(%)に対する流量R(%)の変化を示す第
7図の流量制御特性曲線において、1対の分割弁体16,1
7を有する1連形の制御弁Vの流量制御特性曲線A1及び
2連単動形の制御弁Vの流量制御特性曲線A2(1対の分
割弁体16,17を全開位置へ移動させてから、他の1対の
分割弁体16,17を全開位置へ移動させた場合の流量制御
特性曲線)は従来のバタフライ弁の流量制御特性曲線B2
及び仕切弁の流量制御特性曲線B1に比して立上がり角度
が緩やかで、中低開度においてより直線状に変化してお
り、本発明の制御弁Vが従来の制御弁に比しとくに中低
開度でより優れた流量制御特性を具有していることが判
明した。
As a result of a comparative test of the flow rate control characteristics of the control valve V and the flow rate control characteristics of the conventional butterfly valve and the sluice valve, the change in the flow rate R (%) with respect to the opening degree K (%) is shown in FIG. In the flow control characteristic curve, a pair of split valve bodies 16,1
The flow control characteristic curve A1 of the control valve V of the single type with 7 and the flow control characteristic curve A2 of the control valve V of the double single acting type (after moving the pair of split valve bodies 16 and 17 to the fully open position, , The flow control characteristic curve when the other pair of split valve bodies 16 and 17 is moved to the fully open position) is the flow control characteristic curve B2 of the conventional butterfly valve.
In addition, the rising angle is gentler than the flow control characteristic curve B1 of the sluice valve, and changes more linearly in the middle and low opening, so that the control valve V of the present invention is particularly low in the middle and low in comparison with the conventional control valve. It has been found that it has a better flow control characteristic with respect to the opening.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図は本発明の一実施例を示すもので、第1
図は制御弁の一部破断側面図、第2図は上分割弁体の半
側断面図、第3図、第4図、第5図、第6図はそれぞれ
制御弁の他例を示す一部破断側面図及び側面図、第7図
は流量制御特性曲線図である。 1……弁箱 1a……流入口 1b……流出口 4……制御モータ 5……弁棒 6……仕切り壁 9A,9B……分割流液口 16,17……分割弁体 V……制御弁
1 and 2 show an embodiment of the present invention.
The drawing is a partially cutaway side view of the control valve, FIG. 2 is a half sectional view of the upper split valve body, and FIGS. 3, 4, 5, and 6 show other examples of the control valve. Partly broken side and side views, and FIG. 7 are flow rate control characteristic curve diagrams. 1 …… Valve box 1a …… Inflow port 1b …… Outflow port 4 …… Control motor 5 …… Valve rod 6 …… Partition wall 9A, 9B …… Split flow port 16,17 …… Split valve body V …… Control valve

