JP2546399Y2 - Probe for measuring solidification temperature of molten metal - Google Patents

Probe for measuring solidification temperature of molten metal

Info

Publication number
JP2546399Y2
JP2546399Y2 JP1993015824U JP1582493U JP2546399Y2 JP 2546399 Y2 JP2546399 Y2 JP 2546399Y2 JP 1993015824 U JP1993015824 U JP 1993015824U JP 1582493 U JP1582493 U JP 1582493U JP 2546399 Y2 JP2546399 Y2 JP 2546399Y2
Authority
JP
Japan
Prior art keywords
probe
solidification temperature
temperature
measuring
sample chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1993015824U
Other languages
Japanese (ja)
Other versions
JPH0676861U (en
Inventor
隆宏 吉川
考二 恩田
Original Assignee
大阪酸素工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪酸素工業株式会社 filed Critical 大阪酸素工業株式会社
Priority to JP1993015824U priority Critical patent/JP2546399Y2/en
Publication of JPH0676861U publication Critical patent/JPH0676861U/en
Application granted granted Critical
Publication of JP2546399Y2 publication Critical patent/JP2546399Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、転炉サブランス等によ
って、溶融金属中に浸漬し、溶融金属をサンプリング
し、該試料の凝固温度を測定することで、溶融金属中の
炭素量を推定するためのプローブに関するものである。
The present invention estimates the amount of carbon in a molten metal by immersing it in a molten metal with a converter sublance, sampling the molten metal, and measuring the solidification temperature of the sample. Related to probes.

【0002】[0002]

【従来の技術】従来より、鉄鋼の製鋼工程の中心である
転炉においては、サブランスを利用して、消耗型プロー
ブで温度、凝固温度、酸素量等を測定し、ダイナミック
コントロール・システムによる終点制御、終点の温度・
成分の確認等が行われている。これらの測定は、いずれ
も近年、特に迅速性及び精度の要求が高まっている。従
来のサブランスプローブの一例を図2に示す。図2にお
いて、金属製試料室10内の底部に熱電対からなる凝固
温度センサー5が設けられている。又、先端には溶鋼温
度測定用センサー7が設けられ、これらは紙製の保護管
2で保護されている。このプローブをサブランス先端に
装着し、コネクター8で熱電対の接点をとり、そして、
サブランスを下降させ、プローブを溶鋼中に浸漬し、溶
鋼温度測定を行うと同時に、溶鋼を金属製試料室10の
内部に採取し、その採取したサンプルの温度を測定する
ことで、図3に示すような温度曲線を得、その平衡部、
つまり、凝固温度を読み取り、炭素量の推定を行ってい
る。
2. Description of the Related Art Conventionally, in a converter, which has been the center of the steelmaking process, the temperature, solidification temperature, oxygen content, etc. are measured with a consumable probe using a sublance, and the end point is controlled by a dynamic control system. , End point temperature
Confirmation of components and the like are being performed. In recent years, all of these measurements have been required to be particularly quick and accurate. FIG. 2 shows an example of a conventional sublance probe. In FIG. 2, a coagulation temperature sensor 5 composed of a thermocouple is provided at the bottom of a metal sample chamber 10. Further, a sensor 7 for measuring the temperature of molten steel is provided at the tip, and these are protected by a protective tube 2 made of paper. This probe was attached to the tip of the sublance, the thermocouple was contacted with the connector 8, and
The sub-lance is lowered, the probe is immersed in the molten steel, and the molten steel temperature is measured. At the same time, the molten steel is collected inside the metal sample chamber 10 and the temperature of the collected sample is measured, as shown in FIG. Temperature curve, and its equilibrium,
That is, the solidification temperature is read, and the carbon amount is estimated.

【0003】[0003]

【考案が解決しようとする課題】凝固温度測定に関し
て、迅速性を高める為に、従来より、サンプル室の材質
を熱伝導率の大きい冷却能のある鋼等の金属製のものが
使用されている。しかしながら、熱伝導率が低く、冷却
能の小さい鋳物砂製に比べ、金属製のものは、高価であ
った。又、熱伝導率が大きい為に溶鋼がサンプル室に流
入後、サンプルの熱でサンプル室が高温になり、サンプ
ル室外周の紙管を焼き、紙管からタールが発生する。そ
のタールによって、サブランス先端部のコネクターの電
気絶縁抵抗低下による測定不良、あるいはコネクター交
換頻度の増大という欠点があった。さらには、比重が大
きい為に、プローブが重くなり、運搬等取扱いに負担が
かかるという欠点があった。
In order to increase the quickness of the measurement of the solidification temperature, the material of the sample chamber is conventionally made of a metal having a high thermal conductivity, such as steel having a cooling ability, and having a cooling ability. . However, the metal-made one is more expensive than the casting sand having a low thermal conductivity and a small cooling capacity. In addition, after the molten steel flows into the sample chamber due to its high thermal conductivity, the temperature of the sample chamber becomes high due to the heat of the sample, and the paper tube around the sample chamber is burned, and tar is generated from the paper tube. Due to the tar, there is a disadvantage that measurement failure occurs due to a decrease in the electrical insulation resistance of the connector at the tip of the sub-lance, or that the frequency of connector replacement increases. Furthermore, since the specific gravity is large, the probe becomes heavy, and there is a drawback in that a burden is imposed on handling such as transportation.

【0004】さらに、浸漬中は紙製の保護管と溶鋼とが
反応するためプローブが激しく揺れ、試料室上部のサン
プルが、凝固する前に飛び出てしまい、その結果、サン
プル容量が少なくなり、平衡部長さ時間が短かくなりす
ぎたり、バラついたりするという欠点もあった。
In addition, the probe vibrates violently due to the reaction between the paper protective tube and the molten steel during immersion, and the sample in the upper part of the sample chamber pops out before solidification, and as a result, the sample volume is reduced and the equilibrium is reduced. There was also a drawback that the length of the section became too short or varied.

【0005】凝固点の測定において測定の迅速性を示す
のが平衡部開始時間であり、短い方が良い。しかし、プ
ローブ浸漬タイミングでの溶鋼条件(溶鋼温度と凝固温
度)が種々あり、溶鋼温度が高いほど採取サンプルの熱
容量が大きくなり、平衡部開始時間が遅くなる。又、溶
鋼温度と凝固温度の差が大きいほど、同様に平衡部開始
時間が遅くなる。又、平衡部長さ時間は、その凝固温度
が読み取れるほどの長さ(数秒)以上であれば良いが、
平衡部開始時間と同様に、溶鋼条件により変動し、凝固
温度が低いほど平衡部長さ時間は短かくなる傾向があ
る。又、平衡部開始時間を速くすると平衡部長さ時間は
短かくなる傾向があり、又、その逆の傾向もある。
In the measurement of the freezing point, the quickness of the measurement is indicated by the equilibrium portion start time, and a shorter time is better. However, there are various molten steel conditions (the molten steel temperature and the solidification temperature) at the probe immersion timing, and the higher the molten steel temperature, the larger the heat capacity of the collected sample becomes, and the longer the equilibrium portion start time becomes. In addition, the larger the difference between the molten steel temperature and the solidification temperature, the longer the equilibrium portion start time becomes. Also, the equilibrium portion length time may be any length (several seconds) or more such that the solidification temperature can be read.
Similar to the equilibrium portion start time, it varies depending on the molten steel conditions, and the lower the solidification temperature, the shorter the equilibrium portion length time tends to be. Also, when the start time of the equilibrium portion is increased, the length time of the equilibrium portion tends to be shorter, and vice versa.

【0006】このように、平衡部開始時間、平衡部長さ
時間共に、溶鋼条件によって変化し、又、両者間には上
述の関係があるため、平均値で、平衡部開始時間は5秒
以下、平衡部長さ時間は10秒以上である事が望まし
い。
As described above, both the equilibrium section start time and the equilibrium section length time vary depending on the molten steel conditions, and since the two have the above-mentioned relationship, the average equilibrium section start time is 5 seconds or less. It is desirable that the equilibrium section length time is 10 seconds or more.

【0007】本考案は、サンプル室の材質を鋳物砂とし
ながら、金属と同等の迅速測定を可能とした性能の良
い、安価な凝固温度測定用プローブを提供することを目
的とするものである。
[0007] The present invention, while the material of the sample chamber and foundry sand, good performance enables rapid measurement equivalent to metal, it is an object to provide an inexpensive solidification temperature measurement probe .

【0008】[0008]

【考案が解決すべき課題】本考案者は仕切部を設けるこ
とにより、測定中のサンプルの飛び出しに起因する測定
結果のバラツキを防止するとともに、仕切部及び試料室
の径及び長さを特定範囲にすることにより好ましい平衡
部開始時間及び平衡部長さ時間が得られることを見い出
して本考案を完成したものである。
[Problems to be solved by the invention] By providing a partition, the present inventor can prevent the dispersion of the measurement result due to the pop-out of the sample being measured, and can set the diameter and the length of the partition and the sample chamber to a specific range. Thus, the present invention has been completed by finding that a preferable equilibrium section start time and an equilibrium section length time can be obtained.

【0009】すなわち本考案は、保護管と該保護管の側
面に形成した流入口、および内部に凝固温度測定用試料
採取鋳型を備えた凝固温度測定用プローブであって、該
試料採取鋳型が鋳物砂からなる流入口部、仕切部、およ
び試料室を含み、該仕切部は円筒形でその径が10〜2
mm、長さが25〜45mm、該試料室は円筒形でそ
の径が23〜27mm、長さが30〜40mmであるこ
とを特徴とする溶融金属の凝固温度測定用プローブを提
供するものである。
That is, the present invention is a probe for measuring a solidification temperature comprising a protective tube, an inlet formed on a side surface of the protective tube, and a sample collecting mold for measuring a solidifying temperature therein, wherein the sample collecting mold is a casting. intake opening consisting of sand, the partition portion, and includes a sample chamber, the diameter of that in the partition cut part cylindrical 10-2
0 mm, is 25 to 45 mm in length, sample chamber solidification temperature of molten metal diameter of its <br/> in cylindrical 23 to 27 mm, a length characterized in that it is a 30 to 40 mm A probe for measurement is provided.

【0010】上記のプローブを使用することにより、前
述のような問題点を生ずることなく、金属製の試料採取
鋳型と同等な性能が得られる。
[0010] By using the above-mentioned probe, performance equivalent to that of a metal sampling mold can be obtained without causing the above-mentioned problems.

【0011】図1に、本考案にかかるプローブの構成例
を示す。試料採取鋳型は鋳物砂からなり、流入口部3
a、仕切部3b及び試料室3cで構成され、試料室3c
の底部に熱電対よりなる凝固温度センサー5が設けられ
ている。流入口4の部分にはスラグの流入防止及び流入
タイミングを一定にする為の穴ぶた6が設けられてい
る。プローブ1の先端には溶鋼温度センサー7が、紙製
の保護管2の内部概略中央部にはコネクター8が設けら
れている。
FIG. 1 shows a configuration example of a probe according to the present invention. The sampling mold 9 is made of molding sand, and the inlet 3
a, a partition 3b and a sample chamber 3c,
Is provided with a coagulation temperature sensor 5 composed of a thermocouple at the bottom of the. The inlet 4 is provided with a lid 6 for preventing slag from flowing in and for stabilizing the inflow timing. A molten steel temperature sensor 7 is provided at the tip of the probe 1, and a connector 8 is provided at a substantially central portion inside the protective tube 2 made of paper.

【0012】[0012]

【実施例】試料室および仕切部の径および長さを変化さ
せ、平衡部開始時間と平衡部長さ時間を測定した。各条
件とも5回ずつ実験を行いその平均値を表に示す。な
お、試料室および仕切部の径および長さの単位はmmで
ある。
EXAMPLES The diameter and length of the sample chamber and the partition were changed, and the equilibrium section start time and the equilibrium section length time were measured. The experiment was performed five times under each condition, and the average value is shown in the table. The unit of the diameter and length of the sample chamber and the partition is mm.

【0013】さらに比較例として、本考案の範囲外の場
合の実験結果を同じく表に示す。
Further, as a comparative example, the results of experiments in cases outside the scope of the present invention are also shown in the table.

【0014】表から明らかなように、本考案にかかるプ
ローブを用いれば、短い平衡部開始時間と十分に長い平
衡部長さ時間を得ることができ、迅速に精度のよい測定
ができる。
As is clear from the table, the use of the probe according to the present invention makes it possible to obtain a short equilibrium section start time and a sufficiently long equilibrium section length time, thereby enabling quick and accurate measurement.

【0015】 [0015]

【0016】[0016]

【考案の効果】本考案のプローブにより、凝固温度測定
に関し、金属製の試料採取鋳型と同等の性能を保持しつ
つ、製造コストの低下、タール発生量の低減、プローブ
重量の軽量化という効果が得られる。さらには、常に一
定容量のサンプルを採取する事が出来る様になり、性能
の向上、安定化が図られた。
[Effect of the Invention] The probe of the present invention has the effects of lowering the manufacturing cost, reducing the amount of tar generation, and reducing the weight of the probe while maintaining the same performance as the metal sampling mold in measuring the solidification temperature. can get. Furthermore, it became possible to always collect a fixed volume of sample, and the performance was improved and stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本考案に係るプローブの構成を示す図で
ある。
FIG. 1 is a diagram showing a configuration of a probe according to the present invention.

【図2】図2は従来のプローブの構成を示す図である。FIG. 2 is a diagram showing a configuration of a conventional probe.

【図3】図3は凝固温度測定時の測定温度変化を示す図
である。
FIG. 3 is a diagram showing a change in measured temperature at the time of measuring a solidification temperature.

