JP2542380C - - Google Patents

Info

Publication number
JP2542380C
JP2542380C JP2542380C JP 2542380 C JP2542380 C JP 2542380C JP 2542380 C JP2542380 C JP 2542380C
Authority
JP
Japan
Prior art keywords
propylene
ethylene
random copolymer
copolymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Publication date

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ブロー成形により得られ、透明性と柔軟性に優れ且つ耐熱性の良好
な輸液用ボトルに関する。 (従来の技術および発明が解決しようとする問題点) 近年、工業用、家庭用及び医療用の各種容器として透明性と柔軟性を兼ね備え
た材料が要求されており、これに応えるものとしては、ポリ塩化ビニル、線状低
密度ポリエチレンがあるが、特に医療用には耐熱性の低いことが問題になってい
る。 そこで本発明者らは、上記問題点を解決するため耐熱性の点からプロピレン系
材料に注目し種々検討を重ねた。 (問題点を解決するための手段) その結果、特定のプロピレン系ランダム共重合体がブロー成形性、透明性、柔
軟性に優れ、かつ耐熱性が良好であるところからブロー成形による輸液用ボトル
用材料として好適であることを見出し、本発明を完成した。 すなわち本発明は、「プロピレン以外のαオレフィン含量2.5〜8重量%、
メルトフローレート0.1〜20g/10分かつメルトテンション0.5〜30
gのプロピレン−αオレフィンランダム共重合体を常法によりブロー成形して成
ることを特徴とする輸液用ボトル」である。 (作用) 本発明で用いるプロピレン−αオレフィンランダム共重合体は結晶性樹脂であ
り、そのαオレフィンとしては、エチレン、ブテン、ペンテン、ヘキセン等炭素
数2〜12程度のプロピレン以外のαオレフィンが適し、これらの1種または2
種以上を使用することができる。中でも、エチレンが特に良好である。これらα
オレフィンの含量については2.5〜8重量%である。2.5重量%より低いと
ボトルの柔軟性が損なわれ、一方、8重量%を超えると低結晶性ポリマーが増大
して耐熱性が著しく低下する。 この共重合体のMFRは、0.1〜20g/10分、好ましくは0.5〜10
g/10分である。0.1g/10分未満では得られる成形品の外観が劣り、一
方、20g/10分を超えると成形性が不良となる。 また、この共重合体のメルトテンションは0.5〜30gである。0.5g未
満ではパリソンのドローダウンが激しく肉厚分布の均一なボトルが得られず、一
方、30gを超えると成形品の外観が劣り好ましくない。 ここで、MFRはJIS−K7210に準拠して測定し、また、メルトテンシ
ョンは添付の図面で示す東洋精機社製メルトテンションテスターを用いてシリン
ダー温度190℃、速度10mm/分で試料を押出し、その押しだされた試料を
張力検出Vプーリー、アイドルプーリーおよび巻取りロールに導き3.9m/分
の速度で引き取り張力を求める方法に従って測定する。 かかるプロピレン−αオレフィンランダム共重合体は、一般に不活性溶媒の存
在又は不存在下、チーグラー型の立体特異性重合触媒を用いて、プロピレン−エ
チレンランダム共重合の製造技術をそのまま適用して製造される。ここで、チー
グラー型の立体特異性重合触媒としては、各種二塩化チタン又は塩化マグネシウ
ム担持チタン含有触媒とジエチルアルミニウムクロライド、トリエチルアルミニ
ウムクロライド等の有機アルミニウム化合物とを主成分とする触媒系が好適に使
用しうる。分子量は水素により制御される。 なお、この共重合体には、本発明の効果を実用上損なわない範囲で、他の付加
的成分を加えることができる。これらの付加的成分としては、エチレン−αオレ
フィン系共重合ゴム(αオレフィンとしては、プロピレン、ブテン等である)、
各種安定剤、着色剤等がある。 ブロー成形は、通常の方法により行われ、その際の成形条件は都度適宜設定さ
れる。 (発明の効果) このようにして得られる本発明の輸液用ボトルは、以下の実施例に示すとおり
、透明性、柔軟性に優れ、かつ、耐熱性の良好なものであり、これがブロー成形
性よく得られるものである。 (実施例) 実施例1 撹拌翼を備えた内容積200リットルのステンレス鋼製反応器内をプロピレン
ガスで十分置換したのち、重合溶媒としてヘプタン80リットルを入れた。器内
温度を50℃に保ち、触媒としてジエチルアルミニウムクロライド(DEAC)
50gおよび三塩化チタン(丸紅ソルベイ化学社製TMB−07)10gを加え
た。続いてプロピレンを5.83kg/時の速度で15分間供給した。なお、こ
の間水素を気相部濃度が3体積%となるよう供給した。次に器内温度を55℃に
上げると共に、水素濃度が3.2体積%とし、プロピレンは引続き5.83kg
/時の速度のまま、新たにエチレンを0.152kg/時の速度で供給し、プロ
ピレンとエチレンをそれぞれ360分間にわたって供給した。この間のプロピレ
ン及びエチレンの総供給量は35.0kg及び0.912kgであった。この時
点で器内圧力を2.42kg/cm2Gまで下げて反応を終えた。続いて反応器
内にブタノールを1.8リットル添加し、65℃にて3時間かけて触媒を分解し
たのち、水洗により触媒を除去した。更に遠心分離と乾燥工程を経て製品共重合
体32.8kgを得た。また重合溶剤に可溶した副生無定形重合体は1.22k
gであった。 得られたプロピレン−エチレンランダム共重合体100重量部に対してトリス
(3,5−ジ−t−ブチル−4−ヒドロキシベンゾイル)イソシアヌレート(酸
化防止剤)0.1重量部、ステアリン酸カルシウム(中和剤)0.03重量部を
添加して混合し230℃で造粒した。 このペレットをスクリュー径40mmのブロー成形機、射出成形機にかけ各々
ブローボトル(500ml)、試験片を作製した。このブローボトルについては
、 透明性、柔軟性、耐熱性を評価し、試験片については曲げ弾性率(JIS−K7
203準拠)を測定した。 透明性については、JIS−K6714に準拠して1mm厚シートにてHAZ
Eを測定した。 耐熱性については、120℃にセットしたギアーオーブンにブローボトルを1
時間投入して形状保持具合を観察し、次のように評価した。 ○:変形せずにボトル形状が保持されている。 ×:変形した。 柔軟性については、ブローボトルを手でスクイズさせ、その反発力により次の
ように判定をした。 ○:抵抗なくスクイズさせることができる。 ×:スクイズ時の抵抗が大きく、また、回復時の戻りが早い。 実施例2 実施例1と同様の触媒調製条件で、エチレンフィード速度を0.32kg/時
としてフィード総供給量を1.93kgとし、気相部水素濃度を7.8体積%と
したこと以外は実施例1と同様にして重合を行い、製品共重合体31.6kgを
得た。また重合溶媒に可溶した副生無定形共重合体は2.8kgであった。 得られたプロピレン−エチレンランダム共重合体中のエチレン含量は5.3重
量%、MFRは2.5g/10分かつメルトテンションは0.9gであった。 また得られたランダム共重合体を用いて実施例1と同様の評価を実施した。 実施例3 実施例1と同様の触媒調製条件で、エチレンフィード速度を0.50kg/時
としてフィード総供給量を3.0kgとし、気相部水素濃度を13体積%とした
こと以外は実施例1と同様にして重合を行い、製品共重合体26.9kgを得た
。また重合溶媒に可溶した副生無定形共重合体は6.2kgであった。 得られたプロピレン−エチレンランダム共重合体中のエチレン含量は6.9重
量%、MFRは2.0g/10分かつメルトテンションは1.5gであった。 また得られたランダム共重合体を用いて実施例1と同様の評価を実施した。 比較例1 密度0.920g/cm3の高圧法低密度ポリエチレンを用いて実施例1と同
様の評価を実施した。 比較例2 ポリ塩化ビニルポリマーを用いて実施例1と同様の評価を実施した。 比較例3 プロピレン−エチレンランダム共重合体製造時のエチレン供給速度及び供給量
をそれぞれ0.11kg/時及び0.66kgとしたこと以外は実施例1と同様
の条件で共重合体を製造した。 また得られたランダム共重合体を用いて実施例1と同様の評価を実施した。 比較例4 プロピレン−エチレンランダム共重合体製造時のエチレン供給速度及び供給量
をそれぞれ0.64kg/時及び3.84kgとしたこと以外は実施例2と同様
の条件で共重合体を製造した。 また得られたランダム共重合体を用いて実施例1と同様の評価を実施した。 比較例5 プロピレン−エチレンランダム共重合体製造時の気相部水素濃度を2.5体積
%としたこと以外は実施例2と同様の条件で共重合体を製造した。得られたプロ
ピレン−エチレンランダム共重合体中のエチレン含量は5.0重量%、MFRは
0.2g/10分かつメルトテンションは40gであった。 また得られたランダム共重合体を用いて実施例1と同様の評価を実施した。 比較例6 プロピレン−エチレンランダム共重合体製造時の気相部水素濃度を17体積%
としたこと以外は実施例2と同様の条件で共重合体を製造した。得られたプロピ
レン−エチレンランダム共重合体中のエチレン含量は5.1重量%、MFRは1
5g/10分かつメルトテンションは0.1gであった。 また得られたランダム共重合体を用いて実施例1と同様の評価を実施した。 実施例4 実施例1と同様の触媒調製条件で、気相部水素濃度を11体積%とし、エチレ
ンの供給速度を0.32kg/時としてエチレンの総供給量を1.93kgとし たこと以外は実施例1と同様にして重合を行い、製品共重合体31.3kgを得
た。また重合溶媒に可溶した副生無定形共重合体は3.1kgであった。 得られたプロピレン−エチレンランダム共重合体中のエチレン含量は5.2重
量%、MFRは5.0g/10分かつメルトテンションは0.6gであった。 また得られたランダム共重合体を用いて実施例1と同様の評価を実施した。 これらの結果を第1表に示す。
Description: TECHNICAL FIELD The present invention relates to an infusion bottle obtained by blow molding and having excellent transparency, flexibility and heat resistance. (Problems to be Solved by Conventional Techniques and Inventions) In recent years, materials having both transparency and flexibility have been required for various containers for industrial use, household use, and medical use. There are polyvinyl chloride and linear low-density polyethylene, but low heat resistance has become a problem especially for medical use. Therefore, the present inventors have focused on propylene-based materials from the viewpoint of heat resistance in order to solve the above problems, and have repeated various studies. (Means for solving the problems) As a result, the specific propylene-based random copolymer has excellent blow moldability, transparency, flexibility, and good heat resistance, so that it is used for a bottle for an infusion liquid by blow molding. The present invention was found to be suitable as a material, and the present invention was completed. That is, the present invention relates to “alpha olefin content other than propylene 2.5 to 8% by weight,
Melt flow rate 0.1-20 g / 10 min and melt tension 0.5-30
g of a propylene-α-olefin random copolymer obtained by blow molding in a conventional manner. (Action) The propylene-α-olefin random copolymer used in the present invention is a crystalline resin, and as the α-olefin, α-olefins other than propylene having about 2 to 12 carbon atoms, such as ethylene, butene, pentene, and hexene, are suitable. , One or two of these
More than one species can be used. Among them, ethylene is particularly preferable. These α
The olefin content is between 2.5 and 8% by weight. If it is less than 2.5% by weight, the flexibility of the bottle is impaired, while if it exceeds 8% by weight, the amount of the low crystalline polymer increases and the heat resistance is remarkably reduced. The MFR of this copolymer is 0.1 to 20 g / 10 min, preferably 0.5 to 10 g / 10 min.
g / 10 minutes. If the amount is less than 0.1 g / 10 minutes, the appearance of the molded article obtained is poor, while if it exceeds 20 g / 10 minutes, the moldability is poor. The melt tension of the copolymer is 0.5 to 30 g. If the amount is less than 0.5 g, the drawdown of the parison is so severe that a bottle having a uniform thickness distribution cannot be obtained, while if it exceeds 30 g, the appearance of the molded article is inferior and is not preferred. Here, the MFR was measured in accordance with JIS-K7210, and the melt tension was extruded at a cylinder temperature of 190 ° C. and a speed of 10 mm / min using a melt tension tester manufactured by Toyo Seiki Co., Ltd. as shown in the attached drawing. The extruded sample is guided to a tension detection V pulley, an idle pulley, and a take-up roll, and the measurement is performed at a speed of 3.9 m / min to determine a take-up tension. Such a propylene-α-olefin random copolymer is generally produced in the presence or absence of an inert solvent, using a Ziegler-type stereospecific polymerization catalyst, and directly applying the propylene-ethylene random copolymer production technology. You. Here, as the Ziegler-type stereospecific polymerization catalyst, a catalyst system containing, as main components, various titanium dichloride or magnesium chloride-supported titanium-containing catalysts and an organic aluminum compound such as diethylaluminum chloride and triethylaluminum chloride is preferably used. Can. The molecular weight is controlled by hydrogen. In addition, other additional components can be added to this copolymer as long as the effects of the present invention are not impaired in practical use. These additional components include ethylene-α-olefin copolymer rubber (α-olefin is propylene, butene, etc.),
There are various stabilizers and coloring agents. Blow molding is performed by a usual method, and molding conditions at that time are appropriately set each time. (Effect of the Invention) The infusion bottle of the present invention thus obtained is excellent in transparency, flexibility and heat resistance, as shown in the following Examples, and has good blow moldability. It is often obtained. (Example) Example 1 After sufficiently replacing a 200-liter stainless steel reactor equipped with a stirring blade with a propylene gas, 80 l of heptane was charged as a polymerization solvent. Keep the temperature in the vessel at 50 ℃, and use diethyl aluminum chloride (DEAC) as a catalyst.
50 g and 10 g of titanium trichloride (TMB-07 manufactured by Marubeni Solvay Chemical Co., Ltd.) were added. Subsequently, propylene was supplied at a rate of 5.83 kg / hour for 15 minutes. During this time, hydrogen was supplied so that the concentration in the gas phase became 3% by volume. Next, the temperature in the vessel was raised to 55 ° C., the hydrogen concentration was adjusted to 3.2% by volume, and 5.8 kg of propylene continued.
While maintaining the rate of / h, ethylene was newly supplied at a rate of 0.152 kg / h, and propylene and ethylene were respectively supplied over 360 minutes. The total supply of propylene and ethylene during this time was 35.0 kg and 0.912 kg. At this time, the reaction was completed by reducing the internal pressure to 2.42 kg / cm 2 G. Subsequently, 1.8 liters of butanol was added to the reactor, and the catalyst was decomposed at 65 ° C. for 3 hours, and then the catalyst was removed by washing with water. Further, through a centrifugal separation and a drying step, 32.8 kg of a product copolymer was obtained. The by-product amorphous polymer soluble in the polymerization solvent is 1.22 k.
g. 0.1 parts by weight of tris (3,5-di-t-butyl-4-hydroxybenzoyl) isocyanurate (antioxidant) per 100 parts by weight of the obtained propylene-ethylene random copolymer, calcium stearate (medium) (Wetting agent) 0.03 parts by weight was added, mixed and granulated at 230 ° C. The pellets were subjected to a blow molding machine having a screw diameter of 40 mm and an injection molding machine to produce blow bottles (500 ml) and test pieces, respectively. The transparency, flexibility and heat resistance of this blow bottle were evaluated, and the flexural modulus (JIS-K7
203 based). Regarding transparency, HAZ with 1 mm thick sheet according to JIS-K6714
E was measured. For heat resistance, put one blow bottle in a gear oven set at 120 ° C.
It was charged for a time and the state of shape retention was observed, and evaluated as follows. :: The bottle shape is maintained without deformation. ×: Deformed. Regarding the flexibility, the blow bottle was squeezed by hand, and the resilience of the blow bottle was evaluated as follows. :: Squeeze can be performed without resistance. X: The resistance at the time of squeeze is large, and the return at the time of recovery is fast. Example 2 Under the same catalyst preparation conditions as in Example 1, except that the ethylene feed rate was 0.32 kg / hour, the total feed amount was 1.93 kg, and the hydrogen concentration in the gas phase was 7.8% by volume. Polymerization was carried out in the same manner as in Example 1 to obtain 31.6 kg of a product copolymer. The amount of the by-product amorphous copolymer soluble in the polymerization solvent was 2.8 kg. The ethylene content in the obtained propylene-ethylene random copolymer was 5.3% by weight, the MFR was 2.5 g / 10 minutes, and the melt tension was 0.9 g. The same evaluation as in Example 1 was performed using the obtained random copolymer. Example 3 Under the same catalyst preparation conditions as in Example 1, except that the ethylene feed rate was 0.50 kg / hour, the total feed amount was 3.0 kg, and the hydrogen concentration in the gas phase was 13% by volume. Polymerization was carried out in the same manner as in Example 1 to obtain 26.9 kg of a product copolymer. The amount of the by-product amorphous copolymer soluble in the polymerization solvent was 6.2 kg. The ethylene content in the obtained propylene-ethylene random copolymer was 6.9% by weight, the MFR was 2.0 g / 10 minutes, and the melt tension was 1.5 g. The same evaluation as in Example 1 was performed using the obtained random copolymer. Comparative Example 1 The same evaluation as in Example 1 was performed using a high-pressure low-density polyethylene having a density of 0.920 g / cm 3 . Comparative Example 2 The same evaluation as in Example 1 was performed using a polyvinyl chloride polymer. Comparative Example 3 A copolymer was produced under the same conditions as in Example 1 except that the ethylene supply rate and the supply amount during production of the propylene-ethylene random copolymer were 0.11 kg / hour and 0.66 kg, respectively. The same evaluation as in Example 1 was performed using the obtained random copolymer. Comparative Example 4 A copolymer was produced under the same conditions as in Example 2 except that the ethylene supply rate and the supply amount during the production of the propylene-ethylene random copolymer were 0.64 kg / hour and 3.84 kg, respectively. The same evaluation as in Example 1 was performed using the obtained random copolymer. Comparative Example 5 A copolymer was produced under the same conditions as in Example 2 except that the hydrogen concentration in the gas phase during the production of the propylene-ethylene random copolymer was 2.5% by volume. The ethylene content in the obtained propylene-ethylene random copolymer was 5.0% by weight, the MFR was 0.2 g / 10 minutes, and the melt tension was 40 g. The same evaluation as in Example 1 was performed using the obtained random copolymer. Comparative Example 6 Gas-phase hydrogen concentration at the time of production of a propylene-ethylene random copolymer was 17% by volume.
A copolymer was produced under the same conditions as in Example 2 except that The ethylene content in the obtained propylene-ethylene random copolymer was 5.1% by weight, and the MFR was 1%.
The melt tension was 5 g / 10 minutes and the melt tension was 0.1 g. The same evaluation as in Example 1 was performed using the obtained random copolymer. Example 4 Under the same catalyst preparation conditions as in Example 1, except that the hydrogen concentration in the gas phase was 11% by volume, the supply rate of ethylene was 0.32 kg / hour, and the total supply amount of ethylene was 1.93 kg. Polymerization was carried out in the same manner as in Example 1 to obtain 31.3 kg of a product copolymer. The amount of the by-product amorphous copolymer soluble in the polymerization solvent was 3.1 kg. The ethylene content in the obtained propylene-ethylene random copolymer was 5.2% by weight, the MFR was 5.0 g / 10 minutes, and the melt tension was 0.6 g. The same evaluation as in Example 1 was performed using the obtained random copolymer. Table 1 shows the results.

【図面の簡単な説明】 添付図面は、メルトテンションの典型的な測定装置を示す図面である。1はピ
ストン、2は加熱炉、3は張力検出器、4は張力検出Vプーリー、5はアイドル
プーリーおよび6は巻取ロールである。
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings show a typical melt tension measuring device. 1 is a piston, 2 is a heating furnace, 3 is a tension detector, 4 is a tension detection V pulley, 5 is an idle pulley, and 6 is a winding roll.

Claims (1)

【特許請求の範囲】 1.プロピレン以外のαオレフィン含量2.5〜8重量%、メルトフローレート
0.1〜20g/10分かつメルトテンション0.5〜30gのプロピレン−α
オレフィンランダム共重合体を常法によりブロー成形して成ることを特徴とする
輸液用ボトル。 2.αオレフィンが、エチレンである、特許請求の範囲第1項記載の輸液用ボト
ル。
[Claims] 1. Propylene-α having an α-olefin content other than propylene of 2.5 to 8% by weight, a melt flow rate of 0.1 to 20 g / 10 min and a melt tension of 0.5 to 30 g
An infusion bottle characterized by being blow molded from an olefin random copolymer by a conventional method. 2. The infusion bottle according to claim 1, wherein the α-olefin is ethylene.

Family

ID=

Similar Documents

Publication Publication Date Title
JP4805430B2 (en) Method for producing a composition comprising an ethylene polymer
US4668752A (en) Linear ethylene copolymer
RU2124535C1 (en) Film or sheet material, film or sheet product (variants)
JP3113549B2 (en) Extruded films from in situ blends of ethylene copolymers
JPH0339093B2 (en)
JPS63132951A (en) Polymer composition and its production
EP0577407B1 (en) Process for the preparation of polypropylene random copolymer
WO1998030614A1 (en) Propylene/ethylene copolymer, process for the production thereof, and molded articles thereof
JP2542380B2 (en) Infusion container
JPS6319255A (en) Polypropylene laminated film
JPH0724981A (en) Polypropylene laminated film
JP4310832B2 (en) Propylene-based resin sheet and molded body using the same
JP2542380C (en)
JPS58162621A (en) Olefinic block copolymer
US20060293504A1 (en) Polypropylene having reduced residual metals
JPH0339091B2 (en)
EP3802045B1 (en) Molded articles, and methods thereof
JPS61243842A (en) Polypropylene composition
JPH03168224A (en) Flexible polypropylene film and production thereof
US4291140A (en) Novel propylene copolymers
JPS5871910A (en) Olefinic block copolymer
JPS5811448B2 (en) Manufacturing method of block copolymer
JPH02135243A (en) Highly rigid polypropylene composition
JP2003138460A (en) Nonwoven polypropylene fabric for food packaging
JPS6312088B2 (en)