JP2547752B2 - Surface treatment method for structural member of molten carbonate fuel cell - Google Patents

Surface treatment method for structural member of molten carbonate fuel cell

Info

Publication number
JP2547752B2
JP2547752B2 JP61284545A JP28454586A JP2547752B2 JP 2547752 B2 JP2547752 B2 JP 2547752B2 JP 61284545 A JP61284545 A JP 61284545A JP 28454586 A JP28454586 A JP 28454586A JP 2547752 B2 JP2547752 B2 JP 2547752B2
Authority
JP
Japan
Prior art keywords
molten carbonate
fuel cell
structural member
carbonate fuel
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61284545A
Other languages
Japanese (ja)
Other versions
JPS63138664A (en
Inventor
尚史 金子
浩史 立石
鉄雄 藤原
正夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61284545A priority Critical patent/JP2547752B2/en
Publication of JPS63138664A publication Critical patent/JPS63138664A/en
Application granted granted Critical
Publication of JP2547752B2 publication Critical patent/JP2547752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [発明の構成] (産業上の利用分野) 本発明は溶融炭酸塩型燃料電池に用いられる構造部材
の表面処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Construction of the Invention] (Field of Industrial Application) The present invention relates to a surface treatment method for a structural member used in a molten carbonate fuel cell.

(従来の技術) 溶融炭酸塩型燃料電池は、その発電効率が高いことか
ら、リン酸型燃料電池に次ぐ第2世代の燃料電池として
考えられている。この溶融炭酸塩型燃料電池は、炭酸塩
を主体とする電解質板をカソードとアノードとの間には
さみ、更にカソードおよびアノードへそれぞれガスを均
一に流通させるための各種金属部材を設けた構造を有し
ている。
(Prior Art) A molten carbonate fuel cell is considered as a second-generation fuel cell next to a phosphoric acid fuel cell because of its high power generation efficiency. This molten carbonate fuel cell has a structure in which an electrolyte plate mainly composed of carbonate is sandwiched between a cathode and an anode, and further various metal members are provided for uniformly distributing gas to the cathode and the anode, respectively. are doing.

ところで、従来、溶融炭酸塩と直接接触する部位、す
なわち電極、パンチングメタル、集電板、セパレータに
用いられる金属材料としては、例えばSUS316が採用され
ている。しかし、溶融炭酸塩型燃料電池はその作動温度
が650℃と高いため、これらの金属部材は溶融炭酸塩中
への溶出及び溶融炭酸塩との反応により著しい腐食を受
ける。更に、これらの金属部材は、アノード側では水
素、一酸化炭素及び電極反応生成物として生ずる水蒸気
に、またカソード側では炭酸ガス、酸素ガスにさらされ
るため、650℃という高温とあいまって強い酸化を受け
る。
By the way, conventionally, SUS316, for example, has been adopted as the metal material used for the portion that directly contacts with the molten carbonate, that is, the electrode, punching metal, current collector, and separator. However, since the operating temperature of the molten carbonate fuel cell is as high as 650 ° C., these metal members are significantly corroded by elution into the molten carbonate and reaction with the molten carbonate. Further, these metal members are exposed to hydrogen, carbon monoxide and water vapor produced as an electrode reaction product on the anode side, and carbon dioxide gas and oxygen gas on the cathode side. receive.

こうした高温酸化、溶融炭酸塩による腐食は、溶融炭
酸塩型燃料電池の特性を著しく劣化させる。すなわち、
高温酸化によって生ずる酸化被膜は、電気抵抗が著しく
大きいため、電極−パンチングメタル間、パンチングメ
タル−集電板間、集電−セパレータ間の接触抵抗を著し
く増大させ、ひいては電池の内部抵抗を増大させて電池
反応により得られる大電力を外部に取出すことが困難と
なる。また、溶融炭酸塩中への金属材料の溶出は、その
部材の有効肉厚を減少させ、構成部材としての強度低下
を招くだけでなく、溶融炭酸塩との反応により電解質と
しての溶融炭酸塩の枯渇を招くことになる。更に、これ
らの腐食の進行に伴い、電極や電解質板のひび割れが生
じ、アノード側の水素ガスとカソード側の酸素ガスとが
混合して爆鳴気となり、重大事故を起こすおそれがあ
る。以上のように溶融炭酸塩型燃料電池に用いられる金
属材料は非常に厳しい環境にさらされるが、現在一般的
に用いられているSUS316は、耐酸化性、耐溶融炭酸塩腐
食性のいずれも不十分である。
Such high temperature oxidation and corrosion due to molten carbonate significantly deteriorate the characteristics of the molten carbonate fuel cell. That is,
The oxide film formed by high-temperature oxidation has a remarkably large electric resistance, so that the contact resistance between the electrode and the punching metal, between the punching metal and the current collector plate, and between the current collector and the separator is significantly increased, which in turn increases the internal resistance of the battery. It becomes difficult to take out the large amount of electric power obtained by the battery reaction. Further, the elution of the metal material into the molten carbonate not only reduces the effective wall thickness of the member and causes a decrease in strength as a constituent member, but also the reaction of the molten carbonate with the molten carbonate as an electrolyte It will cause exhaustion. Further, with the progress of these corrosions, cracks may occur in the electrodes and the electrolyte plate, and hydrogen gas on the anode side and oxygen gas on the cathode side may mix with each other to cause explosion noise, which may cause a serious accident. As described above, the metallic materials used in molten carbonate fuel cells are exposed to extremely severe environments, but SUS316, which is currently commonly used, has neither oxidation resistance nor molten carbonate corrosion resistance. It is enough.

一方、リチウム化された鉄酸化物やニッケル酸化物
(例えばLiFeO2:リチウムフェライトやリチウム付加酸
化ニッケル)は、溶融炭酸塩に対する溶解度も小さく、
かつ燃料電池作動温度における電気伝導も高いことが知
られている。したがって、SUS316のようなFeやNiを含む
合金の表面にリチウムフェライトやリチウム付加酸化ニ
ッケルを形成すれば、高い電気伝導度を保持しながら、
耐溶融炭酸塩腐食性を改善することができるうえ、母材
からのFe及びCrイオンの溶出の抑制、酸化被膜の成長の
抑制を期待できる。
On the other hand, lithiated iron oxide and nickel oxide (for example, LiFeO 2 : lithium ferrite and lithium-added nickel oxide) have low solubility in molten carbonate,
Moreover, it is known that the electric conduction at the fuel cell operating temperature is also high. Therefore, if lithium ferrite or lithium-added nickel oxide is formed on the surface of an alloy containing Fe or Ni such as SUS316, while maintaining high electrical conductivity,
In addition to being able to improve the resistance to molten carbonate corrosion, it can be expected to suppress the elution of Fe and Cr ions from the base material and suppress the growth of the oxide film.

しかしながら、従来、SUS316のようなFeやNiを含む合
金の表面にリチウムフェライトやリチウム付加酸化ニッ
ケルを緻密かつ均一に形成する技術は知られていない。
However, heretofore, no technique has been known for forming lithium ferrite or lithium-added nickel oxide densely and uniformly on the surface of an alloy containing Fe or Ni such as SUS316.

なお、例えば特開昭61−51769号公報には、導電性金
属板の少なくとも片面をリチウム含有の水溶液中に浸漬
して電気化学的工程によって金属板の表面にリチウムを
含有した水酸化物層を形成し、かつその御に例えば500
℃で加熱処理して導電性酸化物層に転化させて双極性隔
離板を形成する方法が開示されている。しかし、この方
法では約500℃の高温で加熱処理しているため、形成さ
れる導電性酸化物が多孔質になりやすい。このため、電
解質の引き込みが起こりやすく、耐食性も悪い。実際
に、この公報には酸化物層が剥離することがなく接触抵
抗の増加がないという効果は記載されているが、耐食性
の向上を示すデータは記載されていない。
Incidentally, for example, in JP-A-61-51769, at least one surface of a conductive metal plate is immersed in an aqueous solution containing lithium to form a hydroxide layer containing lithium on the surface of the metal plate by an electrochemical process. Formed and controlled by, for example, 500
A method of forming a bipolar separator by converting it into a conductive oxide layer by heat treatment at ℃ is disclosed. However, in this method, since the heat treatment is performed at a high temperature of about 500 ° C., the formed conductive oxide tends to be porous. Therefore, the electrolyte is easily drawn in and the corrosion resistance is poor. In fact, this publication describes the effect that the oxide layer is not peeled off and the contact resistance is not increased, but no data showing the improvement in corrosion resistance is described.

(発明が解決しようとする問題点) 本発明は上記問題点を解決するためになされたもので
あり、純金属又は合金の表面にリチウムフェライトやリ
チウム付加酸化ニッケルを緻密かつ均一に形成すること
ができ、高い電気伝導度を保持しながら、耐溶融炭酸塩
腐食性を改善することができるうえ、母材からのFe及び
Crイオンの溶出の抑制、酸化被膜の成長の抑制が可能な
耐溶融炭酸塩腐食材料を製造し得る方法を提供すること
を目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the above problems, and it is possible to densely and uniformly form lithium ferrite or lithium-added nickel oxide on the surface of a pure metal or alloy. It is possible to improve molten carbonate corrosion resistance while maintaining high electrical conductivity, and also to improve Fe and Fe content from the base metal.
An object of the present invention is to provide a method capable of producing a molten carbonate corrosion resistant material capable of suppressing the elution of Cr ions and suppressing the growth of an oxide film.

[発明の構成] (問題点を解決するための手段と作用) 本発明の溶融炭酸塩燃料電池の構造部材の表面処理方
法は、鉄、ニッケルもしくは銅からなる純金属又は鉄も
しくはニッケルのうち少なくとも一方を含む合金からな
る溶融炭酸型燃料電池の構造部材を濃度30〜80重量%の
アルカリ水溶液を用いて100〜200℃の処理温度で浸漬ま
たは塗布することにより被膜を形成する工程(以下、ア
ルカル処理工程と記す)と、この被膜をリチウム化する
工程(以下、リチウム工程と記す)とを具備したことを
特徴とするものである。
[Structure of the Invention] (Means and Actions for Solving Problems) The surface treatment method for a structural member of a molten carbonate fuel cell according to the present invention includes at least pure metal consisting of iron, nickel or copper, or iron or nickel. A step of forming a coating by dipping or applying a structural member of a molten carbon dioxide fuel cell made of an alloy containing one of them with an alkaline aqueous solution having a concentration of 30 to 80% by weight at a treatment temperature of 100 to 200 ° C. It is characterized by including a treatment step) and a step of lithiating this coating (hereinafter referred to as a lithium step).

以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明方法の対象は、溶融炭酸塩型燃料電池の構造部
材となる純金属又は合金である。具体的には、純金属と
しては例えばFe、Ni、Cu等が挙げられる。また、合金と
しては例えばステンレス鋼、インコロイ等のFe基合金、
インコネル等のNi基台金等が挙げられる。本発明方法
は、これらの金属材料のうち特に鉄又はニッケルのうち
少なくともいずれか一方を含む合金に有効である。
The object of the method of the present invention is a pure metal or alloy which is a structural member of a molten carbonate fuel cell. Specifically, examples of the pure metal include Fe, Ni, Cu and the like. Further, as the alloy, for example, stainless steel, Fe-based alloy such as Incoloy,
Examples include Ni-based base metals such as Inconel. The method of the present invention is effective for an alloy containing at least one of iron and nickel among these metallic materials.

まず、アルカリ処理工程について説明する。このアル
カリ処理工程では、例えばLiOH、NaOH、KOHのうち少な
くともいずれか1種を含む30重量%以上の濃度のアルカ
リ水溶液を100℃以上に加熱し、耐溶融炭酸塩腐食性が
要求される上述したような純金属又は合金の所定部位を
このアルカリ水溶液に浸漬するか、あるいは純金属又は
合金の所定部位にアルカリ水溶液を塗布する。
First, the alkali treatment step will be described. In this alkaline treatment step, for example, an alkaline aqueous solution containing at least one of LiOH, NaOH, and KOH and having a concentration of 30% by weight or more is heated to 100 ° C. or higher, and molten carbonate corrosion resistance is required. A predetermined portion of such a pure metal or alloy is immersed in this alkaline aqueous solution, or an alkaline aqueous solution is applied to a predetermined portion of the pure metal or alloy.

このアルカリ処理工程により、例えばFe又はNiのうち
少なくとも1種を含む合金の場合には、Fe又はNiを主体
とする酸化被膜が形成される。こうした被膜は、大気中
での高温度化により得られる酸化被膜に比べて薄くて緻
密である。
By this alkali treatment step, for example, in the case of an alloy containing at least one of Fe and Ni, an oxide film mainly composed of Fe or Ni is formed. Such a film is thinner and denser than an oxide film obtained by increasing the temperature in the atmosphere.

なお、本発明においては、アルカリ処理工程の前に、
アルカリ脱脂、酸洗いを行なっておくことが望ましい。
また、上述したように、本発明方法において使用される
アルカリ水溶液の濃度は30重量%以上で、処理温度は10
0℃以上が望ましい。これは、アルカリ水溶液の濃度が3
0重量%未満の場合や、処理温度が100℃未満の場合に
は、金属材料の表面に被膜が形成されにくくなるためで
ある。更に、アルカリ水溶液の濃度は40重量%以上、処
理温度は120℃以上であることがより望ましい。ただ
し、アルカリ水溶液の濃度が高すぎたり、処理温度が高
すぎる場合には、被膜が成長しすぎるため、電気伝導性
を劣化させたり、被膜に割れが発生するおそれのがある
ので、アルカリ水溶液の濃度は80重量%以下、処理温度
は200℃以下であることが望ましい。また、本発明にお
いて、金属部材をアルカリ水溶液に浸漬する時間は、ア
ルカリ水溶液の濃度及び処理温度によって変動するもの
で一概に規定できないが、30分〜2時間程度が望まし
い。これは処理時間が短いと被膜が完全に成長せず、一
方処理時間が長すぎると被膜が必要以上に成長して割れ
が発生したりするためである。
In the present invention, before the alkali treatment step,
It is desirable to carry out alkaline degreasing and pickling.
Further, as described above, the concentration of the alkaline aqueous solution used in the method of the present invention is 30% by weight or more, and the treatment temperature is 10%.
0 ° C or higher is desirable. This is because the concentration of alkaline aqueous solution is 3
This is because if it is less than 0% by weight or if the treatment temperature is less than 100 ° C., it becomes difficult to form a film on the surface of the metal material. More preferably, the concentration of the alkaline aqueous solution is 40% by weight or more, and the treatment temperature is 120 ° C or more. However, if the concentration of the alkaline aqueous solution is too high or the treatment temperature is too high, the coating grows too much, which may deteriorate the electrical conductivity or cause cracks in the coating. It is desirable that the concentration is 80% by weight or less and the treatment temperature is 200 ° C or less. Further, in the present invention, the time for immersing the metal member in the alkaline aqueous solution varies depending on the concentration of the alkaline aqueous solution and the treatment temperature and cannot be specified unconditionally, but is preferably about 30 minutes to 2 hours. This is because if the treatment time is short, the coating does not grow completely, whereas if the treatment time is too long, the coating grows more than necessary and cracks occur.

次に、リチウム化処理工程について説明する。このリ
チウム化処理工程では、水酸化リチウムやリチウムアル
コキシド等のリチウム化合物を水又はアルコール等の有
機溶媒に溶解又は分散させ、必要に応じて塩酸、硝酸、
硫酸、酢酸、リン酸等により弱酸性にした液体を用意
し、前記アルカリ処理工程を行なった純金属又は合金の
所定部位をこの液体に浸漬するか、あるいは純金属又は
合金の所定部位に液体を塗布することによりリチウムを
含む塗膜を形成した御、焼成する。
Next, the lithiation process step will be described. In this lithiation treatment step, a lithium compound such as lithium hydroxide or lithium alkoxide is dissolved or dispersed in an organic solvent such as water or alcohol, and if necessary, hydrochloric acid, nitric acid,
Prepare a liquid that has been made weakly acidic with sulfuric acid, acetic acid, phosphoric acid, etc., and immerse the prescribed portion of the pure metal or alloy that has undergone the alkali treatment step in this liquid, or place the liquid on the prescribed portion of the pure metal or alloy. After coating, a coating film containing lithium is formed and fired.

このリチウム化処理工程により、上述したアルカリ処
理工程で金属材料表面に形成された被膜がリチウム化
し、Li化Fe酸化物やLi化Ni酸化物あるいはこれらの複合
酸化物になって安定化する。生成したLi化Fe酸化物やLi
化Ni酸化物は、アルカリ処理工程で形成された被膜の緻
密さを失わじ、しかも高温における電気伝導度は前記被
膜よりも更に高くなる。
By this lithiation treatment step, the coating film formed on the surface of the metal material in the alkali treatment step described above is lithiated and becomes a Li-containing Fe oxide, a Li-containing Ni oxide, or a composite oxide thereof and is stabilized. Generated Li oxide Fe oxide and Li
The modified Ni oxide loses the denseness of the coating formed in the alkali treatment step, and the electric conductivity at high temperature becomes higher than that of the coating.

上記のようなLi化Fe酸化物やLi化Ni酸化物の被膜は、
純金属又は合金からなる母材からの金属元素の溶出及び
金属元素と溶融炭素塩との反応を防止するバリア層とな
る。なお、これらが粗い場合にはバリア層としての作用
を十分に発揮できないが、本発明方法により形成される
Li化Fe酸化物やLi化Ni酸化物の被膜は緻密であるので、
バリア層として有効に作用する。また、構造部材の金属
元素と初期装荷される溶融炭酸塩との反応は電解質のか
なりの消費を招くが、予め表面がLi化された構造部材で
はこうした反応を防止する効果か大きく、電解質消費を
最小限にとどめて、電解質枯渇による電池性能の劣化を
阻止することができる。更に、本発明方法により形成さ
れるLi化Fe酸化物やLi化Ni酸化物の被膜は、高温におけ
る電気伝導性が高いので、溶融炭酸塩型燃料電池の内部
抵抗の主要因となる電極−パンチングメタル間、パンチ
ングメタル−集電板間、集電板−セパレータ間の接触抵
抗を最小限にとどめることができ、大電力を外部に取出
すことができる。
The coating film of Li-containing Fe oxide or Li-containing Ni oxide as described above,
It serves as a barrier layer that prevents the elution of the metal element from the base material made of a pure metal or an alloy and the reaction between the metal element and the molten carbon salt. In addition, when these are rough, the effect as a barrier layer cannot be sufficiently exerted, but they are formed by the method of the present invention.
Since the film of Li-containing Fe oxide and Li-containing Ni oxide is dense,
Effectively acts as a barrier layer. Further, the reaction between the metal element of the structural member and the molten carbonate initially loaded causes a considerable consumption of the electrolyte, but in the structural member whose surface is previously made into Li, the effect of preventing such a reaction is great, and the electrolyte consumption is reduced. It can be minimized to prevent deterioration of battery performance due to electrolyte depletion. Furthermore, since the film of Li-containing Fe oxide or Li-containing Ni oxide formed by the method of the present invention has high electric conductivity at high temperature, electrode-punching which is a main factor of internal resistance of the molten carbonate fuel cell. The contact resistance between the metals, between the punching metal and the current collector, and between the current collector and the separator can be minimized, and a large amount of power can be taken out.

なお、リチウム化処理工程において、リチウムを含む
塗膜の形成と焼成とは何回か繰返してもよい。また焼成
は450℃程度で行なうことが望ましく、焼成特の雰囲気
は大気中又は酸素濃度が大気よりも高い雰囲気であるこ
とが望ましい。また、リチウムを含む塗膜の焼成は、構
造部材を燃料電池本体の組込んた後の発電のための昇温
過程で代用することもできる。
In the lithiation treatment step, the formation of the coating film containing lithium and the firing may be repeated several times. Further, it is desirable that the firing is carried out at about 450 ° C., and it is desirable that the firing-specific atmosphere is in the air or an atmosphere in which the oxygen concentration is higher than the air. Further, the firing of the coating film containing lithium can be substituted in the temperature rising process for power generation after the structural member is incorporated in the fuel cell body.

(実施例) 以下、本発明の実施例を説明する。なお、以下の実施
例において、電気抵抗については現用のカソード電極材
であるNiOと比較した。
(Example) Hereinafter, the Example of this invention is described. In the following examples, the electrical resistance was compared with that of NiO, which is the cathode material currently used.

実施例1 まず、SUS316をNaOH水溶液でアルカリ脱脂し、HCLと
とHNO3との混合酸水溶液で酸洗いして前処理を施した。
次に、50重量%のNaOH水溶液を145℃に維持しておき、
この水溶液に前処理を施したSUS316を1時間浸漬してア
ルカリ処理を行なった。
Example 1 First, SUS316 was alkali-degreased with an aqueous solution of NaOH, washed with an acid solution of a mixed acid of HCL and HNO 3, and pretreated.
Next, keep a 50% by weight NaOH aqueous solution at 145 ° C.,
Pretreatment SUS316 was immersed in this aqueous solution for 1 hour for alkali treatment.

つづいて、このSUS316試料を、Liエトキシド3gをエタ
ノール125ccに溶解し酸によって弱酸性とした溶液中に
浸漬し、乾燥する操作を3回繰返して、塗膜を形成し
た。この試料を大気中約450℃で焼成することによりリ
チウム化を行なった。
Subsequently, this SUS316 sample was immersed in a solution of 3 g of Li ethoxide dissolved in 125 cc of ethanol to make it weakly acidic with an acid, and the drying operation was repeated 3 times to form a coating film. Lithiation was performed by firing this sample in the air at about 450 ° C.

その後、得られた試料をO2/CO2(流量比1/2)雰囲気
下で、650℃の溶融炭酸塩(Li2CO3:K2CO3=68:32)に半
浸漬し、100時間保持して腐食試験を行なった。その結
果、腐食による減量は1.2×10-3mg/mm2以下であった。
また、その電気抵抗は、表面積及び厚さが同一のNiO試
料の電気抵抗を1として、0.9であった。
After that, the obtained sample was semi-immersed in a molten carbonate (Li 2 CO 3 : K 2 CO 3 = 68: 32) at 650 ° C under an O 2 / CO 2 (flow rate 1/2) atmosphere, The corrosion test was performed while holding for a time. As a result, the weight loss due to corrosion was 1.2 × 10 -3 mg / mm 2 or less.
Further, the electric resistance was 0.9 with the electric resistance of the NiO sample having the same surface area and the same thickness as 1.

実施例2 まず、SUS316に上記実施例1と同一の前処理及びアル
カリ処理を施した。次に、このSUS316試料を、LiOH5gを
酸25cc、水25ccの溶液に溶解し微量の表面活性材を添加
した溶液中に浸漬し、乾燥する操作を3回繰返して、塗
膜を形成した。この試料を大気中約450℃で焼成するこ
とによりリチウム化を行なった。
Example 2 First, SUS316 was subjected to the same pretreatment and alkali treatment as in Example 1 above. Next, this SUS316 sample was immersed in a solution of 5 g of LiOH in a solution of 25 cc of acid and 25 cc of water, added with a small amount of a surface-active agent, and dried to repeat the operation 3 times to form a coating film. Lithiation was performed by firing this sample in the air at about 450 ° C.

その後、得られた試料について実施例1と同一の方法
で腐食試験を行ったところ、腐食による減量は1.8×10
-3mg/mm2以下であった。また、その電気抵抗は、表面積
及び厚さが同一のNiO試料の電気抵抗を1として、0.95
であった。
Then, the obtained sample was subjected to a corrosion test in the same manner as in Example 1. As a result, the weight loss due to corrosion was 1.8 × 10 5.
It was -3 mg / mm 2 or less. The electric resistance of the NiO sample having the same surface area and thickness is 0.95, where the electric resistance is 1.
Met.

比較例1 SUS316にアルカリ処理を施さずに、実施例1と同一の
方法でLiを含む塗膜を形成し、焼成した。得られた試料
について実施例1の同一の腐食試験を行なったところ、
腐食による減量は3.0×10-4mg/mm2であった。
Comparative Example 1 A coating film containing Li was formed in the same manner as in Example 1 without subjecting SUS316 to alkali treatment, and was baked. When the same corrosion test as in Example 1 was performed on the obtained sample,
The weight loss due to corrosion was 3.0 × 10 -4 mg / mm 2 .

比較例2 SUS316に何ら処理を施さずに、実施例1と同一の腐食
試験を行なったところ、腐食による減量は3.2×10-1mg/
mm2であった。
Comparative Example 2 When SUS316 was subjected to the same corrosion test as in Example 1 without any treatment, the weight loss due to corrosion was 3.2 × 10 -1 mg /
It was mm 2 .

以上の実施例1、2及び比較例1、2から、本発明方
法のアルカリ処理及びリチウム化処理による表面処理を
行なえば、金属材料の耐溶融炭酸塩腐食性を向上するこ
とができ、しかも電気伝導性を維持することがわかる。
From Examples 1 and 2 and Comparative Examples 1 and 2 described above, when the surface treatment by the alkali treatment and the lithiation treatment of the method of the present invention is performed, the molten carbonate corrosion resistance of the metal material can be improved, and the electrical resistance It can be seen that the conductivity is maintained.

[発明の効果] 以上詳述したように本発明方法によれば、純金属又は
合金の表面にLi化Fe酸化物やLi化Ni酸化物を緻密かつ均
一に形成することができ、高い電気伝導度を保持しなが
ら、耐溶融炭酸塩腐食性を改善することができるうえ、
母材からのFe及びCrイオンの溶出の抑制、酸化被膜の成
長の抑制が可能な耐溶融炭酸塩腐食材料を製造できるも
のである。
[Effects of the Invention] As described in detail above, according to the method of the present invention, it is possible to densely and uniformly form a Li-containing Fe oxide or a Li-containing Ni oxide on the surface of a pure metal or alloy, and to obtain high electric conductivity. The corrosion resistance of molten carbonate can be improved while maintaining the degree of
It is possible to produce a molten carbonate corrosion-resistant material capable of suppressing the elution of Fe and Cr ions from the base material and suppressing the growth of an oxide film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 正夫 川崎市幸区小向東芝町1番地 株式会社 東芝総合研究所内 (56)参考文献 特開 昭61−51769(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masao Yamamoto 1 Komukai Toshiba Town, Komukai-ku, Kawasaki-shi, Toshiba Research Laboratory Co., Ltd. (56) Reference JP-A-61-51769 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄、ニッケルもしくは銅からなる純金属又
は鉄もしくはニッケルのうち少なくとも一方を含む合金
からなる溶融炭酸塩燃料電池の構造部材を濃度30〜80重
量%のアルカリ水溶液を用いて100〜200℃の処理温度で
浸漬または塗布することにより被膜を形成する工程と、
この被膜をリチウム化する工程とを具備したことを特徴
とする溶融炭酸塩燃料電池の構造部材の表面処理方法。
1. A structural member of a molten carbonate fuel cell comprising a pure metal made of iron, nickel or copper or an alloy containing at least one of iron and nickel is used for 100 to 100% by using an alkaline aqueous solution having a concentration of 30 to 80% by weight. A step of forming a film by dipping or applying at a processing temperature of 200 ° C.,
And a step of lithiating the coating film, which is a surface treatment method for a structural member of a molten carbonate fuel cell.
【請求項2】前記被膜をリチウム化する工程が、前記被
膜の表面にリチウムを含む液体を用いて塗膜を形成した
後、焼成する工程であることを特徴とする特許請求の範
囲第1項記載の溶融炭酸塩燃料電池の構造部材の表面処
理方法。
2. The step of lithiating the coating is a step of forming a coating on the surface of the coating using a liquid containing lithium and then firing the coating. A method for surface treatment of a structural member of the molten carbonate fuel cell described.
【請求項3】前記リチウムを含む液体がリチウム化合物
を水又は有機溶媒に溶解又は分散させたものであること
を特徴とする特許請求の範囲第2項記載の溶融炭酸塩燃
料電池の構造部材の表面処理方法。
3. The structural member for a molten carbonate fuel cell according to claim 2, wherein the liquid containing lithium is a lithium compound dissolved or dispersed in water or an organic solvent. Surface treatment method.
JP61284545A 1986-11-29 1986-11-29 Surface treatment method for structural member of molten carbonate fuel cell Expired - Fee Related JP2547752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284545A JP2547752B2 (en) 1986-11-29 1986-11-29 Surface treatment method for structural member of molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284545A JP2547752B2 (en) 1986-11-29 1986-11-29 Surface treatment method for structural member of molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS63138664A JPS63138664A (en) 1988-06-10
JP2547752B2 true JP2547752B2 (en) 1996-10-23