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】上流側管路に接続される流入口と、下流側
流路に接続される流出口とを有する弁箱内にはこの弁箱
内を前記流入口に連通された流入室と、前記流出口に連
通された流出室とに区画する仕切り壁を形成してこの仕
切り壁には前記流入口の開口面積をほぼ等分した開口面
積を有する上分割流液口および下分割流液口が開口され
た少くとも1対の上下環体を同心状に取付け、この上下
環体に対向して設置され、制御モータによって駆動され
て昇降する弁棒には前記上分割流液口を開閉する上分割
弁体を連結するとともに、前記弁棒の下方には前記下環
体内に密嵌状に嵌挿されて前記下分割流液口内を流通す
る流液の流量を調整する羽根部と、前記下環体の下弁座
に接離するシール面とを有する下分割弁体を設置し、前
記上分割弁体には前記上環体の内径より拡大された内径
を有する円筒状の嵌合部が外周部に形成されて前記弁棒
に固定された第1弁体と、この第1弁体の下方に設置さ
れてスプリングによって閉止方向側へ付勢され、前記下
分割弁体に連結された第2弁体とを設けて前記上分割弁
体の内部には前記第1弁体と前記第2弁体とによって囲
まれた内圧弁室を形成し、前記第2弁体には前記嵌合部
内に上下方向への摺動可能に密嵌されたピストンと、前
記上環体内に密嵌状に嵌挿されて前記上分割流液口内を
流通する流液の流量を調整する羽根部と、前記上環体の
上弁座に接離するシール面と、前記内圧弁室と前記上分
割流液口の入口部とを連通する連通孔とを形成したこと
を特徴とする制御弁。
1. An inflow chamber communicating with the inflow port in a valve box having an inflow port connected to an upstream pipe line and an outflow port connected to a downstream flow channel. A partition wall that is partitioned into an outflow chamber that communicates with the outflow port, and an upper split flow port and a lower split flow channel that have an opening area that divides the opening area of the inflow port into substantially equal parts. At least one pair of upper and lower annular bodies with open mouths are concentrically mounted, and are installed opposite to the upper and lower annular bodies, and the upper split flow openings are opened and closed on the valve rod driven by the control motor to move up and down. A blade part that connects the upper split valve body and that is fitted below the valve rod in a tight fit in the lower ring body to adjust the flow rate of the liquid flowing in the lower split liquid flow port, A lower split valve body having a sealing surface that contacts and separates from the lower valve seat of the lower ring body is installed, and the upper split valve body is The first valve body having a cylindrical fitting portion having an inner diameter larger than the inner diameter of the ring body is formed on the outer peripheral portion and fixed to the valve rod, and a spring installed below the first valve body. A second valve body that is urged toward the closing direction by the second split valve body and is connected to the lower split valve body, and is surrounded by the first valve body and the second valve body inside the upper split valve body. An internal pressure valve chamber is formed, and a piston tightly fitted to the second valve body so as to be vertically slidable in the fitting portion; A blade part for adjusting the flow rate of the liquid flowing through the liquid flow port, a sealing surface for contacting with and separating from the upper valve seat of the upper ring body, the internal pressure valve chamber and the inlet part of the upper split liquid flow port are communicated with each other. A control valve having a communication hole formed therein.
JP2165389A 1990-06-22 1990-06-22 Control valve Expired - Fee Related JP2548429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165389A JP2548429B2 (en) 1990-06-22 1990-06-22 Control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165389A JP2548429B2 (en) 1990-06-22 1990-06-22 Control valve

Publications (2)

Publication Number Publication Date
JPH0454383A JPH0454383A (en) 1992-02-21
JP2548429B2 true JP2548429B2 (en) 1996-10-30

Family

ID=15811469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165389A Expired - Fee Related JP2548429B2 (en) 1990-06-22 1990-06-22 Control valve

Country Status (1)

Country Link
JP (1) JP2548429B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2678592B1 (en) * 2011-02-21 2016-12-07 Emerson Electric Co. Valves, pressure sensing devices, and controllers for heating appliances
CN104806769B (en) * 2015-04-17 2017-04-26 江苏新美星包装机械股份有限公司 Inlet liquid dispersion adjustor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133870U (en) * 1983-02-28 1984-09-07 三菱重工業株式会社 double port valve

Also Published As

Publication number Publication date
JPH0454383A (en) 1992-02-21

Similar Documents

Publication Publication Date Title
EP0805294B1 (en) Multi purpose valve
KR20000048199A (en) Flow rate control valve
US6135142A (en) Control valve device
US3749353A (en) Membrane shutoff valve
US4207914A (en) Fluid relay apparatus
US4274433A (en) Packed plug for a fluid valve
JP2548429B2 (en) Control valve
US3554488A (en) Plug valve
US3633608A (en) Gas pressure regulating valve
US2304782A (en) Pressure-responsive device
GB2078341A (en) A gas pressure governor
JPS6127625B2 (en)
US4936541A (en) Proportional fluid valve apparatus
US4302178A (en) Variable pressure valve
US3926211A (en) Fluid flow control valve
JPH0247326Y2 (en)
EP0699857B1 (en) A three way switching controller
WO1990012974A1 (en) Compact multi-stage pressure reducing valve
JP2665822B2 (en) Pressure reducing valve
RU2121704C1 (en) Pressure regulator
JP2510813Y2 (en) Pilot type pressure reducing valve
JP3188996B2 (en) Pressure reducing valve with piping joint
SU1277069A1 (en) Pressure regulator
ES546466A0 (en) INSTALLATION TO DETERMINE THE FLOW RATE OF A LIQUID MEDIA THROUGH AN ADJUSTMENT ORGAN OF A REGULATORY SECTION
SU1764040A1 (en) Pressure control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees