JP2538879B2 - Method for refining molten metal - Google Patents

Method for refining molten metal

Info

Publication number
JP2538879B2
JP2538879B2 JP61128236A JP12823686A JP2538879B2 JP 2538879 B2 JP2538879 B2 JP 2538879B2 JP 61128236 A JP61128236 A JP 61128236A JP 12823686 A JP12823686 A JP 12823686A JP 2538879 B2 JP2538879 B2 JP 2538879B2
Authority
JP
Japan
Prior art keywords
refining
molten steel
molten metal
oxygen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61128236A
Other languages
Japanese (ja)
Other versions
JPS62287011A (en
Inventor
啓明 大沼
則夫 住田
敏和 桜谷
明彦 難波
努 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61128236A priority Critical patent/JP2538879B2/en
Publication of JPS62287011A publication Critical patent/JPS62287011A/en
Application granted granted Critical
Publication of JP2538879B2 publication Critical patent/JP2538879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶融金属の精錬方法に関し、特に取鍋内溶
融金属(以下、「溶鋼」の例で説明する)を真空精錬方
法と回転磁界発生装置との組合わせにより迅速に精錬す
る方法に関しての提案である。
Description: TECHNICAL FIELD The present invention relates to a method for refining molten metal, and in particular, a method for vacuum refining molten metal in a ladle (hereinafter, described as an example of “molten steel”) and a rotating magnetic field. This is a proposal for a method for rapidly refining by combining with a generator.

(従来の技術) 金属材料、特に鉄鋼材料などにおいては、C,N,Sの含
有量を低減すると、強度、靭性、加工性、溶接性、耐食
性などが向上することが知られており、そのためこれら
の元素を精錬過程で減少させる努力がなされている。
(Prior Art) It is known that in metal materials, particularly steel materials, etc., when the content of C, N, S is reduced, strength, toughness, workability, weldability, corrosion resistance, etc. are improved. Efforts are being made to reduce these elements in the refining process.

このように鉄鋼材料の脱炭、脱窒等の精錬を工業的規
模で行う方法として、例えば減圧下にある取鍋内に保持
した溶鋼の表面に酸素を吹付ける、いわゆるVOD法やRH
−OB法(日本鉄鋼協会編;鉄鋼便覧第3版第II巻、P711
〜P717)が知られている。これらは減圧下において、溶
鋼に酸素を供給することにより、脱炭反応によって生成
するCOガス分圧を低下させ、Cの酸化をCrやFeなどに対
して優先して行わせると同時に発生するCO気泡により、
溶鋼中のNをも除去する技術である。
Thus, as a method of carrying out refining such as decarburization and denitrification of steel materials on an industrial scale, for example, by blowing oxygen on the surface of molten steel held in a ladle under reduced pressure, the so-called VOD method or RH
-OB method (edited by Japan Iron and Steel Institute; Iron and Steel Handbook, 3rd Edition, Volume II, P711)
~ P717) is known. By supplying oxygen to molten steel under reduced pressure, the partial pressure of CO gas generated by the decarburization reaction is reduced, and the oxidation of C is preferentially performed on Cr, Fe, etc. Bubbles
This is a technique for removing N in molten steel.

従って、これら既知の方法では通常の転炉で到達し得
ない極低C,N含有量の高合金鋼を容易に溶製することが
できる。また脱硫精錬に関しては、VODやRHで真空下の
低い酸素ポテンシャルを利用して、溶鋼中に粉粒状ない
し塊状フラックスを添加し、Ar等の不活性ガス撹拌によ
って精錬を行うことがなされている。
Therefore, it is possible to easily produce a high alloy steel having an extremely low C and N content, which cannot be achieved by a conventional converter by these known methods. With regard to desulfurization refining, a powdery or granular flux is added to molten steel by utilizing a low oxygen potential under vacuum at VOD or RH, and refining is performed by stirring with an inert gas such as Ar.

なお、上記VOD法やRH−OB法などのフラックス精錬法
の場合、精錬途中の温度低下が起るので、その熱補償の
ためにAlなどの発熱性金属を添加すると同時に酸素精錬
を併用した精錬時の溶鋼の昇温を図るという従来技術
(例えば特公昭59−4485号)も提案されている。
In the case of a flux refining method such as the VOD method or the RH-OB method, a temperature drop occurs during refining, so refining using oxygen refining at the same time as adding an exothermic metal such as Al for the heat compensation. A conventional technique of increasing the temperature of molten steel at that time (for example, Japanese Patent Publication No. 59-4485) is also proposed.

ところで、上述した既知のVOD法やRH−OB法は次のよ
うな解決を必要とする問題点を抱えていた。
By the way, the above-mentioned known VOD method and RH-OB method have problems that require the following solutions.

その第1点は、減圧下で精錬するので、発生するCOガ
スが膨張し、それにより大量のスプラッシュが発生する
ことである。このスプラッシュが取鍋外へ飛び出せば、
当然溶鋼の歩留りを低下させるのみならず、例えばVOD
法の場合真空タンク内に地金が付着し、操業トラブルの
原因となっていた。また、RH−OB法においても、多量の
スプラッシュが発生すれば、真空槽の上部にまで地金が
付着して、溶鋼の歩留りが低下するのみならず、該真空
槽予熱用に設置されている黒鉛電極へのスプラッシュの
直撃による折損や真空排気口内へのスプラッシュの堆積
による排気能力の低下などの障害を生じる。
The first point is that since the refining is performed under reduced pressure, the generated CO gas expands, which causes a large amount of splash. If this splash jumps out of the ladle,
Naturally, it not only lowers the yield of molten steel, but
In the case of the method, bare metal adhered to the inside of the vacuum tank, causing operational troubles. Further, even in the RH-OB method, if a large amount of splash occurs, the metal is attached even to the upper part of the vacuum tank, not only the yield of molten steel is lowered, but also the vacuum tank is preheated. There are obstacles such as breakage due to direct impact of the splash on the graphite electrode and deterioration of exhaust ability due to the accumulation of splash inside the vacuum exhaust port.

そのために、従来VOD法では、酸素吹精速度を転炉の1
/5以下程度に抑えてスプラッシュ発生量を低減すると共
に取鍋のフリーボードを高くして、スプラッシュの飛出
しを防止して操業を行っており、これらの方策が精錬時
間の延長をもたらして生産性を低下させると共に、取鍋
耐火物原単位を高める原因となっていた。また、RH−OB
法でも、スプラッシュ低減のため、酸素吹精速度は転炉
の1/20以下と前記VOD法よりもさらに小さくする必要が
あり、精錬時間が長びきかつ耐火物溶損量も大きいとい
う同様の欠点があった。
Therefore, in the conventional VOD method, the oxygen blowing rate was set to 1
/ 5 or less to reduce the amount of splash generation and raise the freeboard of the ladle to prevent splash splashing during operation, and these measures increase the refining time and produce It was a cause of increasing the basic unit of ladle refractory as well as decreasing the property. Also, RH-OB
Also in the method, in order to reduce the splash, the oxygen blowing rate must be 1/20 or less of the converter and further smaller than the VOD method, the similar refining time is long and the refractory melting loss is also large. was there.

第2の問題点はフラックスを添加し、不活性ガス撹拌
を行う精錬では、撹拌ガス流量が0.05〜0.1Nm3/min以上
ではガスの吹抜けにより、溶鋼の撹拌効果が頭打ちとな
り、精錬反応効率の向上が望めないことでもあり、その
ためフラックスを多量に要したり、処理時間が長くな
り、耐火物溶損量も大きいという問題点があった。
The second problem is that in the refining with the addition of flux and stirring with an inert gas, when the flow rate of the stirring gas is 0.05 to 0.1 Nm 3 / min or more, the stirring effect of the molten steel reaches the ceiling due to the gas blow-through, and the refining reaction efficiency There is also a problem that a large amount of flux is required, the treatment time is long, and the amount of refractory melting is large, because improvement cannot be expected.

第3の問題点は、発熱剤(主としてAl,Si)添加した
場合、酸素吹精による昇熱処理時にAl2O3やSiO2等の介
在物量が増大するために、これらの介在物を溶鋼撹拌に
よって、無害な程度の含有量にまで低減しなければなら
ない。従って、昇熱処理後に酸素吹精なしの撹拌処理期
を10〜15分必要とし、処理時間が長くなり、耐火物溶損
量も大きくなるという上記の場合と同じ問題があった。
The third problem is that when an exothermic agent (mainly Al, Si) is added, the amount of inclusions such as Al 2 O 3 and SiO 2 increases during the heat treatment by oxygen blowing, so that these inclusions are stirred by molten steel. Must be reduced to a harmless level. Therefore, there is the same problem as in the above case that a stirring treatment period without oxygen sparging is required for 10 to 15 minutes after the heat treatment, the treatment time becomes long, and the refractory melting loss increases.

要するに本発明は、第1に、脱炭精錬期に観察される
激しいスプラッシュの発生を抑制して、従来よりも大流
量の酸化性ガスを供給できるようにし、短時間で精錬処
理を完了して、耐火物溶損量を低減すること、第2に、
Alなどの発熱剤を添加する際に生成するAl2O3等の介在
物の凝集分離を促進して、介在物の分離に要する処理時
間を短縮し、併せて耐火物の溶損を低減することを目的
とする。
In short, the present invention, firstly, suppresses the generation of the intense splash observed in the decarburization refining period, makes it possible to supply a larger flow rate of oxidizing gas than before, and completes the refining process in a short time. , Reducing refractory melting loss, second,
Accelerating the aggregation and separation of inclusions such as Al 2 O 3 generated when adding heat generating agents such as Al, shortening the processing time required for the separation of inclusions and also reducing the melting loss of refractories The purpose is to

(問題点を解決するための手段) 上掲の目的に対して本発明は、取鍋内溶鋼を、そのま
ま減圧下に保持するか、減圧下にある容器へ移送する途
中もしくは該容器内への移送後に、それぞれの位置で回
転磁界発生装置を介して水平方向に回転流動させると共
にその流動する溶融金属中に精錬剤を供給することを特
徴とする溶融金属の精錬方法を提案し、上記の課題を克
服することとした。
(Means for Solving the Problems) With respect to the above-mentioned object, the present invention holds the molten steel in the ladle as it is under reduced pressure, or during the transfer to a container under reduced pressure or into the container. After the transfer, it proposes a method for refining molten metal, which comprises rotating and flowing in a horizontal direction through a rotating magnetic field generator at each position and supplying a refining agent into the flowing molten metal. Decided to overcome.

なお、溶融金属に対して水平回転力を付加するために
回転磁界発生装置を取付ける位置としてVODの場合であ
れば真空タンク内に設置した取鍋自体、あるいはDH式、
RH式真空精錬装置の場合であれば真空槽や該真空槽に通
じる浸漬管:すなわち、還流管に特定する。
In addition, in the case of VOD as the position to install the rotating magnetic field generator to apply horizontal rotating force to the molten metal, the ladle itself installed in the vacuum tank, or the DH type,
In the case of an RH type vacuum refining device, it is specified as a vacuum tank or a dipping pipe leading to the vacuum tank: that is, a reflux pipe.

上記溶融金属中に供給する精錬剤としては、脱炭のた
めの酸化性ガスの他バブリング用不活性ガス、さらには
脱P剤や脱S剤を用いる。
As the refining agent to be supplied into the molten metal, an oxidizing gas for decarburization, an inert gas for bubbling, and a de-P agent and a de-S agent are used.

上記精錬剤供給の方法としては、上吹ランスを介して
浴面に吹付けたり、取鍋底や上記浸漬管に設けた羽口
(吹込み管)を通じて吹込む手段がある。
As a method of supplying the refining agent, there is a means of spraying on the bath surface through an upper blowing lance, or by blowing through a tuyere (blowing tube) provided on the bottom of the ladle or the dipping tube.

(作 用) 次に本発明法をVODに適用した例をまず第1図にもと
づいて示す。すなわち、真空タンク1内に保持した取鍋
7内溶鋼3に、取鍋4外に配設した回転磁界発生装置2
を介して回転力を附加しつつ、取鍋内溶鋼3の上方より
上吹ランス5より酸化性ガスを吹付けて精錬を行う。ま
た、この方法において合金材投入シュート6より溶鋼3
中にAl等の発熱剤を添加すると共にランス5からは酸化
性ガスを吹付けて昇熱を図ってもよい。
(Operation) Next, an example in which the method of the present invention is applied to VOD will be shown based on FIG. That is, the rotating magnetic field generator 2 arranged outside the ladle 4 is placed on the molten steel 3 inside the ladle 7 held inside the vacuum tank 1.
Refining is performed by spraying an oxidizing gas from the upper blowing lance 5 from above the molten steel 3 in the ladle while applying a rotational force via the. Further, in this method, the molten steel 3 is fed from the alloy material charging chute 6
A heat generating agent such as Al may be added therein and an oxidizing gas may be blown from the lance 5 to increase the temperature.

なお、上記真空タンク1に代えて取鍋4に直接密閉蓋
を設置して該取鍋4内のみを減圧し、回転磁界発生装置
2を常圧下に配置して実施しても良い。また、通常のVO
Dのように底吹き羽口11よりアルゴンを底吹きしても良
い。
Instead of the vacuum tank 1, the ladle 4 may be directly provided with a closed lid to decompress only the ladle 4 and the rotating magnetic field generator 2 may be placed under normal pressure. Also, normal VO
Argon may be bottom-blown from the bottom-blown tuyere 11 as in D.

次に、本発明法についてのRH−OB法への適用例を第2
図に示す。取鍋4に収容した溶鋼3を、浸漬管8,8′を
通じて、内部を減圧した真空槽7内に吸い上げた状態
で、一方の浸漬管8′内にアルゴンを吹込んでエアリフ
トポンプの原理にて、浸漬管8′内の溶鋼を上昇せしめ
ることにより、溶鋼循環流を発生させつつ、真空槽7内
に貯留している溶鋼3に対し、該真空槽7の外周に設置
した回転磁界発生装置2により回転力を附与しつつ、2
重管構造のガス吹込み管(羽口)10の外管よりアルゴ
ン、内管より酸化性ガスを吹込んで精錬を行う方法であ
る。この場合、必要に応じ合金材投入シュート6からAl
等の発熱剤を添加すると共に、上記ガス吹込み管10の外
管よりアルゴン、内管より酸化性ガスを溶鋼3中に吹込
んで昇熱を図る。
Next, the second example of application of the method of the present invention to the RH-OB method
Shown in the figure. The molten steel 3 contained in the ladle 4 was sucked up into the vacuum chamber 7 whose inside was decompressed through the dipping pipes 8 and 8 ', and then argon was blown into one dipping pipe 8'by the principle of the air lift pump. By raising the molten steel in the dip pipe 8 ′, a rotating magnetic field generator 2 installed on the outer periphery of the vacuum tank 7 with respect to the molten steel 3 stored in the vacuum tank 7 while generating a molten steel circulating flow is generated. While giving the turning force by 2
This is a method of refining by injecting argon from the outer tube of the gas injection tube (tuyere) 10 having a heavy tube structure and oxidizing gas from the inner tube. In this case, if necessary, from the alloy material charging chute 6 to the Al
A heat generating agent such as the above is added, while argon is blown into the molten steel 3 from the outer pipe of the gas blowing pipe 10 and an oxidizing gas is blown into the molten steel 3 from the inner pipe to raise the temperature.

要するに、本発明方法の場合、真空装置の浸漬管8,
8′等に吸込まれたガスやフラックスが、水平方向に回
転流動する溶鋼3のために剪断作用を受けて微細化する
と共に鋼中に広く分散し、その結果溶鋼3と微細化した
ガス気泡、発熱材、粉体(フラックス)との界面(接触
面積)が増大することから好ましい結果が得られるので
ある。
In short, in the case of the method of the present invention, the immersion pipe 8 of the vacuum device,
The gas or flux sucked into 8 ', etc. is subjected to shearing action due to the horizontally rotating molten steel 3 to be refined and widely dispersed in the steel. As a result, the molten steel 3 and the refined gas bubbles, A desirable result is obtained because the interface (contact area) between the heat generating material and the powder (flux) increases.

第3図は、本発明法の他の実施例であるRH吸上式真空
精錬装置を示すものである。この装置は、真空槽7およ
びその底部に設けた上昇側浸漬管8と下降側浸漬管8′
とからなる浸漬管8,8′のうち、上昇側浸漬管8の外周
部に2極3相電流により回転磁界を発生する磁界発生装
置(電磁撹拌装置)2を配置し、管内溶鋼3に水平回転
流を生起させるようにする。その結果、溶鋼流は水平方
向に旋回する作用を受け、浸漬管8に接続したガス吹込
み管10から吹込まれるガスおよび/またはフラックス粉
が微細化、分散する。この作用は上記磁界発生装置2の
作用によるが、その取付け位置が浸漬管8のときはその
管内溶鋼3が、又真空槽7外周部に取付ければ槽内溶鋼
3が水平方向に回転流動することになる。
FIG. 3 shows an RH suction type vacuum refining apparatus which is another embodiment of the method of the present invention. This apparatus comprises a vacuum tank 7 and an ascending side dipping tube 8 and a descending side dipping tube 8'provided at the bottom thereof.
Among the immersion pipes 8 and 8 ′ consisting of and, a magnetic field generator (electromagnetic stirrer) 2 for generating a rotating magnetic field by a two-pole three-phase current is arranged on the outer periphery of the ascending-side immersion pipe 8 and is horizontal to the molten steel 3 inside Try to generate a rotating flow. As a result, the molten steel flow is subjected to the action of swirling in the horizontal direction, and the gas and / or flux powder blown from the gas blowing pipe 10 connected to the dipping pipe 8 is made fine and dispersed. This action depends on the action of the magnetic field generator 2, but when the mounting position is the immersion pipe 8, the molten steel 3 in the pipe rotates, and when it is attached to the outer peripheral portion of the vacuum chamber 7, the molten steel 3 in the chamber rotates horizontally. It will be.

なお、本発明の方法の実施により脱炭精錬中のメタル
スプラッシュが軽減される理由は、脱炭によって生成す
るCO気泡が、溶鋼の回転撹拌によって微細化され、さら
に遠心分離機の原理により、これら気泡が、浮上中に回
転中心に凝集し、その最も凹みの深い(容器壁から遠
い)位置にて気相へ抜け出ること、また、その際に発生
するスプラッシュが回転の接線方向に向って生じ、これ
が回転によってせり上がっている周辺部溶鋼3の表面に
落下するためと考えられる。
The reason why the metal splash during decarburization refining is reduced by carrying out the method of the present invention is that CO bubbles generated by decarburization are refined by rotary stirring of molten steel, and further by the principle of a centrifugal separator, Bubbles are aggregated at the center of rotation during floating and escape to the gas phase at the deepest recess (farther from the container wall), and the splash generated at that time occurs in the tangential direction of rotation, It is considered that this is because it falls on the surface of the peripheral molten steel 3 that is rising due to the rotation.

また、本発明方法により、Al等の発熱剤と酸化性ガス
の供給を行った際に、介在物の凝集分離が促進される理
由は、発熱剤が酸素と反応して生成したAl2O3やSiO2
の介在物が、溶鋼の回転運動により遠心分離機の原理に
より回転中心に凝集すると共に、回転中心が凹んで介在
物の浮上すべき距離が短かいために、酸化性ガスの供給
中においても既に、介在物の分離がなされ、かつ、酸化
性ガスの供給停止後は速かに凝集と浮上分離がなされる
ためと考えられる。
Further, according to the method of the present invention, when the exothermic agent such as Al and the oxidizing gas are supplied, the reason why the aggregation and separation of the inclusions are promoted is that the exothermic agent reacts with oxygen to generate Al 2 O 3 and inclusions such as SiO 2, together with the aggregate to the center of rotation on the principle of the centrifuge by the rotational movement of the molten steel, to paddle distance to be floating of inclusions recessed rotation center short, supply of the oxidizing gas It is considered that the inclusions were already separated even in the inside, and after the supply of the oxidizing gas was stopped, the aggregation and the floating separation were rapidly performed.

(実施例) 実施例 1 直径1m、深さ1.2mの取鍋に0.8%C−26%Crのステン
レス粗溶鋼5.0トンを収容し、第1図に示す構成の精錬
装置にて、圧力5〜10トールの下で、粗溶鋼の回転数50
rpm、酸素流量4.0Nm3/min(通常のVODの2倍の流量)の
条件で酸素吹精し、C濃度0.0088%まで脱炭精錬した。
表1にその結果を示す。このときに要した精錬時間は94
分であり、溶鋼の歩留りは99.1%であった。また取鍋耐
火物の溶損量は12kgであった。(耐火物マグクロ質れん
が)の溶損量は、スラブ中のMgO濃度変化より推定し
た。
(Example) Example 1 5.0 tons of 0.8% C-26% Cr crude stainless steel melt was stored in a ladle having a diameter of 1 m and a depth of 1.2 m, and a pressure of 5 tons was applied in a refining apparatus having the configuration shown in FIG. Rotation speed of crude molten steel 50 under 10 Torr
Oxygen was blown under the conditions of rpm and an oxygen flow rate of 4.0 Nm 3 / min (a flow rate twice the normal VOD), and decarburized and refined to a C concentration of 0.0088%.
The results are shown in Table 1. The refining time required at this time is 94
And the yield of molten steel was 99.1%. The melting loss of the ladle refractory was 12 kg. The amount of erosion of (magnesium brick of refractory) was estimated from the change of MgO concentration in the slab.

実施例 2 酸素流量を実施例1の1.5倍の6.0Nm3/min(通常のVOD
の3倍の流量)で底吹きArガス流量200N1/minで他は実
施例1と同じ条件で5.1トンの溶鋼をC濃度0.0082%ま
で脱炭精錬した。表1にその結果を示す。このときに要
した精錬時間は62分であり、溶鋼の歩留りは98.8%であ
った。また取鍋耐火物の溶損量は7kgであった。
Example 2 The oxygen flow rate was 1.5 times that of Example 1, 6.0 Nm 3 / min (normal VOD
The flow rate was 3 times the flow rate) and the bottom blowing Ar gas flow rate was 200 N1 / min, and 5.1 tons of molten steel was decarburized to a C concentration of 0.0082% under the same conditions as in Example 1. The results are shown in Table 1. The refining time required at this time was 62 minutes, and the yield of molten steel was 98.8%. The melting loss of the ladle refractory was 7 kg.

比較例 1 酸素流量2.0Nm3/min(通常のVOD相当)5.1トンの溶鋼
に、回転磁界を与えずに、他は実施例1,2と同じ条件で
C濃度0.0105%まで脱炭精錬した。表2にその結果を示
す。このときに要した精錬時間は187分で実施例1の2
倍かかり、耐火物溶損量は26kgと実施例1と2倍強であ
った。溶鋼歩留りは98.9%と実施例1と同程度であっ
た。
Comparative Example 1 Molten steel having an oxygen flow rate of 2.0 Nm 3 / min (usually equivalent to VOD) of 5.1 tons was decarburized and refined to a C concentration of 0.0105% under the same conditions as in Examples 1 and 2 except that a rotating magnetic field was not applied. The results are shown in Table 2. The refining time required at this time was 187 minutes, and 2 of Example 1
It took twice as long, and the amount of refractory erosion was 26 kg, which was slightly more than twice that of Example 1. The molten steel yield was 98.9%, which was about the same as in Example 1.

比較例 2 酸素流量4.0Nm3/min(通常のVODの2倍の流量)溶鋼
に回転磁界を与えずに、5.1トンの溶鋼を、他は実施例
1,2と同じ条件でC濃度0.0096%まで脱炭精錬した。こ
のときに要した精錬時間は83分と実施例1より短かく耐
火物溶損量も10kgと実施例1より少なかったが、溶鋼歩
留りが77.6%と著しく低かった。精錬処理後の真空タン
ク内および蓋には多量の地金が付着していた。
Comparative Example 2 Oxygen flow rate 4.0 Nm 3 / min (flow rate twice the normal VOD) 5.1 tons of molten steel was applied to the molten steel without applying a rotating magnetic field, and other examples
It was decarburized and refined to the C concentration of 0.0096% under the same conditions as 1 and 2. The refining time required at this time was 83 minutes, which was shorter than that of Example 1 and the amount of refractory erosion was 10 kg, which was less than that of Example 1, but the molten steel yield was significantly low at 77.6%. A large amount of metal adhered to the inside of the vacuum tank and the lid after the refining treatment.

実施例 3 実施例1に用いたと同じ装置および取鍋にて、1552℃
の溶鋼5.2トンを、圧力0.5トール下で、回転数50rpmで
回転させつつ、Al12kgを添加すると共に上吹ランスから
酸素を3.5Nm3/minの流量で2分間吹精した。酸素吹精後
溶鋼温度は1613℃、溶鋼中の全酸素濃度は18ppm、Al濃
度は0.061%であった。
Example 3 With the same equipment and ladle as used in Example 1, 1552 ° C.
The molten steel (5.2 tons) was spun at a flow rate of 3.5 Nm 3 / min for 2 minutes while adding 12 kg of Al and rotating at a rotation speed of 50 rpm under a pressure of 0.5 Torr. The molten steel temperature after oxygen blowing was 1613 ° C, the total oxygen concentration in the molten steel was 18 ppm, and the Al concentration was 0.061%.

比較例 3 実施例3と同じ装置で、1548℃の溶鋼5.1トンを、圧
力0.5トール下で、取鍋の底からArガス200N1/min吹込み
つつ、Al12kgを添加すると共に、上吹きランスからは酸
素を3.5Nm3/min流量で2分間吹精した。
Comparative Example 3 Using the same apparatus as in Example 3, 5.1 tons of molten steel at 1548 ° C. was blown from the bottom of the ladle with Ar gas at 200 N1 / min while adding 12 kg of Al at a pressure of 0.5 Torr and from the top lance. Oxygen was blown at a flow rate of 3.5 Nm 3 / min for 2 minutes.

酸素吹精後溶鋼温度は1616℃で、溶鋼中の全酸素濃度
は113ppm、Al濃度は0.056%であった。その後、5分
間、酸素吹精をすることなしに底吹き羽口Arガス撹拌処
理(Ar流量200N1/min)を行った。この結果、溶鋼中の
全酸素濃度は22ppm、Al濃度は0.032%であった。また、
この間に溶鋼温度は1581℃にまで低下した。
The molten steel temperature after oxygen sparging was 1616 ° C, the total oxygen concentration in the molten steel was 113 ppm, and the Al concentration was 0.056%. After that, a bottom-blowing tuyere Ar gas stirring process (Ar flow rate 200 N1 / min) was performed for 5 minutes without oxygen sparging. As a result, the total oxygen concentration in the molten steel was 22 ppm and the Al concentration was 0.032%. Also,
During this time, the molten steel temperature dropped to 1581 ° C.

実施例 4 0.72%C−18.01Cr溶鋼107トンを、第2図に示した構
成のRH式脱ガス装置を用いて真空槽内で回転させつつ、
その真空槽内に設けたガス吹込み管より酸素吹精し、脱
炭精錬した。還流用のArガス800N1/min、酸素流量30Nm3
/min(通常のRH−OB法の約3倍以上)、槽内真空度0.5
トール、槽内の溶鋼の回転速度40rpmの条件で、22分脱
炭精錬し、0.011%C−18.02%Cr溶鋼を得た。このとき
の溶鋼歩留は99.2%であった。
Example 4 While rotating 107 tons of 0.72% C-18.01Cr molten steel in a vacuum chamber using the RH type degassing device having the configuration shown in FIG.
Oxygen was blown from a gas blowing pipe provided in the vacuum tank, and decarburized and refined. Ar gas for reflux 800N1 / min, oxygen flow rate 30Nm 3
/ min (more than about 3 times that of the normal RH-OB method), vacuum degree in the chamber 0.5
The molten steel in the tank and the rotating speed in the tank were 40 rpm and decarburized for 22 minutes to obtain 0.011% C-18.02% Cr molten steel. The molten steel yield at this time was 99.2%.

比較例 4 実施例4と同じ第2図に示す装置にて、0.731%C−1
8.21%Cr溶鋼100トンを槽内での溶鋼の回転なしに酸素
吹精して脱炭精錬した。還流用のArガス800Nl/min、酸
素流量30Nm2/min(通常のRH−OB法の約3倍以上)、槽
内真空度0.5トールで21分脱炭精錬した。その結果、0.0
08%C−17.92%Cr組成の溶鋼が得られたが、真空槽上
部および真空排気孔内へのスプラッシュ付着量が著しく
大きく、溶鋼歩留りは79.8%と低かった。また、真空槽
上部に設けてある槽予熱用の黒鉛電極がスプラッシュの
衝突により折損するトラブルが生じた。
Comparative Example 4 0.731% C-1 in the same apparatus as in Example 4 shown in FIG.
100 tons of 8.21% Cr molten steel was decarburized and refined by oxygen blowing without rotating the molten steel in the tank. Argon gas for reflux was 800 Nl / min, oxygen flow rate was 30 Nm 2 / min (about 3 times or more of the normal RH-OB method), and the inside vacuum of the tank was 0.5 Torr for 21 minutes for decarburization refining. As a result, 0.0
Although molten steel having a composition of 08% C-17.92% Cr was obtained, the amount of splash adhered to the upper portion of the vacuum chamber and the inside of the vacuum exhaust hole was remarkably large, and the molten steel yield was low at 79.8%. In addition, there was a problem that the graphite electrode for preheating the chamber provided at the upper part of the vacuum chamber was broken due to the collision of the splash.

比較例 5 比較列4と同じ装置にて、0.76%C−18.11%Cr溶鋼1
01トンを真空槽内での溶鋼撹拌なしに酸素吹精して脱炭
精錬した。還流用のArガス800N1/min、酸素流量10Nm3/m
in(通常のRH−OB法の最大値)、槽内真空度0.5トール
でC濃度0.010%まで脱炭精錬した。脱炭に要した時間
は65分であり、本発明実施例4の3倍もの長時間を要し
た。溶鋼歩留りは98.8%と実施例4とほぼ同等であっ
た。
Comparative Example 5 0.76% C-18.11% Cr molten steel 1 in the same apparatus as Comparative Row 4
01 tons were decarburized and refined by oxygen blowing without stirring molten steel in a vacuum tank. Ar gas for reflux 800N1 / min, oxygen flow 10Nm 3 / m
In (maximum value of normal RH-OB method), decarburization and refining to a C concentration of 0.010% with a vacuum degree of 0.5 torr in the tank. The time required for decarburization was 65 minutes, which was three times as long as in Example 4 of the present invention. The molten steel yield was 98.8%, which was almost the same as in Example 4.

実施例 5 実施例4と同じ第2図に示す装置にて、1542℃の溶鋼
102トンを槽内で40rpmの回転数で回転し、還流ガス800N
1/minで還流させつつAl200kg添加し、酸素流量10Nm3/mi
nで12分酸素吹精し昇熱させた。昇熱後の溶鋼温度は160
5℃で、溶鋼中の全酸素量は11ppm、Al濃度は0.032%で
あった。
Example 5 Molten steel at 1542 ° C. in the same apparatus as that of Example 4 shown in FIG.
Rotate 102 tons in the tank at a rotation speed of 40 rpm and return gas 800N
Add 200 kg of Al while refluxing at 1 / min, oxygen flow rate 10 Nm 3 / mi
Oxygen was blown for 12 minutes at n to raise the temperature. The molten steel temperature after heating is 160
At 5 ° C, the total oxygen content in the molten steel was 11 ppm and the Al concentration was 0.032%.

比較例 6 比較例5と同じ装置にて、1548℃の溶鋼101トンを槽
内で溶鋼を回転させずに、還流ガス流量800N1/minで還
流しつつ、Alを200kg添加し、酸素流量10Nm3/minで12分
酸素吹精して昇熱させた。昇熱後の溶鋼温度は1602℃で
溶鋼中の全酸素は160ppm、Al濃度は0.054%であった。
その後、10分間酸素吹精なしに還流処理を行った。その
結果、溶鋼中の全酸素濃度は、17ppm、Al濃度は0.032%
であった。また、この間に溶鋼温度は1583℃まで低下し
た。
Comparative Example 6 In the same apparatus as in Comparative Example 5, 101 tons of molten steel at 1548 ° C. was refluxed at a reflux gas flow rate of 800 N1 / min without rotating the molten steel in the tank, 200 kg of Al was added, and an oxygen flow rate was 10 Nm 3 Oxygen was blown for 12 minutes at / min to raise the temperature. The molten steel temperature after heating was 1602 ℃, total oxygen in the molten steel was 160ppm, Al concentration was 0.054%.
Then, reflux treatment was performed for 10 minutes without oxygen sparging. As a result, the total oxygen concentration in the molten steel was 17 ppm and the Al concentration was 0.032%.
Met. During this time, the molten steel temperature dropped to 1583 ° C.

実施例 6 第3図に示す250トンRH脱ガス装置の上昇側浸漬管の
外側に電磁撹拌装置を取付け、その周囲を防熱板で囲っ
たUOE材用のX70の溶鋼を、還流ガスとしてArガスを1500
N1/min吹込み、真空度:0.1トールで20分間の処理を行っ
た。このとき電磁撹拌を併用したものと併用しなかった
ものの脱ガス効果を比較した。その結果を表3に示す。
いずれも処理開始時のN=50ppm,H=4.0ppmのヒートで
比較した。
Example 6 An electromagnetic stirrer was attached to the outside of the ascending side immersion pipe of the 250 ton RH degasser shown in FIG. 3, and the molten steel of X70 for UOE material surrounded by a heat insulating plate was used as Ar gas as a reflux gas. 1500
Blowing with N1 / min was performed for 20 minutes at a vacuum degree of 0.1 Torr. At this time, the degassing effect was compared between those with and without magnetic stirring. Table 3 shows the results.
In both cases, heat was compared at the start of treatment, N = 50 ppm and H = 4.0 ppm, for comparison.

実施例 7 実施例6に記述したと同じ第3図に示す装置を使い、
同じ条件で極低炭Alキルド溶鋼を、還流ガスとしてArを
200N1/min吹込むことにより、真空度:1〜5トールの15
分のリムド処理を行った。この時に電磁撹拌を併用した
ものと併用しなかったものの脱炭効果を比較した。その
結果を表4に示す。いずれも処理開始時のC=300ppmの
ヒートで比較した。
Example 7 Using the same apparatus shown in FIG. 3 as described in Example 6,
Under the same conditions, ultra low carbon Al killed molten steel and Ar as reflux gas were used.
By blowing 200N1 / min, the degree of vacuum: 15 of 1-5 Torr
Minute rimmed treatment was performed. At this time, the decarburizing effect was compared between those with and without magnetic stirring. The results are shown in Table 4. In both cases, heat was compared at the start of treatment, C = 300 ppm.

実施例 8 実施例6に記述したと同じ第3図に示す装置、条件
で、50キロ級厚板材用の溶鋼に上昇側浸漬管に脱硫フラ
ックス(組成:25%CaF2−75%CaO)を150kg/分の速度で
10分間吹込み、その際の電磁撹拌併用の有無で脱硫効果
を比較した。その結果を表5に示す。いずれもフラック
ス吹込み前のS値を70ppmのヒートで比較した。なおこ
のときの真空度は0.1トールであった。
Example 8 Desulfurization flux (composition: 25% CaF 2 −75% CaO) was applied to a rising side immersion pipe in molten steel for 50 kg class thick plate material under the same apparatus and conditions as described in Example 6 and shown in FIG. At a speed of 150 kg / min
It was blown for 10 minutes, and the desulfurization effect was compared with and without electromagnetic stirring. The results are shown in Table 5. In both cases, the S value before flux injection was compared at a heat of 70 ppm. The degree of vacuum at this time was 0.1 Torr.

(発明の効果) 以上説明したように本発明によれば、減圧下に保持し
た溶鋼に酸素ガスを供給しして精錬昇熱する際に、スプ
ラッシュの発生による溶鋼歩留りの低下や、操業の阻害
を招くことなく従来の3倍の高速度で脱炭精錬すること
が可能となった。またAlを添加して昇熱するに当って
も、昇熱終了時に既に極低酸素濃度まで脱酸されている
ので、付加的な脱酸処理を要しない。またフラックス精
錬による脱硫も短時間で極めて低いS値が得られ、処理
時間の短縮が可能である。
(Effects of the Invention) As described above, according to the present invention, when oxygen gas is supplied to molten steel held under reduced pressure and refining and heating are performed, a decrease in molten steel yield due to generation of splashes and an inhibition of operation It has become possible to decarburize and refine at a speed three times faster than before without incurring. Further, even when Al is added and the temperature is raised, no additional deoxidation treatment is required because the oxygen has already been deoxidized to an extremely low oxygen concentration at the end of the heating. Also, desulfurization by flux refining can obtain an extremely low S value in a short time, and the processing time can be shortened.

また、上述したように反応効率の向上に伴い、処理時
間の大幅な短縮が実現でき、その分溶鋼過熱度を小さく
抑え得るのでエネルギー、耐火物寿命の面で有効であ
り、使用する精錬助剤の歩留りが向上し、連鋳の稼動率
を上昇させることができる。
Further, as mentioned above, with the improvement of the reaction efficiency, the treatment time can be significantly shortened and the superheat degree of molten steel can be suppressed to a small extent, which is effective in terms of energy and refractory life. The yield is improved and the continuous casting operation rate can be increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明による精錬方法をVODに適用した例を
示す図、 第2図は、本発明精錬方法をRH−OB法の真空槽で適用し
た例を示す図、 第3図は、本発明精錬方法をRH−OB法の浸漬管で適用し
た例を示す図である。 1……真空タンク、2……回転磁界発生装置 3……溶鋼、4……取鍋 5……上吹込みランス、6……合金材投入シュート 7……真空槽、8,8′……浸漬管 10……吹込み管、11……底吹き羽口
FIG. 1 is a diagram showing an example in which the refining method according to the present invention is applied to VOD, FIG. 2 is a diagram showing an example in which the refining method according to the present invention is applied in a vacuum chamber of the RH-OB method, and FIG. It is a figure which shows the example which applied the refining method of this invention with the immersion pipe of RH-OB method. 1 ... Vacuum tank, 2 ... Rotating magnetic field generator 3 ... Molten steel, 4 ... Ladle 5 ... Top blowing lance, 6 ... Alloy material chute 7 ... Vacuum tank, 8, 8 '... Immersion tube 10 …… Blown tube, 11 …… Bottomed tuyere

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜谷 敏和 千葉市川崎町1番地 川崎製鉄株式会社 技術研究本部内 (72)発明者 難波 明彦 千葉市川崎町1番地 川崎製鉄株式会社 技術研究本部内 (72)発明者 野崎 努 千葉市川崎町1番地 川崎製鉄株式会社 技術研究本部内 (56)参考文献 特開 昭59−104422(JP,A) 特開 昭60−96735(JP,A) 特開 昭62−167813(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshikazu Sakuraya, 1 Kawasaki-machi, Chiba City, Kawasaki Steel Co., Ltd. Technical Research Headquarters (72) Inventor Akihiko Namba 1, Kawasaki-machi, Chiba City, Kawasaki Steel Co., Ltd. Technical Research Headquarters ( 72) Inventor Tsutomu Nozaki 1 Kawasaki-cho, Chiba City Kawasaki Steel Co., Ltd. Technical Research Division (56) Reference JP 59-104422 (JP, A) JP 60-96735 (JP, A) JP Sho 62-167813 (JP, A)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】取鍋内溶融金属を、そのまま減圧下に保持
するか、減圧下にある容器へ移送する途中もしくは該容
器内への移送後に、それぞれの位置で回転磁界発生装置
を介して水平方向に回転流動させると共にその流動する
溶融金属中に精錬剤を供給することを特徴とする溶融金
属の精錬方法。
1. A molten metal in a ladle is kept under reduced pressure as it is, or while being transferred to a container under reduced pressure, or after being transferred into the container, the molten metal is leveled through a rotating magnetic field generator at each position. A method for refining molten metal, which comprises rotating and flowing in a direction and supplying a refining agent into the flowing molten metal.
【請求項2】溶融金属に対して水平回転力を付加する位
置が、真空タンク内取鍋中であることを特徴とする特許
請求の範囲第1項記載の精錬方法。
2. The refining method according to claim 1, wherein the position at which the horizontal rotational force is applied to the molten metal is in the ladle inside the vacuum tank.
【請求項3】溶融金属に対して水平回転力を付加する位
置が、真空槽内であることを特徴とする特許請求の範囲
第1項記載の精錬方法。
3. The refining method according to claim 1, wherein the position where the horizontal rotational force is applied to the molten metal is in the vacuum chamber.
【請求項4】溶融金属に対して水平回転力を付加する位
置が、真空槽へ通じる浸漬管であることを特徴とする特
許請求の範囲第1項記載の精錬方法。
4. The refining method according to claim 1, wherein the position at which the horizontal rotating force is applied to the molten metal is an immersion pipe leading to a vacuum chamber.
【請求項5】溶融金属に供給する精錬剤が、酸化性ガス
であることを特徴とする特許請求の範囲第1項記載の精
錬方法。
5. The refining method according to claim 1, wherein the refining agent supplied to the molten metal is an oxidizing gas.
【請求項6】溶融金属に供給する精錬剤が、粉粒状フラ
ックスであることを特徴とする特許請求の範囲第1項記
載の精錬方法。
6. The refining method according to claim 1, wherein the refining agent supplied to the molten metal is a powdery granular flux.
【請求項7】溶融金属に供給する精錬剤が、不活性ガス
であることを特徴とする特許請求の範囲第1項記載の精
錬方法。
7. The refining method according to claim 1, wherein the refining agent supplied to the molten metal is an inert gas.
【請求項8】精錬剤の供給手段として、上吹ランスを用
いることを特徴とする特許請求の範囲第1項または第5
項のいずれかに記載の精錬方法。
8. A top blowing lance is used as a refining agent supply means, according to claim 1 or 5.
The refining method according to any one of items.
【請求項9】精錬剤の供給手段として、浴面下に設けた
吹込み管を用いることを特徴とする特許請求の範囲第1,
6または7項のいずれかに記載の精錬方法。
9. A blowing pipe provided below the bath surface is used as a refining agent supply means.
The refining method according to either 6 or 7.
JP61128236A 1986-06-04 1986-06-04 Method for refining molten metal Expired - Lifetime JP2538879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128236A JP2538879B2 (en) 1986-06-04 1986-06-04 Method for refining molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128236A JP2538879B2 (en) 1986-06-04 1986-06-04 Method for refining molten metal

Publications (2)

Publication Number Publication Date
JPS62287011A JPS62287011A (en) 1987-12-12
JP2538879B2 true JP2538879B2 (en) 1996-10-02

Family

ID=14979857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128236A Expired - Lifetime JP2538879B2 (en) 1986-06-04 1986-06-04 Method for refining molten metal

Country Status (1)

Country Link
JP (1) JP2538879B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647691B2 (en) * 1987-07-17 1994-06-22 川崎製鉄株式会社 Method of reducing inclusions in molten steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887234A (en) * 1981-11-19 1983-05-25 Nippon Kokan Kk <Nkk> Refining method by vacuum melting
LU84093A1 (en) * 1982-04-16 1983-12-16 Arbed DEVICE FOR METALLURGIC TREATING OF LIQUID METALS
JPS5920727A (en) * 1982-07-27 1984-02-02 Nissan Motor Co Ltd Engine mount
JPS59104422A (en) * 1982-12-06 1984-06-16 Nippon Steel Corp Decarburization refining method of molten steel
JPS59193226A (en) * 1983-04-19 1984-11-01 Nippon Kokan Kk <Nkk> Denitrification of molten metal in vacuum induction melting furnace
JPS6293358U (en) * 1985-11-29 1987-06-15

Also Published As

Publication number Publication date
JPS62287011A (en) 1987-12-12

Similar Documents

Publication Publication Date Title
JP3903580B2 (en) Method of melting high cleanliness steel
JP5451591B2 (en) Secondary refining method
JP2538879B2 (en) Method for refining molten metal
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JPH0510406B2 (en)
JP5096779B2 (en) Method of adding rare earth elements to molten steel
Dutta et al. Secondary steelmaking
JPH11140530A (en) Production of ultra-low nitrogen stainless steel
JP3300014B2 (en) Refining method of molten steel by vacuum degassing
JP3577988B2 (en) Manufacturing method of low Al ultra low sulfur steel
JP2724030B2 (en) Melting method of ultra low carbon steel
JPH07224317A (en) Production of high cleanliness steel
JP2001032009A (en) Method for refining molten steel containing chromium
SU981376A1 (en) Method for smelting manganese-containing steels
JP3408934B2 (en) Vacuum degassing reactor for refining low carbon steel
SU1092189A1 (en) Method for making stainless steel
JPH03153816A (en) Smelting method for high purity steel
JPH0625731A (en) Deoxidation method of molten steel
JPH11158536A (en) Method for melting extra-low carbon steel excellent in cleanliness
JP3282530B2 (en) Method for producing high cleanliness low Si steel
JP2001172715A (en) Method of manufacturing molten ultra-low carbon stainless steel
JPH07268438A (en) Method for raising temperature of molten steel
JPH0762166B2 (en) Steel refining method
JPH11158537A (en) Production of extra-low carbon steel excellent in cleanliness
JPH01216A (en) Method for refining molten metal