JP2539961B2 - Silicon nitride based sintered body and method for producing the same - Google Patents

Silicon nitride based sintered body and method for producing the same

Info

Publication number
JP2539961B2
JP2539961B2 JP3117315A JP11731591A JP2539961B2 JP 2539961 B2 JP2539961 B2 JP 2539961B2 JP 3117315 A JP3117315 A JP 3117315A JP 11731591 A JP11731591 A JP 11731591A JP 2539961 B2 JP2539961 B2 JP 2539961B2
Authority
JP
Japan
Prior art keywords
sintered body
ratio
auxiliary agent
sialon
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3117315A
Other languages
Japanese (ja)
Other versions
JPH0570233A (en
Inventor
剛久 山本
隆夫 西岡
健二 松沼
晃 山川
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3117315A priority Critical patent/JP2539961B2/en
Priority to US07/825,989 priority patent/US5204297A/en
Priority to CA002060241A priority patent/CA2060241C/en
Priority to DE69201910T priority patent/DE69201910T2/en
Priority to EP92101525A priority patent/EP0514622B1/en
Priority to US07/957,506 priority patent/US5275772A/en
Publication of JPH0570233A publication Critical patent/JPH0570233A/en
Application granted granted Critical
Publication of JP2539961B2 publication Critical patent/JP2539961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はとくに常温において優れ
た機械的強度を有し、生産性、コスト面において優れた
窒化ケイ素系焼結体およびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride-based sintered body having excellent mechanical strength at room temperature and excellent in productivity and cost, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、窒化ケイ素系材料の強度向上を目
的として、焼結方法、焼結助剤、含有結晶相の限定など
様々な研究開発が行われてきた。たとえば、焼結法に関
しては、ホットプレス焼結法では、Am.Ceram.
Soc.Bull.,52(1973)pp560で〜
100kg/mm2(曲げ強度)が実現されており、ま
たガラスカプセルによる熱間静水圧プレス法(HIP
法)等も開発されている。こうした手法では焼結体の強
度特性の面では優れた特性が得られているものの、生産
性、コストの面で優れた手法とは言えない。一方、こう
した問題に対して、ガス圧焼結法(例えば、三友、粉体
と工業、12巻、12号、pp27、1989)がある
が、本方法では最終の焼結体の緻密化をβ−Si34
晶の粒成長に伴なうため、粗大結晶粒の析出による強度
劣化をまねく可能性が高いことに加え、一般には、10
気圧以上のN2ガス圧をかけ焼結を実施するため、ホッ
トプレス法やHIP法と同様に焼結設備が大型となり、
特性面、生産面で十分優れた手法とは言えない。他方、
焼結助剤に関しては、主たる助剤としてY23を用いた
Si34−Al23−Y23系の窒化ケイ素系焼結体が
特公昭49−21091号、特公昭48−38448号
に開示されている。これらは、該特許明細書中に示され
ているように、β−Si34結晶粒が焼結体中で繊維状
組織を形成し、これがマトリックス中に分散することか
ら強度、靭性を向上しうるものと考えられている。すな
わちこれは、β−Si34結晶形が六方晶でありC軸方
向に結晶が異方性成長をすることを積極的に利用したも
のであり、とくに特公昭48−38448号や窯業協会
誌、94巻、pp96、1986に示されるように、繊
維状のβ−Si34結晶粒がC軸方向に10数μm以上
に成長している場合がある。しかしながら、本技術にお
いては、やはりこの粒成長が異常成長や気孔の発生をま
ねき、強度劣化をまねく可能性があり、また本方法での
焼結助剤だけを用いた焼結体では、焼結温度を1700
〜1900℃に上昇させなければ、緻密化が十分図れ
ず、大気圧付近のN2ガス圧焼結では、窒化ケイ素の昇
華分解が生じ、安定した焼結体を得られない場合があ
る。このため同じく、焼結体特性と生産性両面で十分優
れているとは言えない。一方、以上で述べてきた手法で
は、いずれも得られる焼結体の強度が、例えばJIS−
R1601に準拠した3点曲げ強度でせいぜい100k
g/mm2前後であり、様々な窒化ケイ素系材料の応用
を考えた場合、必ずしも十分な特性が得られていない。
2. Description of the Related Art Conventionally, various researches and developments have been carried out for the purpose of improving the strength of silicon nitride-based materials, such as sintering methods, sintering aids, and limiting the contained crystal phases. For example, regarding the sintering method, in the hot press sintering method, Am. Ceram.
Soc. Bull. , 52 (1973) pp560
100 kg / mm 2 (flexural strength) has been achieved, and the hot isostatic pressing method (HIP
Law) has also been developed. Although such a technique provides excellent strength characteristics of the sintered body, it cannot be said to be an excellent technique in terms of productivity and cost. On the other hand, there is a gas pressure sintering method (for example, Sanyu, Powder and Kogyo, Vol. 12, No. 12, pp27, 1989) for such a problem. However, in this method, the final densification of the sintered body is β Since it is accompanied by the grain growth of the —Si 3 N 4 crystal, there is a high possibility of causing strength deterioration due to the precipitation of coarse crystal grains.
Since N 2 gas pressure above atmospheric pressure is applied to carry out sintering, the size of the sintering equipment becomes large as in the hot press method and HIP method.
It cannot be said that this method is excellent in characteristics and production. On the other hand,
For the sintering aid, Si 3 N 4 -Al 2 O 3 -Y 2 O 3 system of silicon nitride sintered body is Japanese Patent Publication No. 49-21091 using Y 2 O 3 as a main aid, JP-B No. 48-38448. These, as shown in the patent specification, improve the strength and toughness because β-Si 3 N 4 crystal grains form a fibrous structure in a sintered body and this is dispersed in a matrix. It is considered possible. In other words, this is an active use of the fact that the β-Si 3 N 4 crystal form is hexagonal and the crystal grows anisotropically in the C-axis direction. Journal, Vol. 94, pp. 96, 1986, fibrous β-Si 3 N 4 crystal grains may grow to more than 10 μm or more in the C-axis direction. However, in the present technology, the grain growth also leads to abnormal growth and generation of pores, which may lead to deterioration in strength.In the case of a sintered body using only the sintering aid in the present method, sintering is not possible. Temperature 1700
Unless the temperature is increased to about 1900 ° C., densification cannot be sufficiently achieved, and in N 2 gas pressure sintering near atmospheric pressure, sublimation decomposition of silicon nitride occurs and a stable sintered body may not be obtained. For this reason, similarly, it cannot be said that both the properties of the sintered body and the productivity are sufficiently excellent. On the other hand, in the methods described above, the strength of the obtained sintered body is, for example, JIS-
Three-point bending strength based on R1601 and at most 100k
g / mm 2 , which means that sufficient characteristics are not necessarily obtained when various silicon nitride-based materials are applied.

【0003】[0003]

【発明が解決しようとする課題】こうした従来技術にお
ける生産性と焼結体の機械的特性の両立を満足させる手
法を提供するのが本発明の課題である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of satisfying both the productivity and the mechanical properties of a sintered body in the prior art.

【0004】[0004]

【課題を解決するための手段】本発明は、Si34−第
1助剤−第2助剤の3元組成図において、第1助剤がY
23及びMgOの2種よりなる組合せからなり、一方第
2助剤がAl 2 3 よりなり、その組成の範囲が図1に示
される範囲、すなわちSi34と第1助剤の添加組成比
がモル%で85:15から99:1の範囲であり、かつ
Si34と第2助剤の添加組成比がモル%で90:10
から99:1の範囲で示される図1中の点A、B、C、
Dで囲まれる範囲にあり、得られた焼結体中の結晶相に
α−Si34とβ´−サイアロンの双方を含み、かつそ
の析出比がX線回折のピーク強度比で1:99から3
0:70の範囲内にあり、その焼結体の相対密度が98
%以上であることを特徴とする窒化ケイ素系焼結体であ
る。
According to the present invention, there is provided a ternary composition diagram of Si 3 N 4 -first auxiliary agent-second auxiliary agent, wherein the first auxiliary agent is Y
2 O 3 and MgO, and the second auxiliary agent is Al 2 O 3 , and its composition range is shown in FIG. 1, that is, Si 3 N 4 and the first auxiliary agent. The additive composition ratio is 85:15 to 99: 1 in mol%, and the additive composition ratio of Si 3 N 4 and the second auxiliary agent is 90:10 in mol%.
1 to 99: 1 shown in the range from 1 to 99: 1 in FIG.
In the range surrounded by the D, it includes both the crystal phases of the sintered body obtained α-Si 3 N 4 and β'- sialon, Katsuso
The precipitation ratio of X-ray diffraction peak intensity ratio is 1:99 to 3
Within the range of 0:70, the relative density of the sintered body is 98.
%, And is a silicon nitride-based sintered body.

【0005】本発明では、かかる焼結体が、JISR−
1601に準拠した3点曲げ強度が容易に100kg/
mm2以上の特性を有する知見を得たものである。
In the present invention, such a sintered body is a JISR-
The three-point bending strength according to 1601 is easily 100 kg /
The knowledge obtained has characteristics of mm 2 or more.

【0006】又、本発明はα率93%以上、平均粒径が
0.5μm以下の窒化ケイ素原料粉末を用い、これに図
1に示される組成範囲となる助剤であって、第1助剤が
2 3 及びMgOの2種よりなる組合わせからなり、第
2助剤がAl 2 3 及びAlNの1種又は2種より選ばれ
た組合わせよりなる助剤を混合してなる混合粉末より圧
粉体を形成し、これを1300〜1700℃、N2ガス
を含む雰囲気中で焼結体相対密度が96%以上、α−S
34とβ’−サイアロンの結晶層の析出比がX線回折
のピーク強度比で99:1から50:50になるよう1
次焼結をおこなった後、N2ガスを含む雰囲気中で13
00〜1700℃で焼結体の相対密度が98%以上にな
るよう2次焼結をおこなうことを特徴とする窒化ケイ素
系焼結体の製造法である。この製造法は、生産性にも十
分優れた焼結体を得る手法であると同時に、その焼結温
度が低いため異常粒成長に伴う焼結体の特性劣化を生じ
ることもない。本発明の焼結体が優れた強度特性を得る
効果は、微粒で等軸晶のα−Si34と柱状化したβ´
−サイアロンの両方の結晶相を複合させることにより、
従来の柱状化したβ´−サイアロン(β−Si34を含
む)結晶相のみで構成された焼結体に比較し、ヤング
率、硬度が向上する。これは材料の変形抵抗を示す物性
値でありセラミック材料のような脆性材料では、この値
を向上させることが広義では材料の強度向上につながる
ためである。さらに脆性材料の破壊の基本概念であるG
riffithの理論に従えば、焼結体の破壊強度σf
は次式で与えられる。
Further, the present invention uses a silicon nitride raw material powder having an α ratio of 93% or more and an average particle size of 0.5 μm or less, which is an auxiliary agent having a composition range shown in FIG. Agent
It consists of a combination of Y 2 O 3 and MgO.
2 auxiliaries selected from one or two of Al 2 O 3 and AlN
A green compact is formed from a mixed powder obtained by mixing the auxiliaries consisting of the above combinations, and the green compact is formed at 1300 to 1700 ° C. in an atmosphere containing N 2 gas with a relative density of 96% or more, α-S
The precipitation ratio of the crystal layers of i 3 N 4 and β'-sialon should be adjusted to 99: 1 to 50:50 in terms of the peak intensity ratio of X-ray diffraction.
After the subsequent sintering, 13 in an atmosphere containing N 2 gas.
It is a method for producing a silicon nitride-based sintered body, which comprises performing secondary sintering so that the relative density of the sintered body becomes 98 % or more at 00 to 1700 ° C. This manufacturing method is a method for obtaining a sintered body having excellent productivity, and at the same time, because the sintering temperature is low, the characteristics of the sintered body do not deteriorate due to abnormal grain growth. The effect of the sintered body of the present invention to obtain excellent strength characteristics is that β ′ which is columnar with equiaxed α-Si 3 N 4 in the form of fine particles.
-By combining both crystalline phases of Sialon,
The Young's modulus and hardness are improved as compared with the conventional sintered body composed only of the columnar β′-sialon (including β-Si 3 N 4 ) crystal phase. This is a physical property value indicating the deformation resistance of the material, and in a brittle material such as a ceramic material, improving this value leads to an improvement in the strength of the material in a broad sense. G, which is the basic concept of fracture of brittle materials
According to the riffith theory, the fracture strength σf of the sintered body
Is given by

【0007】σf=E・γs/4a、 E;ヤング率、γs;破壊の表面エネルギ―、a;先在
亀裂長さ ここでγsは粒界相の組成と厚みに依存すると考えられ
るため、とくに厚みの点で結晶粒の存在密度を向上させ
る結晶相の複合化は有利である。また本式に従えば、破
壊強度を向上させるためにはEの増大とaの減少が重要
である。aの値は工程上不可避な欠陥寸法を排除すれ
ば、結晶粒径に依存するため、微細結晶粒で充填性を向
上させた本発明はE、γsの点で強度向上に有効であ
る。こうしたα型Si34(α’−サイアロンを含む)
と柱状化したβ型Si34(β’−サイアロンを含む)
の両方の結晶相を複合させる考え方は、例えば特開昭6
1−91065号や特開平2−44066号に開示され
ているが、いずれも組成的にはSi34−AlN−MO
(M;MgO、Y23、CaO等)の3成分系が主であ
り、その範囲もAlNとMOの添加比がモル%で1:9
の限定された範囲で、α’−サイアロンとβ型のSi3
4(β’−サイアロンを含む)の複合した結晶相を生
成させることにより強度等の機械的特性の向上を示した
ものであり、またその実施例でも明らかなように各焼結
体の強度特性が曲げ強度で100kg/mm2を安定し
て越える焼結体製法はいずれもホットプレス法によるも
のであり、工業的に安定して高い強度特性を得るまでに
至っていない。また、これらの焼結体はα’−サイアロ
ンとβ−Si34(β’−サイアロンを含む)の間の熱
膨張係数の差が大きく、これが原因となり焼結体中に引
張の残留応力を発生させ、強度劣化を招く可能性があ
る。本発明はこうした条件の限定がなく工業的に安定し
て高強度な焼結体を提供することにある。
Σf = E · γs / 4a, E: Young's modulus, γs: Surface energy of fracture, a: Preexisting crack length Here, γs is considered to depend on the composition and thickness of the grain boundary phase. It is advantageous to combine crystal phases to increase the density of crystal grains in terms of thickness. Further, according to this formula, it is important to increase E and decrease a in order to improve the fracture strength. Since the value of a depends on the crystal grain size if the defect size inevitable in the process is excluded, the present invention in which the filling property is improved by fine crystal grains is effective for improving the strength in terms of E and γs. Such α-type Si 3 N 4 (including α'-sialon)
Columnar β-type Si 3 N 4 (including β'-sialon)
The idea of compounding both crystal phases in JP
1-91065 and JP-A-2-44066, both of which are compositionally Si 3 N 4 -AlN-MO.
(M; MgO, Y 2 O 3, CaO etc.) are the major 3-component, addition ratio of its scope AlN and MO are in mole percent 1: 9
Within a limited range of α′-sialon and β-type Si 3
This shows that the mechanical properties such as strength were improved by generating a composite crystal phase of N 4 (including β′-sialon), and the strength of each sintered body was clearly shown in the examples. All of the methods for producing a sintered body having a bending strength that stably exceeds 100 kg / mm 2 are based on the hot pressing method, and have not been industrially stabilized to obtain high strength characteristics. In addition, these sintered bodies have a large difference in thermal expansion coefficient between α'-sialon and β-Si 3 N 4 (including β'-sialon), which causes tensile residual stress in the sintered body. May occur, resulting in deterioration of strength. An object of the present invention is to provide a high-strength sintered body that is industrially stable without being limited to such conditions.

【0008】本発明の詳細な作用の説明をすると、組成
の範囲が図1に示される範囲、すなわちSi34と第1
助剤の添加組成比がモル%で85:15から99:1の
範囲であり、かつSi34と第2助剤の添加組成比がモ
ル%で90:10から99:1の範囲で示される図1中
の点A、B、C、Dで囲まれる範囲とする。
To explain the detailed operation of the present invention, the composition range is as shown in FIG. 1, that is, Si 3 N 4 and the first
When the additive composition ratio of the auxiliary agent is in the range of 85:15 to 99: 1 in mol%, and the additive composition ratio of the Si 3 N 4 and the second auxiliary agent is in the range of 90:10 to 99: 1 in the case of mol%. It is assumed that the area is surrounded by points A, B, C, and D shown in FIG.

【0009】本組成範囲の限定はα−Si34及び
β’−サイアロン結晶相の析出比率を本発明の範囲に限
定するためSi34と第1助剤の添加組成比を限定し、
β’−サイアロンのAl、Oの固溶量すなわちZ値を
本発明の範囲に限定するためSi34と第2助剤の添加
組成比を限定するものである。その詳細を以下に示す
と、Si34と第1助剤の添加組成比がモル%で85:
15より第1助剤側へずれるとα−Si34の含有量が
高く、焼結体強度の劣化をまねく原因になるとともに、
焼結中の雰囲気の影響を受け、焼結体表面に強度等の特
性を劣化させる表面層を生成するためである。また同組
成比が99:1よりSi34側へずれると焼結性が低下
しホットプレス法等の加圧焼結法を用いなければ十分緻
密な焼結体を得ることができないためである。一方Si
34と第2助剤の添加組成比がモル%で90:10を越
えて第2助剤側へずれるとβ´−サイアロンの粗大結晶
が選択的に生成するため強度劣化をまねくとともに、や
はり焼結中の雰囲気の影響を受け、焼結体表面に強度等
の特性を劣化させる表面層を生成するためである。また
同組成比が99:1よりSi34側へずれると焼結性が
低下しホットプレス法等の加圧焼結法を用いなければ、
十分緻密な焼結体を得ることができないためである。さ
らに本発明の効果を顕著にするためには、焼結体中のα
−Si34とβ´−サイアロンの結晶相の析出比がX線
回析のピ―ク強度比で、1次焼結体で99:1から5
0:50の範囲に析出させ、2次焼結体で1:99から
30:70の範囲に析出させることが好ましい。この析
出比が1次焼結体で50:50を越えて高β−Si34
側へずれると、2次焼結体ではβ’−サイアロンの粗大
粒成長を導き1:99を越えて高α−Si34側へずれ
ると緻密質の2次焼結体が得られないためである。2次
焼結体の析出比が、1:99を越えて低α−Si34
へずれると結晶相の複合化の効果が十分現われず強度向
上の効果が十分ではない。また析出比が30:70を越
えて高α−Si34側へずれるとβ’−サイアロン柱状
晶組織の効果が減少しやはり結晶相の複合化の効果が十
分現れず強度向上の効果が十分ではない。また、この組
成範囲で焼結体中のβ’−サイアロン(一般式Si6-Z
AlZZ8-Z)のZ値を0<Z<1.0の範囲にして
粒界相を制御すると高強度が安定する。
In order to limit the precipitation ratio of the α-Si 3 N 4 and β'-sialon crystal phases to the range of the present invention, the composition range is limited so that the composition ratio of Si 3 N 4 and the first auxiliary agent is limited. ,
The composition ratio of Si 3 N 4 and the second auxiliary agent is limited in order to limit the solid solution amount of Al and O of β′-sialon, that is, the Z value, to the range of the present invention. The details are shown below. The additive composition ratio of Si 3 N 4 and the first auxiliary is 85% in mol%.
If it shifts from 15 to the first auxiliary agent side, the content of α-Si 3 N 4 is high, which causes deterioration of the strength of the sintered body, and
This is because a surface layer is formed on the surface of the sintered body which is affected by the atmosphere during sintering and deteriorates properties such as strength. Further, if the composition ratio deviates from 99: 1 to the Si 3 N 4 side, the sinterability deteriorates and a sufficiently dense sintered body cannot be obtained unless a pressure sintering method such as a hot pressing method is used. is there. On the other hand, Si
When the additive composition ratio of 3 N 4 and the second auxiliary exceeds 90:10 in mol% and shifts to the second auxiliary side, coarse crystals of β′-sialon are selectively formed, leading to deterioration of strength and This is also because the surface layer that deteriorates properties such as strength is formed on the surface of the sintered body under the influence of the atmosphere during sintering. Further, if the composition ratio deviates from 99: 1 to the Si 3 N 4 side, the sinterability deteriorates, and unless a pressure sintering method such as a hot pressing method is used.
This is because it is not possible to obtain a sufficiently dense sintered body. In order to make the effect of the present invention more remarkable, α in the sintered body
-Si 3 N 4 and β'- precipitation ratio of crystalline phases of sialon peak of X-ray diffraction - using the clock intensity ratio, 99 in the primary sintered body: 1 to 5
It is preferable to deposit in the range of 0:50 and to deposit in the range of 1:99 to 30:70 in the secondary sintered body. This precipitation ratio exceeds 50:50 in the primary sintered body and is high in β-Si 3 N 4
If it shifts to the side, the secondary sintered body leads to coarse grain growth of β'-sialon, and if it shifts to the high α-Si 3 N 4 side beyond 1:99, a dense secondary sintered body cannot be obtained. This is because. If the precipitation ratio of the secondary sintered body exceeds 1:99 and shifts to the low α-Si 3 N 4 side, the effect of compounding the crystal phase is not sufficiently exhibited and the effect of improving the strength is not sufficient. Further, when the precipitation ratio exceeds 30:70 and shifts to the high α-Si 3 N 4 side, the effect of the β'-sialon columnar crystal structure decreases, and the composite effect of the crystal phase does not sufficiently appear and the effect of improving the strength is obtained. Not enough. Further, in this composition range, β'-sialon (general formula Si 6-Z
When the grain boundary phase is controlled by setting the Z value of Al Z O Z N 8-Z in the range of 0 <Z <1.0, high strength is stabilized.

【0010】また本発明はその焼結体の製法条件も重要
である。すなわちα率93%以上、平均粒径が0.7μ
m以下の窒化ケイ素原料粉末を用い、図1に示される組
成範囲の助剤となる混合粉末よりなる圧粉体を1300
〜1700℃、N2ガスを含む雰囲気中で焼結体相対密
度が96%以上、α−Si34とβ’−サイアロンの結
晶相の析出比がX線回折のピーク強度比で、1:99か
ら50:50になるよう1次焼結をおこなった後、N2
ガスを含む雰囲気中、1300〜1700℃で焼結体相
対密度が99%以上になるよう2次焼結をおこなうこと
が好ましい。ここで窒化ケイ素原料としてα率93%以
上、平均粒径が0.7μm以下の窒化ケイ素原料粉末を
必要とする理由は低温域での焼結性を向上させるためで
ある。また本発明の組成の範囲を選択することにより、
焼結条件は1次焼結が1300〜1700℃のN2ガス
を含む雰囲気中の低温域で可能となった。このため結晶
粒の複合化がより微細な結晶粒により構成され、その効
果を顕著にするとともに、1次焼結がプッシャー式ある
いはベルト式等の開放型連続焼結炉により、同時に生産
性の優れた焼結が可能となる。この詳細な説明を加える
と、一般に強度特性に優れた窒化ケイ素系材料の焼結法
としては、いわゆるバッチ式焼結炉によるガス圧焼結が
主であるが、この方式では炉内の温度分布のばらつきや
ロット間の条件ばらつき等が必ず生じるために、量産部
品等の用途のセラミック材料を安定して供給する製法と
しては十分とは言えない。また窒化ケイ素は大気圧のN
2雰囲気下では1700℃以上の温度域で昇華分解する
ため、加圧N2雰囲気下で焼結する必要があり、設備面
でバッチ式焼結炉を用いていた。この点からも本発明は
その生産性を同時に向上させた点で工業的に重要であ
る。ここで焼結温度を1300〜1700℃としたの
は、上述した理由の他に1300℃未満では焼結体の緻
密化が十分図れず、1700℃を超えると上述したα−
Si34とβ’−サイアロンの析出相の比率がX線回折
のピーク強度比で1:99〜30:70の範囲に入らな
いことに加え、結晶粒の粗大化が顕著になり強度特性の
劣化やばらつきの原因となる。また1次焼結体の相対密
度を96%以上に焼結するのは、2次焼結において焼結
体の緻密化を十分達成するためである。一方2次焼結条
件の焼結温度を1300〜1700℃としたのは、やは
り1300℃未満では焼結体の緻密化が十分図れず、1
700℃を超えると上述したα−Si34とβ’−サイ
アロンの析出相の比率がX線回折のピーク強度比で1:
99〜30:70の範囲に入らないことに加え、焼結粒
の粗大化が顕著になり強度特性の劣化やばらつきの原因
となるためである。とくに2次焼結温度に関しては、1
次焼結温度以下が前述の点で好ましい。一方得られた焼
結体の相対密度が98%未満であると、強度特性にばら
つきが生じるため好ましくない。また上述した条件の組
成、焼結法と、α率93%以上、平均粒径0.5μmの
窒化ケイ素原料とを組合せることにより、α−Si34
結晶粒の平均粒径が0.5μm以下及び、β’−サイア
ロン結晶粒の平均粒径が5μm以下である複合結晶相が
容易に得られる。
In the present invention, the manufacturing conditions of the sintered body are also important. That is, the α ratio is 93% or more and the average particle size is 0.7 μm.
Using a silicon nitride raw material powder having a particle size of m or less, a green compact 1300 made of a mixed powder as an auxiliary agent having a composition range shown in FIG.
˜1700 ° C., relative density of the sintered body is 96% or more in an atmosphere containing N 2 gas, and the precipitation ratio of the crystal phases of α-Si 3 N 4 and β′-sialon is 1 in terms of peak intensity ratio of X-ray diffraction. : 99 to 50:50 and then N 2
It is preferable to perform secondary sintering at 1300 to 1700 ° C. in an atmosphere containing gas so that the relative density of the sintered body becomes 99% or more. Here, the reason that the silicon nitride raw material powder is required to have an α ratio of 93% or more and an average particle size of 0.7 μm or less is to improve the sinterability in a low temperature range. Further, by selecting the composition range of the present invention,
As for the sintering conditions, the primary sintering became possible in a low temperature range in an atmosphere containing N 2 gas at 1300 to 1700 ° C. For this reason, the compounding of crystal grains is made up of finer crystal grains, which makes the effect remarkable, and at the same time, the primary sintering is performed by an open type continuous sintering furnace such as a pusher type or a belt type, which is excellent in productivity at the same time. Sintering becomes possible. In addition to this detailed description, gas pressure sintering using a so-called batch type sintering furnace is mainly used as a method for sintering silicon nitride-based materials generally having excellent strength characteristics. Therefore, it is not sufficient as a manufacturing method for stably supplying ceramic materials for use in mass-produced parts and the like because variations in conditions and variations in conditions between lots always occur. Also, silicon nitride is N at atmospheric pressure.
Since it decomposes by sublimation in a temperature range of 1700 ° C. or higher under 2 atmospheres, it is necessary to sinter under a pressurized N 2 atmosphere, and a batch-type sintering furnace was used in terms of equipment. From this point as well, the present invention is industrially important in that its productivity is improved at the same time. The reason why the sintering temperature is set to 1300 to 1700 ° C. is that, for reasons other than the above, if the temperature is less than 1300 ° C., the sintered body cannot be sufficiently densified, and if it exceeds 1700 ° C.
The ratio of the precipitation phases of Si 3 N 4 and β'-sialon does not fall within the range of 1:99 to 30:70 in the peak intensity ratio of X-ray diffraction, and the coarsening of crystal grains becomes remarkable, and the strength characteristics Cause deterioration and variation. The reason why the relative density of the primary sintered body is sintered to 96% or more is to sufficiently achieve the densification of the sintered body in the secondary sintering. On the other hand, the reason why the sintering temperature of the secondary sintering condition is set to 1300 to 1700 ° C. is that if the temperature is lower than 1300 ° C., the sintered body cannot be sufficiently densified.
When the temperature exceeds 700 ° C., the ratio of the α-Si 3 N 4 and β′-sialon precipitate phases is 1: in the X-ray diffraction peak intensity ratio.
This is because in addition to not falling within the range of 99 to 30:70, coarsening of the sintered grains becomes remarkable, which causes deterioration and variation in strength characteristics. Especially regarding the secondary sintering temperature, 1
The temperature below the next sintering temperature is preferable from the above point. On the other hand, if the relative density of the obtained sintered body is less than 98%, the strength characteristics vary, which is not preferable. Further, by combining the composition and sintering method under the above-mentioned conditions with a silicon nitride raw material having an α ratio of 93% or more and an average particle size of 0.5 μm, α-Si 3 N 4 can be obtained.
A composite crystal phase in which the average grain size of crystal grains is 0.5 μm or less and the average grain size of β′-sialon crystal grains is 5 μm or less can be easily obtained.

【0011】その結果、その曲げ強度が100kg/m
2を容易に越え、そのばらつきもきわめて少なくな
る。以上により本発明の焼結体が強度特性、生産性、コ
ストに優れたものであることが明らかとなった。
As a result, the bending strength is 100 kg / m.
It easily exceeds m 2 and the variation is extremely small. From the above, it became clear that the sintered body of the present invention is excellent in strength characteristics, productivity and cost.

【0012】[0012]

【実施例】【Example】

実施例1 平均粒径0.4μm、α結晶化率96%、酸素量1.4
重量%の窒化ケイ素原料粉末および、平均粒径0.8μ
m、0.4μm、0.5μmのY23、Al23、Al
N、MgOの各粉末を表1に示す組成で、エタノール
中、100時間、ナイロン製ボールミルにて湿式混合し
たのち、乾燥して得られた混合粉末を3000kg/c
2でCIP成形し、この成形体をN2ガス1気圧中で1
500℃で6時間、1650℃で3時間1次焼結した。
得られた焼結体を1600℃、1000気圧N2ガス雰
囲気中で1時間、2次焼結した。この焼結体よりJIS
R1601に準拠した3mm×4mm×40mm相当の
抗折試験片を切り出し、#800ダイヤモンド砥石によ
り切削加工仕上げした後、引張面については#3000
のダイヤモンドペーストによりラッピング仕上げ加工し
た後、JISR1601に準拠して3点曲げ強度を15
本ずつ実施した。表2中には1次焼結体の相対密度、2
次焼結体の相対密度、結晶相の比率と曲げ強度及びワイ
ブル係数を示した。なお、結晶相の比率に関してはX線
回折法により求めた各結晶相のピーク高さ比より算出し
た。
Example 1 Average particle size 0.4 μm, α crystallization ratio 96%, oxygen content 1.4
% Silicon nitride raw material powder and average particle size 0.8 μ
m, 0.4 μm, 0.5 μm Y 2 O 3 , Al 2 O 3 , Al
Each powder of N and MgO having the composition shown in Table 1 was wet-mixed in ethanol for 100 hours with a nylon ball mill, and then dried to obtain a mixed powder of 3000 kg / c.
and CIP molding at m 2, 1 the molded body in a N 2 gas 1 atm
Primary sintering was performed at 500 ° C. for 6 hours and 1650 ° C. for 3 hours.
The obtained sintered body was subjected to secondary sintering for 1 hour at 1600 ° C. and 1000 atmospheric pressure N 2 gas atmosphere. JIS from this sintered body
A bending test piece corresponding to 3 mm x 4 mm x 40 mm in conformity with R1601 was cut out and cut and finished with a # 800 diamond grindstone.
After lapping with the diamond paste of No. 3, the three-point bending strength is set to 15 according to JIS R1601.
Book by book. In Table 2, the relative density of the primary sintered body, 2
The relative density, crystal phase ratio and bending strength, and Weibull coefficient of the next sintered body are shown. The crystal phase ratio was calculated from the peak height ratio of each crystal phase obtained by the X-ray diffraction method.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 実施例2 市販の窒化ケイ素原料粉末(平均粒径=0.7μm、α
結晶化率=93%、酸素量=1.5重量%)に実施例1
と同様の助剤粉末を実施例1の組成1〜5になるよう、
実施例1と同様の手法で混合、乾燥し成形した。この成
形体をN2ガス1気圧中で1550℃で5時間、165
0℃で2時間1次焼結した後、1600℃、1000気
圧N2ガス雰囲気中で1時間、2次焼結した。この焼結
体より実施例1と同様の手法によりJISR1601に
準拠した抗折試験片を加工し、同様の評価に供試した。
この結果を表3に示す。
[Table 2] Example 2 Commercially available silicon nitride raw material powder (average particle size = 0.7 μm, α
Crystallization rate = 93%, oxygen amount = 1.5% by weight)
The same auxiliary powder as in Example 1 was used to obtain compositions 1 to 5,
Mixing, drying and molding were carried out in the same manner as in Example 1. This molded body was heated at 1550 ° C. for 5 hours in 1 atmosphere of N 2 gas for 165
After primary sintering at 0 ° C. for 2 hours, secondary sintering was performed at 1600 ° C. in a 1000 atmosphere N 2 gas atmosphere for 1 hour. A bending test piece in accordance with JIS R1601 was processed from this sintered body by the same method as in Example 1 and subjected to the same evaluation.
The results are shown in Table 3.

【0015】[0015]

【表3】 実施例3 実施例1と同様の原料粉末を、実施例1で示した組成1
〜5について同様の手法で混合、乾燥、成形した。得ら
れた成形体をN2ガス1気圧中で1500℃で6時間、
1650℃で3時間1次焼結した後、連続して1600
℃、80気圧N2ガス雰囲気中で2時間、2次焼結し
た。得られた焼結体より、実施例1と同様の手法でJI
SR1601に準拠した抗折試験片を切り出し、実施例
1と同様の手法で評価した。この結果を表4に示す。
[Table 3] Example 3 The same raw material powder as in Example 1 was used as the composition 1 shown in Example 1.
-5 were mixed, dried and molded in the same manner. The obtained molded body was treated with N 2 gas at 1 atm at 1500 ° C. for 6 hours,
After primary sintering at 1650 ° C for 3 hours, continuous 1600
Secondary sintering was performed in a N 2 gas atmosphere at 80 ° C. and 80 atm for 2 hours. From the obtained sintered body, a JI was prepared in the same manner as in Example 1.
A bending test piece conforming to SR1601 was cut out and evaluated in the same manner as in Example 1. Table 4 shows the results.

【0016】[0016]

【表4】 [Table 4]

【0017】[0017]

【発明の効果】本発明によれば、特に常温において優れ
た機械的強度を有する窒化ケイ素系焼結体を、生産性、
コスト面において有利に提供される。
According to the present invention, a silicon nitride-based sintered body having excellent mechanical strength, particularly at room temperature, can be produced with high productivity,
Advantageously provided in terms of cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における組成範囲を示す3元組成図であ
る。
FIG. 1 is a ternary composition diagram showing a composition range in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 晃 兵庫県伊丹市昆陽北一丁目1番1号 住 友電気工業株式会社 伊丹製作所内 (72)発明者 三宅 雅也 兵庫県伊丹市昆陽北一丁目1番1号 住 友電気工業株式会社 伊丹製作所内 (56)参考文献 特開 平2−22173(JP,A) 特開 平4−202060(JP,A) 特開 平5−58739(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Yamakawa 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works (72) Inventor Masaya Miyake 1-chome, Koyo, Itami City, Hyogo Prefecture No. 1 No. 1 Sumitomo Electric Industries, Ltd. Itami Works (56) Reference JP-A-2-22173 (JP, A) JP-A-4-202060 (JP, A) JP-A-5-58739 (JP, A) )

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si34−第1助剤−第2助剤の3元組
成図において、第1助剤がY23及びMgOの2種より
なる組合わせからなり、一方第2助剤がAl23 であ
り、その組成の範囲が図1に示される範囲、すなわちS
34と第1助剤の添加組成比がモル%で85:15か
ら99:1の範囲であり、かつSi34と第2助剤の添
加組成比がモル%で90:10から99:1の範囲で示
される図1中の点A、B、C、Dで囲まれる範囲にあ
り、得られた焼結体中の結晶相にα−Si34とβ´−
サイアロンの双方を含み、かつその析出比がX線回折の
ピーク強度比で1:99から30:70の範囲内にあ
り、その焼結体の相対密度が98%以上であることを特
徴とする窒化ケイ素系焼結体。
1. A ternary composition diagram of Si 3 N 4 -first auxiliary agent-second auxiliary agent, wherein the first auxiliary agent is a combination of two kinds of Y 2 O 3 and MgO, while the second auxiliary agent is the second auxiliary agent. aid Al 2 O 3 der
Ri, range range of the composition is shown in Figure 1, namely S
The additive composition ratio of i 3 N 4 and the first auxiliary is 85:15 to 99: 1 in mol%, and the additive composition ratio of Si 3 N 4 and the second auxiliary is 90:10 in mol%. 1 to 99: 1 in the range surrounded by points A, B, C and D in FIG. 1, and α-Si 3 N 4 and β′-in the crystal phase in the obtained sintered body.
It contains both sialon and its deposition ratio is determined by X-ray diffraction.
The peak intensity ratio is within the range of 1:99 to 30:70.
And a relative density of the sintered body is 98% or more.
【請求項2】 焼結体中のα−Si34結晶粒の平均粒
径が0.5μm以下及び、β´−サイアロン結晶粒の平
均粒径が5μm以下であることを特徴とする請求項1記
載の窒化ケイ素系焼結体。
2. The sintered body is characterized in that the average grain size of α-Si 3 N 4 crystal grains is 0.5 μm or less, and the average grain size of β′-sialon crystal grains is 5 μm or less. Item 1. A silicon nitride-based sintered body according to item 1.
【請求項3】 焼結体中のβ’−サイアロンは一般式S
6-ZAlZZ8-Z(式中0<Z<1.0の範囲にある
であることを特徴とする請求項1又は2記載の窒化ケイ
素焼結体。
3. The β'-sialon in the sintered body has the general formula S
i 6-Z Al Z O Z N 8-Z (wherein 0 <Z <1.0 in the formula, the silicon nitride sintered body according to claim 1 or 2, wherein
【請求項4】 α率93%以上、平均粒径が0.5μm
以下の窒化ケイ素原料粉末を用い、これに図1に示され
る組成範囲となる助剤であって、第1助剤がY 2 3 及び
MgOの2種よりなる組合わせからなり、第2助剤がA
2 3 及びAlNの1種又は2種より選ばれた組合わせ
よりなる助剤を混合してなる混合粉末より圧粉体を形成
し、これを1300〜1700℃、N2ガスを含む雰囲
気中で焼結体相対密度が96%以上、α−Si34
β’−サイアロンの結晶層の析出比がX線回折のピーク
強度比で、99:1から50:50になるよう1次焼結
をおこなった後、N2ガスを含む雰囲気中で1300〜
1700℃で焼結体の相対密度が98%以上、α−Si
3 4 とβ’−サイアロン結晶層の析出比がX線回折のピ
ーク強度比で1:99から30:70になるよう2次焼
結をおこなうことを特徴とする窒化ケイ素系焼結体の製
造法。
4. The α ratio is 93% or more, and the average particle size is 0.5 μm.
The following silicon nitride raw material powder was used, and an auxiliary agent having a composition range shown in FIG. 1 in which the first auxiliary agent was Y 2 O 3 and
It consists of a combination of two types of MgO, and the second auxiliary agent is A
A combination selected from one or two of l 2 O 3 and AlN.
A green compact is formed from a mixed powder obtained by mixing an auxiliary agent, and the green compact is formed at 1300 to 1700 ° C. in an atmosphere containing N 2 gas with a relative density of 96% or more and α-Si 3 N 4 After the primary sintering was performed so that the precipitation ratio of the crystal layer of β and β′-sialon was from 99: 1 to 50:50 in terms of peak intensity ratio of X-ray diffraction, 1300 to 1300 in an atmosphere containing N 2 gas.
The relative density of the sintered body is 98% or more at 1700 ° C., α-Si
The precipitation ratio of 3 N 4 and β'-sialon crystal layer was determined by X-ray diffraction.
A method for producing a silicon nitride-based sintered body, which comprises performing secondary sintering so that a peak strength ratio becomes 1:99 to 30:70 .
JP3117315A 1991-05-22 1991-05-22 Silicon nitride based sintered body and method for producing the same Expired - Lifetime JP2539961B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3117315A JP2539961B2 (en) 1991-05-22 1991-05-22 Silicon nitride based sintered body and method for producing the same
US07/825,989 US5204297A (en) 1991-05-22 1992-01-27 Silicon nitride sintered body and process for producing the same
CA002060241A CA2060241C (en) 1991-05-22 1992-01-29 Silicon nitride sintered body and process for producing the same
DE69201910T DE69201910T2 (en) 1991-05-22 1992-01-30 Silicon nitride sintered body and process for its production.
EP92101525A EP0514622B1 (en) 1991-05-22 1992-01-30 Silicon nitride sintered body and process for producing the same
US07/957,506 US5275772A (en) 1991-05-22 1992-10-05 Silicon nitride sintered body and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3117315A JP2539961B2 (en) 1991-05-22 1991-05-22 Silicon nitride based sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0570233A JPH0570233A (en) 1993-03-23
JP2539961B2 true JP2539961B2 (en) 1996-10-02

Family

ID=14708711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3117315A Expired - Lifetime JP2539961B2 (en) 1991-05-22 1991-05-22 Silicon nitride based sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2539961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829491B2 (en) 2004-11-26 2010-11-09 Kyocera Corporation Silicon nitride sintered body and manufacturing method thereof, member for molten metal, member for hot working, and member for digging

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625039B2 (en) * 1988-07-08 1994-04-06 日本タングステン株式会社 Silicon nitride sintered body and method for manufacturing the same
JPH03131589A (en) * 1989-10-17 1991-06-05 Nippon Mining Co Ltd Production of compound semiconductor single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829491B2 (en) 2004-11-26 2010-11-09 Kyocera Corporation Silicon nitride sintered body and manufacturing method thereof, member for molten metal, member for hot working, and member for digging

Also Published As

Publication number Publication date
JPH0570233A (en) 1993-03-23

Similar Documents

Publication Publication Date Title
JPH06100370A (en) Silicon nitride sintered compact and its production
KR0177893B1 (en) Sintered silicon nitride-based body and process for producing the same
US5204297A (en) Silicon nitride sintered body and process for producing the same
JP2539961B2 (en) Silicon nitride based sintered body and method for producing the same
JPH09268069A (en) Highly heat conductive material and its production
JPH05148026A (en) Sintered silicon nitride
JP2597774B2 (en) Silicon nitride based sintered body and method for producing the same
JP3143992B2 (en) Silicon nitride based sintered body
JP2539968B2 (en) Silicon nitride-based sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JPH0558739A (en) Silicon nitride sintered body and its production
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JPH05148028A (en) Production of sintered silicon nitride
JPH0753256A (en) Aluminous composite sintered compact and its production
JPH05124867A (en) Silicon nitride-based sintered compact
JP2976534B2 (en) Silicon nitride sintered body and method for producing the same
JPH11130543A (en) Beta-type silicon nitride crystal and its production and production of silicon nitride-based sintered compact
JPH05170541A (en) Silicon nitride sintered product
JPH0570232A (en) Production of silicon nitride-based sintered body
JPH05155663A (en) Silicon nitride sintered body
JPH05208869A (en) Silicon nitride cutting tool
JPH1129361A (en) Silicon nitride sintered product and its production
JPH05105522A (en) Silicon nitride-based sintered compact
JPH06305840A (en) Sintered silicon nitride and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

EXPY Cancellation because of completion of term