【符号の説明】[Explanation of symbols]

1 プローブ 2 保護管 3a 流入口部 3b 仕切部 3c 試料室 4 流入口 5 凝固温度センサー 6 穴ぶた 7 溶鋼温度センサー 8 コネクター 9 試料採取鋳型 10 金属製試料室DESCRIPTION OF SYMBOLS 1 Probe 2 Protective tube 3a Inlet 3b Partition 3c Sample chamber 4 Inlet 5 Solidification temperature sensor 6 Hole lid 7 Molten steel temperature sensor 8 Connector 9 Sampling mold 10 Metal sample chamber

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 保護管と該保護管の側面に形成した流入
口、および内部に凝固温度測定用試料採取鋳型を備えた
凝固温度測定用プローブであって、該試料採取鋳型が鋳
物砂からなる流入口部、仕切部、および試料室を含み、
該仕切部は円筒形でその径が10〜20mm、長さが2
5〜45mm、該試料室は円筒形でその径が23〜27
mm、長さが30〜40mmであることを特徴とする溶
融金属の凝固温度測定用プローブ。
1. A probe for measuring a solidification temperature comprising a protective tube, an inlet formed on a side surface of the protective tube, and a sample collecting mold for measuring a solidifying temperature therein, wherein the sample collecting mold is made of molding sand. Including an inlet, a partition, and a sample chamber,
The partition switching portion diameter 10 to 20 mm in its cylindrical and length 2
5 to 45 mm, the sample chamber is cylindrical diameter of that is 23 to 27
A probe for measuring a solidification temperature of a molten metal, wherein the probe has a length of 30 to 40 mm .
JP1993015824U 1993-03-31 1993-03-31 Probe for measuring solidification temperature of molten metal Expired - Lifetime JP2546399Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993015824U JP2546399Y2 (en) 1993-03-31 1993-03-31 Probe for measuring solidification temperature of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993015824U JP2546399Y2 (en) 1993-03-31 1993-03-31 Probe for measuring solidification temperature of molten metal

Publications (2)

Publication Number Publication Date
JPH0676861U JPH0676861U (en) 1994-10-28
JP2546399Y2 true JP2546399Y2 (en) 1997-08-27

Family

ID=11899610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993015824U Expired - Lifetime JP2546399Y2 (en) 1993-03-31 1993-03-31 Probe for measuring solidification temperature of molten metal

Country Status (1)

Country Link
JP (1) JP2546399Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572931U (en) * 1980-06-06 1982-01-08

Also Published As

Publication number Publication date
JPH0676861U (en) 1994-10-28

Similar Documents

Publication Publication Date Title
US5033320A (en) Device for determining phase transitions using a sample of molten metal
FI76939C (en) FOERFARANDE FOER FRAMSTAELLNING AV GJUTEN AV GJUTJAERN SOM INNEHAOLLER STRUKTURMODIFIERANDE TILLSATSER.
AP589A (en) Sensor array for measuring temperature
RU2005120921A (en) CAPACITY FOR METAL MELT, APPLICATION OF CAPACITY AND METHOD FOR DETERMINING SECTION SURFACE
CN108132277A (en) A kind of method for predicting hypereutectic composition vermicular cast iron nodulizing rate
US6220748B1 (en) Method and apparatus for testing material utilizing differential temperature measurements
JP2546399Y2 (en) Probe for measuring solidification temperature of molten metal
US4105191A (en) Crucible for the thermal analysis of aluminum alloys
US5720553A (en) Apparatus and process for rapid direct dip analysis of molten iron
US4696337A (en) Apparatus for anticipation of structure of casting alloys and particularly the degree of spheroidization of cast iron
US6200520B1 (en) Sampling vessel for obtaining a cooling curve of molten metals
Riposan et al. Control of solidification pattern of cast irons by simultaneous thermal and contraction/expansion analysis
JP2009236738A (en) Metal specimen collection sampler and sampling method using it
JP3308276B2 (en) Non-contact continuous temperature measurement method for solidification of alloys
EP2067032A2 (en) An apparatus and method for determining the percentage of carbon equivalent, carbon and silicon in liquid ferrous metal
RU2672646C1 (en) Steel melts process parameters measuring device with simultaneous sample selection
JPH019005Y2 (en)
JP2953903B2 (en) Probe for molten metal
KR100616106B1 (en) Sampling Cup for thermally analyzing casting liguid metal
WO1998039629A1 (en) Direct dip thermal analysis of molten metals
JP5228509B2 (en) Probe for molten metal measurement
Dugic et al. An investigation of the effect of inoculants on the metal expansion penetration in grey iron
BR112018006215B1 (en) METHOD OF ANALYSIS OF A PHASE TRANSFORMATION, AND, DEVICE FOR ANALYSIS OF A PHASE TRANSFORMATION
SU1122104A1 (en) Device for proximate analysis of chemical composition of metals and alloys (versions)
JPH0669782U (en) Freezing temperature measuring probe for molten metal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term