JP2542781B2 - Infrared sensor calibration device - Google Patents

Infrared sensor calibration device

Info

Publication number
JP2542781B2
JP2542781B2 JP5007507A JP750793A JP2542781B2 JP 2542781 B2 JP2542781 B2 JP 2542781B2 JP 5007507 A JP5007507 A JP 5007507A JP 750793 A JP750793 A JP 750793A JP 2542781 B2 JP2542781 B2 JP 2542781B2
Authority
JP
Japan
Prior art keywords
infrared
infrared sensor
black
black body
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5007507A
Other languages
Japanese (ja)
Other versions
JPH06213705A (en
Inventor
加藤  明
賀代子 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5007507A priority Critical patent/JP2542781B2/en
Publication of JPH06213705A publication Critical patent/JPH06213705A/en
Application granted granted Critical
Publication of JP2542781B2 publication Critical patent/JP2542781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば宇宙航行体に
搭載される赤外線センサの校正に用いられる赤外線校正
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared calibration device used for calibrating an infrared sensor mounted on a spacecraft.

【0002】[0002]

【従来の技術】一般に、赤外線センサの校正とは、赤外
線センサに入射する赤外線強度に対してセンサ出力強度
がどのような値を示すかを測定する、いわゆる目盛り付
け作業を称する。
2. Description of the Related Art Generally, the calibration of an infrared sensor is a so-called calibrating operation for measuring what value the sensor output intensity shows with respect to the infrared intensity incident on the infrared sensor.

【0003】図3はこのような赤外線センサ1の校正を
行う従来の赤外線センサ校正装置を示すもので、赤外線
センサ1の赤外線入射口1aに対向して黒体本体2が配
設される。この黒体本体2は温度制御部3を介して温度
制御が行われ、その設定温度に応じた強度の赤外線を赤
外線センサ1の赤外線入射口1aに放射する。
FIG. 3 shows a conventional infrared sensor calibrating device for calibrating the infrared sensor 1 as described above. A black body 2 is provided so as to face the infrared entrance 1a of the infrared sensor 1. The temperature of the black body 2 is controlled via the temperature controller 3, and the infrared ray having the intensity corresponding to the set temperature is emitted to the infrared ray entrance 1a of the infrared sensor 1.

【0004】赤外線センサ1の出力にはデータ処理部4
が接続され、このデータ処理部4には赤外線センサ1の
出力が入力される。また、データ処理部4には、黒体本
体2の温度を検出する温度検出部5の出力端が接続さ
れ、この温度検出部5の検出値より赤外線強度を算出し
て、この赤外線強度と赤外センサ1の出力強度を比較し
て校正を行う。ところで、このような赤外線センサ校正
装置においては、高精度な校正精度を得るのに、黒体本
体2の赤外線放射面の放射率εが ε=1 であることが望まれる。即ち、黒体本体は、放射率εが
1の場合、その反射率rが r=0(ε=1)
The data processing unit 4 outputs the output of the infrared sensor 1.
The output of the infrared sensor 1 is input to the data processing unit 4. Further, the data processing unit 4 is connected to an output end of a temperature detecting unit 5 for detecting the temperature of the black body 2, and the infrared intensity is calculated from the detection value of the temperature detecting unit 5, and the infrared intensity and the red intensity are calculated. Calibration is performed by comparing the output intensity of the outer sensor 1. By the way, in such an infrared sensor calibration device, in order to obtain highly accurate calibration accuracy, it is desired that the emissivity ε of the infrared radiation surface of the black body 2 is ε = 1. That is, when the emissivity ε of the black body is 1, the reflectance r is r = 0 (ε = 1)

【0005】となり、周囲環境からの放射があった場合
にも、該周囲環境からの放射が赤外線センサ1の赤外線
入射口1aに入射しないことで、黒体本体からの赤外線
のみが赤外線入射口に入射されることによる。
Therefore, even if there is radiation from the surrounding environment, the radiation from the surrounding environment does not enter the infrared entrance 1a of the infrared sensor 1, so that only the infrared rays from the black body body enter the infrared entrance. It depends on the incident.

【0006】しかしながら、上記赤外線センサ校正装置
では、黒体本体2の赤外線放射面の放射率εが0.8〜
0.9程度しかないことから、図4に示すように黒体本
体2からの放射される赤外線Aの他に、周囲環境からの
放射を黒体本体2で反射した赤外線B、及び周囲環境か
ら直接的に放射される赤外線Cが赤外線センサ1の赤外
線入射口1aに入射されるために、これら赤外線B及び
赤外線Cが誤差となるという不具を有する。即ち、赤外
線Aの強度については、黒体本体2の温度から容易に求
めることが可能であるが、赤外線B及び赤外線Cの強度
を正確に求めることが困難なために、これに赤外線B及
び赤外線Cが誤差となり、校正精度の高精度化を図るの
が困難であるという問題を有する。
However, in the above infrared sensor calibration device, the emissivity ε of the infrared radiation surface of the black body 2 is 0.8 to 0.8.
Since there is only about 0.9, as shown in FIG. 4, in addition to the infrared rays A radiated from the black body 2 as well as the infrared rays B reflected by the black body 2 from the ambient environment and the ambient environment Since the infrared ray C directly radiated enters the infrared ray entrance 1a of the infrared sensor 1, the infrared ray B and the infrared ray C have an error. That is, the intensity of the infrared ray A can be easily obtained from the temperature of the black body 2, but it is difficult to obtain the intensity of the infrared ray B and the infrared ray C accurately. There is a problem that C becomes an error and it is difficult to improve the calibration accuracy.

【0007】[0007]

【発明が解決しようとする課題】以上述べたように、従
来の赤外線センサ校正装置では、校正精度の向上を図る
のが困難であるという問題を有する。
As described above, the conventional infrared sensor calibration device has a problem that it is difficult to improve the calibration accuracy.

【0008】この発明は、上記の事情に鑑みてなされた
もので、簡易な構成で、正確な放射強度を検出し得るよ
うにして、校正精度の向上を図った赤外線センサ校正装
置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an infrared sensor calibration device having a simple structure and capable of detecting an accurate radiation intensity to improve the calibration accuracy. With the goal.

【0009】[0009]

【課題を解決するための手段】この発明は、赤外線を放
射する黒体本体と、一端部が前記黒体本体の赤外線放射
面に熱的に独立して取付けられ、他端部が赤外線センサ
の赤外線入射口に対して所定の間隔離間されて対向配置
されるものであって、少なくとも内面が黒色に形成され
た筒体と、前記黒体本体及び前記筒体をそれぞれ所定の
温度に設定する温度制御手段と、前記黒体本体及び前記
筒体の温度に基づいて前記赤外線センサに入射される赤
外線強度を求めて該赤外線センサの出力と比較して校正
する校正手段とを備えて構成したものである。
According to the present invention, there is provided a black body for radiating infrared rays, one end of which is thermally independently attached to the infrared radiating surface of the black body and the other end of which is an infrared sensor. A cylindrical body having at least an inner surface formed in black, and a temperature for setting the black body main body and the cylindrical body to predetermined temperatures, respectively, which are arranged to face the infrared entrance with a predetermined gap therebetween. A control means, and a calibration means for calibrating by comparing the output of the infrared sensor with the intensity of infrared light incident on the infrared sensor based on the temperatures of the blackbody body and the tubular body. is there.

【0010】[0010]

【作用】上記構成によれば、筒体が黒体本体と赤外線セ
ンサの赤外線入射口間に介在されて、周囲環境から放射
される赤外線を遮蔽することにより、黒体本体から放射
される赤外線、該黒体本体で反射される赤外線及び筒体
から放射される赤外線のみが赤外線センサに入射され
る。これにより、黒体本体及び筒体の各温度を温度検出
手段で検出して、これらの検出値に基づいて赤外線セン
サに入射される正確な赤外線強度の検知が可能となる。
従って、この赤外線センサに入射される赤外線強度と赤
外線センサの出力に基づいて高精度な校正が可能とな
る。
According to the above structure, the cylindrical body is interposed between the black body main body and the infrared ray entrance port of the infrared sensor to shield the infrared ray radiated from the surrounding environment, so that the infrared ray radiated from the black body body, Only the infrared rays reflected by the black body and the infrared rays emitted from the cylinder enter the infrared sensor. With this, it becomes possible to detect the respective temperatures of the black body main body and the cylindrical body by the temperature detection means and accurately detect the infrared intensity incident on the infrared sensor based on the detected values.
Therefore, it is possible to perform highly accurate calibration based on the intensity of infrared rays incident on the infrared sensor and the output of the infrared sensor.

【0011】[0011]

【実施例】以下、この発明の実施例について、図面を参
照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0012】図1はこの発明の一実施例に係る赤外線セ
ンサ校正装置を示すもので、黒体本体10は、赤外線セ
ンサ11の赤外線入射口11aに対応して配設される。
黒体本体10は、所定の放射率εで、若干の反射率rを
有しており、その赤外線放射面には筒体12の一端部が
断熱部材13(図2参照)を介して熱的に独立した状態
で、取付けられる。この筒体12は、その他端部が赤外
線センサ11の赤外線入射口11aに近接される。この
筒体12は、例えば内面に渦巻き状の複数の溝(図の都
合上、図示せず)が形成され、その表面には黒色塗装が
施される。
FIG. 1 shows an infrared sensor calibrating apparatus according to an embodiment of the present invention, in which a black body 10 is provided corresponding to an infrared entrance 11a of an infrared sensor 11.
The black body 10 has a predetermined emissivity ε and a slight reflectivity r, and one end of the cylindrical body 12 is thermally connected to the infrared radiation surface of the black body 10 via a heat insulating member 13 (see FIG. 2). Can be installed independently. The other end of the cylindrical body 12 is brought close to the infrared ray incident port 11a of the infrared sensor 11. The cylindrical body 12 has, for example, a plurality of spiral grooves (not shown for convenience of illustration) formed on the inner surface thereof, and the surface thereof is painted black.

【0013】上記黒体本体10及び筒体12には、加熱
冷却系が内蔵されており、これら加熱冷却系が温度制御
部14を介して作動されて所定の温度に設定される。こ
れにより、筒体12は、黒体本体10の周囲の温度環境
を一定に保つと同時に、外部から赤外線が入射すると、
その内面の上記複数の溝(図示せず)の側壁により、該
赤外線を多重反射させて減衰させ、その黒色塗装面と協
働して反射率を最小限に抑えて、黒体本体10を理論上
の理想黒体に近付ける。これら黒体本体10及び筒体1
2は、その温度状態が温度センサ等で構成される温度検
出部15で検出される。そして、この温度検出部15の
出力端には、データ処理部16に接続される。
A heating / cooling system is built in the black body 10 and the cylindrical body 12, and these heating / cooling systems are operated via a temperature controller 14 to set a predetermined temperature. As a result, the cylindrical body 12 keeps the temperature environment around the black body 10 constant, and at the same time, when infrared rays enter from the outside,
The side walls of the plurality of grooves (not shown) on the inner surface of the black body 10 theoretically reflect the infrared rays in multiple reflections to attenuate them, and cooperate with the black painted surface to minimize the reflectance. Get close to the ideal black body above. The black body 10 and the cylinder 1
2, the temperature state is detected by the temperature detection unit 15 including a temperature sensor or the like. The output end of the temperature detecting unit 15 is connected to the data processing unit 16.

【0014】また、データ処理部16には、赤外線セン
サ11の出力端が接続される。データ処理部16は、赤
外線センサ11の出力値と、黒体本体10及び筒体12
の温度に基づいて算出した赤外強度とを比較してセンサ
校正を実行する。
The output end of the infrared sensor 11 is connected to the data processing section 16. The data processing unit 16 includes the output value of the infrared sensor 11, the black body 10 and the cylindrical body 12.
The sensor calibration is executed by comparing with the infrared intensity calculated based on the temperature of.

【0015】上記構成において、校正を行う場合には、
黒体本体10及び筒体12が温度制御部14を介して温
度制御される。すると、黒体本体10及び筒体12は、
図2に示すように黒体本体10からの放射される赤外線
X、黒体本体10で反射した赤外線Y、及び筒体12の
内面から直接的に放射される赤外線Zが赤外線センサ1
1の赤外線入射口11aに導かれる。ここで、温度検出
部15は、黒体本体10及び筒体12の温度を検出して
データ処理部16に出力する。これら赤外線X、赤外線
Y、及び赤外線Zは、黒体本体10及び筒体12の温度
に対応され、データ処理部16が黒体本体10及び筒体
12の温度に基づいて赤外線センサ11の赤外線入射口
11aに入射される赤外線強度を算出する。同時に、デ
ータ処理部16には、赤外線センサ11の出力値が入力
され、この出力値と赤外線センサ11に入射した赤外線
強度とを比較して校正を実行する。
In the above configuration, when performing calibration,
The temperature of the black body 10 and the cylinder 12 is controlled via the temperature control unit 14. Then, the black body 10 and the cylindrical body 12 are
As shown in FIG. 2, the infrared ray X emitted from the black body 10, the infrared ray Y reflected by the black body 10, and the infrared ray Z directly emitted from the inner surface of the cylindrical body 12 are infrared sensors 1.
It is guided to the first infrared ray incident port 11a. Here, the temperature detector 15 detects the temperatures of the black body 10 and the cylinder 12 and outputs them to the data processor 16. These infrared rays X, infrared rays Y, and infrared rays Z correspond to the temperatures of the black body main body 10 and the cylindrical body 12, and the data processing unit 16 makes infrared rays incident on the infrared sensor 11 based on the temperatures of the black body main body 10 and the cylindrical body 12. The infrared intensity incident on the mouth 11a is calculated. At the same time, the output value of the infrared sensor 11 is input to the data processing unit 16, and the output value is compared with the infrared intensity incident on the infrared sensor 11 to execute calibration.

【0016】このように、上記赤外線センサ校正装置
は、黒体本体10の赤外線放射面に熱的に独立して筒体
12の一端部を取付けて、この筒体12の他端部を赤外
線センサ11の赤外線入射口11aに対向配置し、その
黒体本体10及び筒体12をそれぞれ所定の温度に制御
して、この黒体本体10及び筒体12の温度に基づいて
赤外線センサ11に入射される赤外線強度を求めて、該
赤外線センサ11の出力と比較して校正するように構成
した。これによれば、筒体12が周囲環境から放射され
る赤外線を遮蔽し、赤外線センサ11の赤外線入射口1
1aに対して黒体本体10から放射される赤外線、該黒
体本体10で反射した赤外線及び筒体12から直接的に
放射される赤外線のみが入射されることにより、これら
黒体本体10及び筒体12の各温度に基づいて正確な赤
外線強度が検知されるため、可及的に高精度な校正が実
現される。
As described above, in the infrared sensor calibration device, one end of the cylindrical body 12 is thermally and independently attached to the infrared radiation surface of the black body 10, and the other end of the cylindrical body 12 is attached to the infrared sensor. The black body body 10 and the cylindrical body 12 are arranged to face the infrared ray entrance port 11a of 11 and are controlled to a predetermined temperature, respectively, and are incident on the infrared sensor 11 based on the temperatures of the black body body 10 and the cylindrical body 12. The infrared intensity is calculated and compared with the output of the infrared sensor 11 for calibration. According to this, the cylindrical body 12 shields infrared rays radiated from the surrounding environment, and the infrared ray entrance port 1 of the infrared sensor 11 is
Only the infrared rays radiated from the black body main body 10, the infrared rays reflected by the black body main body 10 and the infrared rays directly radiated from the cylindrical body 12 are incident on the 1a, so that the black body main body 10 and the cylindrical body 1a. Since accurate infrared intensity is detected based on each temperature of the body 12, calibration with the highest possible accuracy is realized.

【0017】なお、上記実施例では、筒体12の内面に
渦巻き状の溝を形成するように構成した場合で説明した
が、この形状に限ることなく、構成可能である。また、
筒体12の内面には、溝を形成することなく構成しても
良い。この場合には、若干放射率が低下することとな
る。よって、この発明は上記実施例に限ることなく、そ
の他、この発明の要旨を逸脱しない範囲で種々の変形を
実施し得ることは勿論のことである。
In the above embodiment, the case where the spiral groove is formed on the inner surface of the cylindrical body 12 has been described, but the shape is not limited to this. Also,
The inner surface of the cylindrical body 12 may be configured without forming a groove. In this case, the emissivity will be slightly reduced. Therefore, it goes without saying that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

【0018】[0018]

【発明の効果】以上詳述したように、この発明によれ
ば、簡易な構成で、正確な放射強度を検出し得るように
して、校正精度の向上を図った赤外線センサ校正装置を
提供することができる。
As described above in detail, according to the present invention, it is possible to provide an infrared sensor calibration device having a simple structure and capable of detecting an accurate radiation intensity to improve the calibration accuracy. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る赤外線センサ校正装
置を示した図。
FIG. 1 is a diagram showing an infrared sensor calibration device according to an embodiment of the present invention.

【図2】図1の一部詳細を示した図。FIG. 2 is a diagram showing a part of FIG. 1 in detail.

【図3】従来の赤外線センサ校正装置を示した図。FIG. 3 is a diagram showing a conventional infrared sensor calibration device.

【図4】図3の一部詳細を示した図。FIG. 4 is a diagram showing a part of details of FIG. 3;

【符号の説明】[Explanation of symbols]

10…黒体本体、11…赤外線センサ、11a…赤外線
入射口、12…筒体、13…断熱部材、14…温度制御
部、15…温度検出部、16…データ処理部。
10 ... Black body main body, 11 ... Infrared sensor, 11a ... Infrared entrance, 12 ... Cylindrical body, 13 ... Thermal insulation member, 14 ... Temperature control part, 15 ... Temperature detection part, 16 ... Data processing part.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 赤外線を放射する黒体本体と、 一端部が前記黒体本体の赤外線放射面に熱的に独立して
取付けられ、他端部が赤外線センサの赤外線入射口に対
して所定の間隔離間されて対向配置されるものであっ
て、少なくとも内面が黒色に形成された筒体と、 前記黒体本体及び前記筒体をそれぞれ所定の温度に設定
する温度制御手段と、前記黒体本体及び前記筒体の温度
に基づいて前記赤外線センサに入射される赤外線強度を
求めて該赤外線センサの出力と比較して校正する校正手
段とを具備した赤外線センサ校正装置。
1. A black body for radiating infrared rays, one end of which is thermally independently attached to an infrared radiating surface of the black body, and the other end of which has a predetermined shape with respect to an infrared entrance of an infrared sensor. A cylindrical body having a black surface on at least an inner surface, which are arranged to face each other with a space therebetween, temperature control means for respectively setting the black body main body and the cylindrical body to predetermined temperatures, and the black body main body. And an calibrating means for calibrating the infrared intensity incident on the infrared sensor on the basis of the temperature of the tubular body and comparing it with the output of the infrared sensor.
【請求項2】 前記筒体は黒色の内面に複数の溝が形成
されてなることを特徴とする請求項1記載の赤外線セン
サ校正装置。
2. The infrared sensor calibrating device according to claim 1, wherein the cylindrical body has a plurality of grooves formed on a black inner surface.
JP5007507A 1993-01-20 1993-01-20 Infrared sensor calibration device Expired - Lifetime JP2542781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5007507A JP2542781B2 (en) 1993-01-20 1993-01-20 Infrared sensor calibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5007507A JP2542781B2 (en) 1993-01-20 1993-01-20 Infrared sensor calibration device

Publications (2)

Publication Number Publication Date
JPH06213705A JPH06213705A (en) 1994-08-05
JP2542781B2 true JP2542781B2 (en) 1996-10-09

Family

ID=11667706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5007507A Expired - Lifetime JP2542781B2 (en) 1993-01-20 1993-01-20 Infrared sensor calibration device

Country Status (1)

Country Link
JP (1) JP2542781B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602389A (en) * 1995-07-13 1997-02-11 Kabushiki Kaisha Toshiba Infrared sensor calibration apparatus using a blackbody
JP5135691B2 (en) * 2006-02-24 2013-02-06 コニカミノルタビジネステクノロジーズ株式会社 Image forming apparatus
US7582859B2 (en) 2006-11-30 2009-09-01 General Electric Company Infrared sensor calibration system and method
CN109164480B (en) * 2018-10-15 2019-11-19 北京环境特性研究所 A kind of multiple reflections infrared sensor caliberating device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130790A (en) * 1974-09-09 1976-03-16 Horiba Ltd ZENSANSOYOKYURYOSOKUTEIHOHO OBI SONOSOCHI
JPH02187633A (en) * 1989-01-17 1990-07-23 Fujitsu Ltd Infrared image pickup device
JPH03295423A (en) * 1990-04-13 1991-12-26 Matsushita Electric Ind Co Ltd Light shield cylinder type luminance meter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152313U (en) * 1988-03-31 1989-10-20

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130790A (en) * 1974-09-09 1976-03-16 Horiba Ltd ZENSANSOYOKYURYOSOKUTEIHOHO OBI SONOSOCHI
JPH02187633A (en) * 1989-01-17 1990-07-23 Fujitsu Ltd Infrared image pickup device
JPH03295423A (en) * 1990-04-13 1991-12-26 Matsushita Electric Ind Co Ltd Light shield cylinder type luminance meter

Also Published As

Publication number Publication date
JPH06213705A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
US5602389A (en) Infrared sensor calibration apparatus using a blackbody
US4979133A (en) Pyrometer
US4919542A (en) Emissivity correction apparatus and method
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US8274050B2 (en) Radiometry using an uncooled microbolometer detector
US20020021739A1 (en) Blackbody cavity for calibration of infrared thermometers
CN102265125A (en) Non-contact medical thermometer with stray radiation shielding
EP3477268A1 (en) Infrared ray detector and radiation thermometer
KR20220127112A (en) Infrared temperature measuring and monitoring system and calibration method thereof
US5690429A (en) Method and apparatus for emissivity independent self-calibrating of a multiwavelength pyrometer
US5326172A (en) Multiwavelength pyrometer for gray and non-gray surfaces in the presence of interfering radiation
JP2542781B2 (en) Infrared sensor calibration device
EP1483556B1 (en) Improvements in or relating to the calibration of infra red cameras
JPH08184496A (en) Measurement of radiation luminance by angular wave filteringused in temperature measurement of heat radiating body
JP3209439B2 (en) Self-calibrating pyranometer
US6300623B1 (en) IR sensor with reflective calibration
US5921680A (en) Sensor for radiation pyrometric temperature measurement at high ambient temperature
JPH06222003A (en) Gas concentration measuring equipment
CN105527024B (en) Temperature measuring equipment, system and method based on light radiation
JP3176798B2 (en) Radiant heat sensor
JP7441621B2 (en) infrared measurement system
US20230123056A1 (en) Temperature measuring device having a temperature calibration function
JPH0518048B2 (en)
JPS6330890Y2 (en)
JPH06147995A (en) Infrared detecting device