Family

ID=17679837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284545A Expired - Fee Related JP2547752B2 (en) 1986-11-29 1986-11-29 Surface treatment method for structural member of molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2547752B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059918B2 (en) * 2012-08-29 2017-01-11 株式会社Ti Method for manufacturing fuel cell electrode material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151769A (en) * 1984-08-21 1986-03-14 Toshiba Corp Manufacture of molten carbonate fuel cell

Also Published As

Publication number Publication date
JPS63138664A (en) 1988-06-10

Similar Documents

Publication Publication Date Title
US20160251765A1 (en) Electrochemical cell containing a graphene coated electrode
JP2008103132A (en) Aluminum foil for collector of lithium ion cell, and lithium ion cell using it
US4648945A (en) Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
JP3228377B2 (en) Molten carbonate fuel cell cathode and method for suppressing its dissolution
CN112018394A (en) Lithium-copper composite electrode and preparation method and application thereof
JP4746618B2 (en) Method for producing nickel oxide surface with improved conductivity
JP2547752B2 (en) Surface treatment method for structural member of molten carbonate fuel cell
JPH11273693A (en) Separator for low temperature type fuel cell
JPH04147570A (en) Material of air electrode for molten carbonate fuel cell
CN113725423A (en) MnCO3/MoS2Heterojunction composite material and preparation method and application thereof
Fang et al. Performance of a novel Ni/Nb cathode material for molten carbonate fuel cells (MCFC)
JP2513638B2 (en) Method for producing molten carbonate corrosion resistant material
KR101716287B1 (en) Protective Ceramic Bilayer For Metallic Interconnect of Solid Oxide Fuel Cell, And Method of Manufacturing the Same
JP2020152999A (en) Electrode plate
CN117410437B (en) Antimony-based electrode and preparation method and application thereof
CN219457659U (en) Composite negative electrode current collector for molten lithium metal battery
JPH0261095B2 (en)
CN113753946B (en) Preparation method of titanium dioxide @ graphene @ titanium dioxide anode material, product and application
JPS6318048A (en) Manufacture of material having corrosion resistance to molten salt
CN114744204A (en) Lithium metal battery cathode and preparation method thereof
JPS6358766A (en) Oxygen electrode structure for high temperature solid electrolyte fuel cell
CN115472823A (en) Sb 2 S 3 @Sb 6 O 13 @ rGO composite material and preparation method and application thereof
CN116314615A (en) Zinc oxide-metallic lithium composite negative electrode with three-dimensional structure and preparation method thereof
CN115513429A (en) Preparation method of copper-manganese oxide nanotube @ copper foil negative electrode material, product and application
CN117727909A (en) High specific capacity lithium ion battery negative electrode material and preparation method thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees