JP2545447B2 - Joining method for iron-based sintered parts - Google Patents

Joining method for iron-based sintered parts

Info

Publication number
JP2545447B2
JP2545447B2 JP63165737A JP16573788A JP2545447B2 JP 2545447 B2 JP2545447 B2 JP 2545447B2 JP 63165737 A JP63165737 A JP 63165737A JP 16573788 A JP16573788 A JP 16573788A JP 2545447 B2 JP2545447 B2 JP 2545447B2
Authority
JP
Japan
Prior art keywords
brazing material
iron
brazing
powder
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63165737A
Other languages
Japanese (ja)
Other versions
JPH0215875A (en
Inventor
隆 小磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63165737A priority Critical patent/JP2545447B2/en
Publication of JPH0215875A publication Critical patent/JPH0215875A/en
Application granted granted Critical
Publication of JP2545447B2 publication Critical patent/JP2545447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉄系焼結部品と鉄系焼結部品又は鉄系焼結部
品と鋼材をロー付接合することによって複雑形状部品を
製造し、又は異なる製法による部品を複合化するための
鉄系焼結部品のロー付接合方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention manufactures a complex-shaped component by brazing an iron-based sintered component and an iron-based sintered component or an iron-based sintered component and a steel material. Alternatively, the present invention relates to a brazing and joining method for iron-based sintered parts for compounding parts by different manufacturing methods.

(従来の技術) 焼結部品と焼結部品を複合化する方法として銅溶浸に
よる接合、焼結時の寸法変化差を利用して接合する方法
が知られており、一方数年前から焼結部品のロー付接合
が実用化されはじめている。
(Prior art) As a method of compounding a sintered part and a sintered part, joining by copper infiltration and joining by utilizing the dimensional change during sintering are known. Brazing joints of connecting parts are beginning to be put to practical use.

このようなロー付接合で、従来鉄系焼結部品をロー付
接合することは、溶けたロー材が接合すべき面に浸透す
るよりも、本体の鉄系焼結部品の空孔内に毛細血管力で
浸透するため困難とされていた。
With such a brazing joint, the conventional brazing joint of an iron-based sintered component does not allow the melted brazing material to permeate into the surface to be joined. It was considered to be difficult because it penetrates by vascular force.

しかし、Cu−Ni−Mn系よりなるロー材を使用すると、
ロー材の融点(1920゜F)以上の温度に加熱することに
よりロー材は溶け、しかも鉄と反応すると融点が上昇す
るために焼結部品本体へのロー材の浸透量が抑制され、
良好なロー付接合が鉄系焼結部品に対しても実施出来る
ようになってきたということである。
However, when a brazing material made of Cu-Ni-Mn system is used,
By heating to a temperature above the melting point of the brazing material (1920 ° F), the brazing material melts, and when it reacts with iron, the melting point rises, so the amount of penetration of the brazing material into the sintered component body is suppressed,
This means that good brazing joints can now be applied to ferrous sintered parts.

第1図はその原理の説明図である。図面において、
(1)及び(2)は接合しようとする鉄系焼結合金、
(3)はCu−Ni−Mn系よりなるロー材、(4)は接合面
である。
FIG. 1 is an explanatory diagram of the principle. In the drawing,
(1) and (2) are iron-based sintered alloys to be joined,
(3) is a brazing material made of Cu-Ni-Mn system, and (4) is a joint surface.

第1図の状態において、ロー材(3)の融点以上の温
度に加熱すると、ロー材(3)が溶けて(b)の方向へ
流れ焼結部品(2)の空孔へ入っていこうとする。しか
し、焼結部品(2)の鉄と反応しロー材(3)の融点が
上昇するため或る程度の深さまで浸透した段階で凝固
し、それ以上(b)の方向には浸透しなくなり、(a)
の方向、即ち接合面(4)に拡がり、鉄系焼結部品
(1)と(2)のロー付接合が出来るということであ
る。
In the state shown in FIG. 1, when the brazing material (3) is heated to a temperature equal to or higher than the melting point, the brazing material (3) melts and flows in the direction of (b), and tries to enter the pores of the sintered part (2). To do. However, since it reacts with the iron of the sintered part (2) and the melting point of the brazing material (3) rises, it solidifies when it has penetrated to a certain depth and does not penetrate further in the direction of (b). (A)
That is, it spreads in the direction of, that is, in the joint surface (4), and the brazing of the iron-based sintered parts (1) and (2) can be performed.

(解決しようとする課題) 焼結部品用のロー材として要求される性質は、焼結
部品本体への浸透は出来るだけ少なく、接合面でのロ
ー材の到達距離が長いことである。しかし、ロー材のこ
のような性質は、ロー付する炉の雰囲気、接合しようと
する焼結部品の材料組成、接合面の表面状態、接合部品
間のギャップ等によって変化する。
(Problems to be Solved) The properties required of a brazing material for a sintered part are that the penetration of the brazing material into the sintered part body is as small as possible, and the reaching distance of the brazing material at the joint surface is long. However, such properties of the brazing material change depending on the atmosphere of the furnace for brazing, the material composition of the sintered parts to be joined, the surface condition of the joining surface, the gap between the joining parts, and the like.

鉄系焼結部品用のロー材として使用されている上述の
Cu−Ni−Mn系材料は焼結部品本体への浸透深さ及び接合
面の到達距離を改善するために微量のSi、B等を含んで
いるが、第2図に示すように理想の要求とはほど遠いも
のである。
The above-mentioned used as a brazing material for iron-based sintered parts
Cu-Ni-Mn-based materials contain trace amounts of Si, B, etc. to improve the penetration depth into the sintered component body and the reaching distance of the joint surface, but as shown in Fig. 2, the ideal requirement Is far from.

接合しようとする焼結部品個々において、上述の如き
要因によって変化するものであれば、しかもオールマイ
ティ的なロー材がないとすれば、何らかの方法でロー材
の流れ性を制御してやることが必要となってくる。
It is necessary to control the flowability of the brazing material by some method, if there is no almighty brazing material as long as it changes depending on the above factors in each sintered part to be joined. Is coming.

(課題を解決するための手段) 本発明は上述の課題を解決する鉄系焼結部品のロー付
接合方法を提供するもので、その特徴は鉄系焼結部品及
びロー材共に圧粉体を用い、ロー材はCu−Ni−Mn系の粉
末に、3〜15%の鉄粉、1〜10%の銅粉、1〜7%のSn
粉のうち少くとも1種類を添加した圧粉体を使用してロ
ー付状態に組立てた後、ロー材の融点以上の温度で加熱
してロー付と焼結を同時に行なうことにある。
(Means for Solving the Problems) The present invention provides a brazing joining method for iron-based sintered parts that solves the above-mentioned problems, and is characterized in that both the iron-based sintered parts and the brazing material are compacted powder. The brazing material used is Cu-Ni-Mn powder, 3-15% iron powder, 1-10% copper powder, 1-7% Sn.
This is to assemble the powder compact by adding at least one kind of powder into a brazed state, and then heat at a temperature higher than the melting point of the brazing material to perform the brazing and sintering at the same time.

単に接合面でのロー材の到達距離を長くする手段とし
て例えば特許第1201702号に示されるように接合面に溝
を設ける方法もあるが、これだけでは上述の変動要因に
対して不十分であり、変動要因に対してロー材そのもの
で何らかの対策をすることが重要である。
There is also a method of providing a groove on the joining surface as shown in, for example, Japanese Patent No. 1201702 as a means of simply increasing the reaching distance of the brazing material on the joining surface, but this alone is insufficient for the above-mentioned fluctuation factors, It is important to take some measures against the fluctuation factors with the raw material itself.

この方法としては、ロー材の原料そのものを変化さ
せる方法、ロー材原料そのものは固定しておいて、添
加元素を加えてロー材の性質を変化させる方法が考えら
れる。このうち、の方法は接合部品に応じて原料組成
を変えることが必要であり、ロー材の種類が多くなりす
ぎて実用的でない。従っての方法がベターであるが、
どのような添加元素を加えていけばよいのかを明確にす
る必要がある。
As this method, a method of changing the raw material of the brazing material or a method of fixing the raw material of the brazing material itself and adding an additive element to change the properties of the brazing material is considered. Among these, the method (1) needs to change the raw material composition depending on the joined parts, and the number of kinds of brazing filler metal is too large to be practical. Therefore, the method is better,
It is necessary to clarify what kind of additional element should be added.

(添加元素の探索) どのような添加元素を加えればよいかを探索するため
次のような実験を行なった。
(Search for additional elements) The following experiments were conducted to search what additional elements should be added.

実験方法: P/M:Fe(成形密度6.8g/cm3) ロー材:ロー材組成+Fe、Sn、Cu混合 ロー材組成:Cu+40Ni+20Mn+2Si+1B 第3図(イ)のようにP/M上にロー材をセットし、同
図(ロ)のようにブタン変成ガス中で1130℃×20分加熱
焼結し、同図(ハ)のようにロー材の表面へのひろが
り、P/M本体への浸透について調査した。
Experimental method: P / M: Fe (molding density 6.8g / cm 3 ) Low material: Low material composition + mixed Fe, Sn, Cu Low material composition: Cu + 40Ni + 20Mn + 2Si + 1B As shown in Fig. 3 (a), low material is placed on P / M Set, and heat and sinter for 1130 ° C x 20 minutes in butane metamorphic gas as shown in (b) in the same figure, spread to the surface of the brazing material as shown in (c) in the figure, and penetrate into the P / M body Was investigated.

結果:ロー材の特性を変化させうる元素として有効なF
e、Sn、Cuを見出した。
Result: F, which is effective as an element that can change the properties of the brazing material
We have found e, Sn, and Cu.

Feについては、第4図に示すように、添加量を15%以
上、例えば20%添加すると同図(ロ)のようにロー材が
P/M上面で丸まってしまって横方向にはひろがらない。
従って15%以下にする必要がある。又ロー材の圧粉体強
度は改善されない。
As for Fe, as shown in Fig. 4, if the addition amount is 15% or more, for example, 20%, the brazing material becomes
It rolls up on the top surface of the P / M and does not spread in the lateral direction.
Therefore, it should be 15% or less. Further, the green compact strength of the brazing material is not improved.

Cuは添加量を増加させればさせる程、第5図(ロ)の
ようにP/M本体への浸透は増大するが、ロー材の圧粉体
強度は著しく改善される。又SnはCuと同じような傾向を
示すが、圧粉体強度は改善されない。
As the addition amount of Cu increases, the penetration into the P / M body increases as shown in Fig. 5 (b), but the green compact strength of the brazing material is significantly improved. Further, Sn shows the same tendency as Cu, but the green compact strength is not improved.

これらの結果からCu−Ni−Mn系ロー材のみではP/M本
体への浸透量が多いが、Feを添加すると本体への浸透を
抑えることが出来るし、Cu、Snを添加するとP/M本体へ
の浸透量は多くなるものの、横方向へのひろがりも増大
することがわかり、ロー材の流れ性を制御する方法を見
出した。
From these results, the amount of permeation into the P / M main body is large with only Cu-Ni-Mn based brazing material, but it is possible to suppress the permeation into the main body by adding Fe, and P / M when Cu and Sn are added. Although the amount of penetration into the main body increased, it was found that the spread in the lateral direction also increased, and a method for controlling the flowability of the brazing material was found.

又ロー材にFeを固溶させた合金粉末を用いるとロー材
の融点が上昇するので、一般の焼結温度では使用出来な
くなるので、Feは外部添加することが必要である。
Further, when an alloy powder in which Fe is solid-dissolved is used for the brazing material, the melting point of the brazing material rises, so that it cannot be used at a general sintering temperature. Therefore, it is necessary to add Fe externally.

(実施例) ロー材の本体への浸透深さを少なくすることが重要な
ので、Feの添加について実験を行なった。
(Example) Since it is important to reduce the penetration depth of the brazing material into the main body, an experiment was conducted on the addition of Fe.

実験1: Cu−Ni−Mn系ロー材に一般に粉末冶金用として使用さ
れているアトマイズ鉄粉を5%混合し、6ton/cm2の圧力
でロー材の圧粉体を作り実験を行なった。比較のために
鉄粉を入れないものについても同じ条件で作成した。
Experiment 1: 5% of atomized iron powder, which is generally used for powder metallurgy, was mixed with a Cu-Ni-Mn-based brazing material, and a brazing material powder was made at a pressure of 6 ton / cm 2 to conduct an experiment. For comparison, it was prepared under the same conditions even when the iron powder was not added.

第6図(イ)は本実験における成形〜セットの状態図
で、本体P/MはA、Bとも同一材料で、Fe+2%Cu+0.8
%C、成形密度6.5g/cm3のものを用いた。これを:113
0℃×20分ブタン変成ガス、:1250℃×60分N2ガス中で
ロー付し、焼結した。(第6図ロ参照) その結果、焼結温度が高くなるとロー材はP/M本体へ
の浸透、接合面への到達距離も大きくなる。又鉄粉を混
合した方が、しないものよりP/M本体への浸透量が少な
いことが確認された。
FIG. 6 (a) is a state diagram of molding to set in this experiment, the main body P / M is the same material for both A and B, and Fe + 2% Cu + 0.8
% C and molding density 6.5 g / cm 3 were used. This: 113
Butane metamorphic gas at 0 ° C. × 20 minutes, 1250 ° C. × 60 minutes, brazing in N 2 gas, and sintering. (See Fig. 6B) As a result, the higher the sintering temperature, the more the brazing material penetrates into the P / M body and the longer it reaches the joint surface. It was also confirmed that the amount of the iron powder mixed into the P / M body was smaller than that without the iron powder.

実験2: 第7図は本実験に用いたサンプルの構造図で、同図
(イ)は上面図、同図(ロ)は縦断面図、同図(ハ)は
下面図である。
Experiment 2: FIG. 7 is a structural diagram of the sample used in this experiment. The figure (a) is a top view, the figure (b) is a longitudinal sectional view, and the figure (c) is a bottom view.

P/M本体はFe+2%Cu+0.8C、成形密度6.5g/cm3、ロ
ー材はCu−Ni−Mn系+5%Fe、成形圧力6ton/cm2で、図
のようなサンプル100ヶを製作し、1130℃×20分、ブタ
ン変成ガス中でロー付、焼結した。
P / M main body is Fe + 2% Cu + 0.8C, forming density 6.5g / cm 3 , brazing material is Cu-Ni-Mn system + 5% Fe, forming pressure 6ton / cm 2 , 100 samples as shown in the figure are manufactured. , 1130 ° C x 20 minutes, brazing in butane metamorphic gas, and sintering.

結果は、40%の接合不良(スキマ)が発生した。 As a result, 40% of joint failure (skimmer) occurred.

この要因究明のためロー材の圧粉体中のFeを定量分析
したところ、5%の配合にもかかわらず、3〜7%もば
らついていることが判明した。この発生理由は、ロー材
の粒度が#−40〜+200であるにもかかわらず、鉄粉が
#−100と細かいため、混合〜給粉までの工程中で偏析
したものと推定される。
Quantitative analysis of Fe in the green compact of the brazing material for investigating this factor revealed that 3 to 7% varied even though the content was 5%. The reason for this is presumed to be that the iron powder was as fine as # -100, even though the particle size of the brazing material was # -40 to +200, so segregation occurred during the process from mixing to powder feeding.

実験3: ロー材として添加する鉄粉の粒度の粗い#−65の粉末
を使用し、実験2と同様のテストを行なったところ、10
0%良好な結果が得られた。
Experiment 3: The same test as in Experiment 2 was conducted using # -65, which is a coarse iron powder added as a brazing material.
0% good results were obtained.

この実験を5回繰り返したところ、微小なスキマもな
い状態のものが80〜100%、局部的に微少なスキマのも
のも良好とすると100%という結果が得られた。
When this experiment was repeated 5 times, the result was 80% to 100% when there was no minute gap, and 100% when the amount of minute gap was locally good.

このように、ロー材の粒度と鉄粉の粒度を近づけるだ
けで、接合効果が大幅に改善されることが判明した。
As described above, it was found that the bonding effect was significantly improved only by bringing the particle size of the brazing material and the particle size of the iron powder close to each other.

実験4: ロー材と鉄粉を混合するとき、鉄粉が偏析しないよう
にすればよいわけで、ロー材にオレイン酸を加えて母混
合した後、細かい鉄粉を加えて混合したところ、実験3
と同様な良好な結果が得られた。
Experiment 4: When the brazing material and the iron powder are mixed, it is only necessary to prevent the iron powder from being segregated. After adding the oleic acid to the brazing material and mixing with the mother, a fine iron powder was added and mixed. Three
Similar good results were obtained.

基材的にはロー材と鉄粉の偏析を防止すればよいわけ
であるから、ロー材と鉄粉を局部的に拡散結合してもよ
い。
As for the base material, segregation of the brazing material and the iron powder may be prevented, so that the brazing material and the iron powder may be locally diffusion-bonded.

実験5: ロー材としてCu−Ni−Mn系ロー材+5%Fe(粒度を粗
くした鉄粉)+2%Snを使用してロー付実験を行なった
ところ、Fe粉のみの場合よりも本体への浸透は若干大き
くなるものの接合面への浸透も大きくなり良好な接合結
果を得ることが出来た。
Experiment 5: A brazing experiment was performed using Cu-Ni-Mn-based brazing material + 5% Fe (iron powder with coarse grain size) + 2% Sn as the brazing material. Although the permeation increased a little, the permeation into the joint surface also increased and good joint results could be obtained.

(発明の効果) 以上説明したように本発明の鉄系焼結部品の接合方法
によれば、ロー材としてCu−Ni−Mn系の粉末に鉄粉、銅
粉、Sn粉の少なくとも1種類以上を添加した圧粉体を用
いることにより、その流れ性が改善され、良好な接合部
品を得ることが可能となる。
(Effect of the invention) As described above, according to the method for joining iron-based sintered parts of the present invention, at least one or more of Cu-Ni-Mn-based powder, iron powder, copper powder, and Sn powder is used as a brazing material. By using the green compact added with, the flowability is improved, and it becomes possible to obtain a good joined part.

【図面の簡単な説明】[Brief description of drawings]

第1図は鉄系焼結部品のロー付による原理の説明図であ
る。 第2図はロー材としてのCu−Ni−Mn系材料の本体への浸
透深さと、接合面での到達距離の関係特性図である。 第3図(イ)〜(ハ)はロー材組成への添加元素の探索
のための実験の説明図であり、第4図(イ)、(ロ)は
鉄粉添加、第5図(イ)、(ロ)は銅粉添加の場合の状
態図である。 第6図(イ)(ロ)は鉄粉添加の効果の実験の説明図で
ある。 第7図は同上実験のサンプルの構造図で、同図(イ)は
上面図、同図(ロ)は縦断面図、同図(ハ)は下面図で
ある。 1、2……鉄系焼結部品、3……ロー材、4……接合
面、
FIG. 1 is an explanatory view of the principle of brazing iron-based sintered parts. FIG. 2 is a characteristic diagram showing the relationship between the penetration depth of a Cu—Ni—Mn-based material as a brazing material into the main body and the reaching distance at the joint surface. FIGS. 3 (a) to 3 (c) are explanatory views of an experiment for searching for an additive element to the brazing material composition, and FIGS. 4 (a) and 4 (b) are iron powder additions and FIG. 5 (a). ) And (b) are state diagrams when copper powder is added. FIG. 6 (a) and (b) are explanatory views of an experiment of the effect of adding iron powder. FIG. 7 is a structural view of a sample of the same experiment as above, FIG. 7A is a top view, FIG. 7B is a vertical sectional view, and FIG. 7C is a bottom view. 1, 2 ... Iron-based sintered parts, 3 ... Brazing material, 4 ... Bonding surface,

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄系焼結部品と鉄系焼結部品又は鉄系焼結
部品と鋼材をロー付接合する方法において、鉄系焼結部
品及びロー材共に圧粉体を用い、ロー材はCu+30〜50%
Ni+15〜25%Mn+1〜5%Si+0.5〜2.0%Bよりなる合
金粉末に3〜15%の鉄粉、1〜10%の銅粉、1〜7%の
Sn粉のうち少なくとも1種類以上を添加した圧粉体を使
用してロー付状態に組立てた後、ロー材の融点以上の温
度で加熱してロー付と焼結を同時に行なうことを特徴と
する鉄系焼結部品のロー付接合方法。
1. A method of brazing an iron-based sintered component and an iron-based sintered component or an iron-based sintered component and a steel material together, wherein a powder compact is used for both the iron-based sintered component and the brazing material, and the brazing material is Cu + 30 to 50%
Alloy powder consisting of Ni + 15-25% Mn + 1-5% Si + 0.5-2.0% B, 3-15% iron powder, 1-10% copper powder, 1-7%
It is characterized by assembling into a brazing state by using a green compact to which at least one kind of Sn powder is added, and then heating at a temperature above the melting point of the brazing material to perform brazing and sintering at the same time. Brazing method for ferrous sintered parts.
JP63165737A 1988-07-01 1988-07-01 Joining method for iron-based sintered parts Expired - Lifetime JP2545447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63165737A JP2545447B2 (en) 1988-07-01 1988-07-01 Joining method for iron-based sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63165737A JP2545447B2 (en) 1988-07-01 1988-07-01 Joining method for iron-based sintered parts

Publications (2)

Publication Number Publication Date
JPH0215875A JPH0215875A (en) 1990-01-19
JP2545447B2 true JP2545447B2 (en) 1996-10-16

Family

ID=15818121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63165737A Expired - Lifetime JP2545447B2 (en) 1988-07-01 1988-07-01 Joining method for iron-based sintered parts

Country Status (1)

Country Link
JP (1) JP2545447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120148440A1 (en) * 2010-12-08 2012-06-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Copper brazing filler metal

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074656B2 (en) 2003-04-29 2006-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Doping of semiconductor fin devices
JP4735061B2 (en) * 2005-06-09 2011-07-27 三菱マテリアル株式会社 Brazing method for metal porous body and brazing structure
DK2271460T3 (en) * 2008-03-19 2012-02-06 Hoeganaes Ab Publ Iron-chromium-based solder
JP5073554B2 (en) * 2008-03-28 2012-11-14 日立粉末冶金株式会社 Brazing material for joining ferrous sintered members and joining method of ferrous sintered members
JP2011056533A (en) * 2009-09-09 2011-03-24 Sumitomo Electric Sintered Alloy Ltd Brazing filler metal for joining sintered component
KR101812618B1 (en) * 2009-09-18 2017-12-27 회가내스 아베 (피유비엘) Iron-chromium based brazing filler metal
CN106001980A (en) * 2016-06-15 2016-10-12 中国科学院电工研究所 High-temperature lead-free soldering lug for encapsulating power electronic module and preparation method thereof
JP7447795B2 (en) * 2018-10-09 2024-03-12 株式会社レゾナック Brazing material for joining ferrous sintered parts and method for manufacturing ferrous sintered parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120148440A1 (en) * 2010-12-08 2012-06-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Copper brazing filler metal

Also Published As

Publication number Publication date
JPH0215875A (en) 1990-01-19

Similar Documents

Publication Publication Date Title
US4029476A (en) Brazing alloy compositions
AU2002325600B2 (en) Powder metal scrolls
JP2545447B2 (en) Joining method for iron-based sintered parts
JPH07286202A (en) Production of composite sintered compact
DE3506275A1 (en) METHOD FOR CONNECTING POROUS METAL BODIES AND PRODUCT PRODUCED BY THE METHOD
US3899306A (en) Exothermic brazing of aluminum
JP5073554B2 (en) Brazing material for joining ferrous sintered members and joining method of ferrous sintered members
DE3316807A1 (en) HARD SOLDER ALLOY FOR JOINING OXIDE CERAMICS UNDER OR WITH METALS
WO2021219564A1 (en) Pre-alloyed powder for sinter-brazing, sinter-brazing material and sinter-brazing method
US4425299A (en) Method for bonding sintered metal pieces
DE2340018C2 (en) Method for connecting sintered permanent magnets made of rare earth cobalt compounds
JP5408589B2 (en) Solder alloy and manufacturing method thereof
US4078713A (en) Brazing sintered ferrous powder metal articles
JPH04220195A (en) Joining insert material
JP2822497B2 (en) Bonding method and bonded body of sheet metal plate and sintered part
JPS6146521B2 (en)
JP7447795B2 (en) Brazing material for joining ferrous sintered parts and method for manufacturing ferrous sintered parts
JP2004143538A (en) Method for joining ferrous sintered parts
Galán‐Salazar et al. Novel multiuse liquid phase promoter for PM components
JPH0140082B2 (en)
JPS629641B2 (en)
DE3421858A1 (en) Process for manufacturing a porous body from stainless steel
JPH0195894A (en) Copper-based brazing filler alloy for sintering alloy
Danninger et al. Reactive sinter brazing of PM aluminium to sintered and wrought steels
JPH0285307A (en) Method for joining ferrous material

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

EXPY Cancellation because of completion of term