JP2537132B2 - High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same - Google Patents

High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same

Info

Publication number
JP2537132B2
JP2537132B2 JP5227826A JP22782693A JP2537132B2 JP 2537132 B2 JP2537132 B2 JP 2537132B2 JP 5227826 A JP5227826 A JP 5227826A JP 22782693 A JP22782693 A JP 22782693A JP 2537132 B2 JP2537132 B2 JP 2537132B2
Authority
JP
Japan
Prior art keywords
mol
ceo
zro
sintered body
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5227826A
Other languages
Japanese (ja)
Other versions
JPH06263533A (en
Inventor
正典 平野
博 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP5227826A priority Critical patent/JP2537132B2/en
Publication of JPH06263533A publication Critical patent/JPH06263533A/en
Application granted granted Critical
Publication of JP2537132B2 publication Critical patent/JP2537132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、きわめて高強度でしか
も同時に熱安定性に著しく優れる高靱性セラミック焼結
体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high toughness ceramic sintered body having extremely high strength and at the same time excellent thermal stability, and a method for producing the same.

【0002】[0002]

【従来の技術】ジルコニア焼結体は高温領域の立方晶か
ら正方晶を経て単斜晶に相転移をするが、その際体積変
化を伴い、特に正方晶から単斜晶への相転移の体積変化
が大きく、そのため焼結体がこの体積変化により破壊し
てしまうという欠点がある。この欠点を取り除くため
に、ZrO2にCaO、MgO、Y23などを固溶させ
て転移を起こさせないようにし、常温でも立方晶からな
る部分安定化ジルコニアあるいは立方晶と単斜晶より成
る部分安定化ジルコニアが数多く発表されている。ま
た、準安定相である正方晶を常温で焼結体内に存在させ
た部分安定化ジルコニアが高強度を示すことが発表され
ている。これは一つには機械的な外部応力が加わった際
に、準安定な正方晶から室温安定相である単斜晶への相
転移が誘起され、応力が吸収されることによる。
2. Description of the Related Art A zirconia sintered body undergoes a phase transition from a cubic crystal to a tetragonal crystal in a high temperature region to a monoclinic crystal. At that time, a volume change occurs, and particularly, the volume of the phase transition from the tetragonal crystal to the monoclinic crystal is increased. The change is large, so that there is a drawback that the sintered body is destroyed by this volume change. In order to eliminate this defect, CaO, MgO, Y 2 O 3 etc. are solid-dissolved in ZrO 2 so as not to cause a transition, and partially stabilized zirconia consisting of cubic crystals or cubic and monoclinic crystals at room temperature. Many partially stabilized zirconia have been announced. In addition, it has been announced that partially stabilized zirconia obtained by allowing a tetragonal crystal, which is a metastable phase, to exist in a sintered body at room temperature exhibits high strength. This is partly because, when a mechanical external stress is applied, a phase transition from a metastable tetragonal crystal to a monoclinic crystal that is a room temperature stable phase is induced and the stress is absorbed.

【0003】この様に常温において主として準安定な正
方晶からなる焼結体を得るための安定化剤としては、従
来より主としてY23が用いられ特に高靱性、高強度を
発現している。しかし、このように主として正方晶から
なる部分安定化ジルコニアは、高温相を低温域までもた
らした結果生ずる準安定相であるため、その構造や性質
が経時変化をし、特に200℃ないし400℃という比
較的低温における加熱により単斜晶へ相転移を起こし、
強度の経時劣化が極めて大きい。また、この強度劣化は
水分等の存在下では著しく促進され、この様な特性の経
時劣化が問題となっている。
As described above, Y 2 O 3 has been mainly used as a stabilizer for obtaining a sintered body composed of a tetragonal crystal that is mainly metastable at room temperature, and particularly high toughness and high strength are exhibited. . However, since the partially stabilized zirconia mainly composed of tetragonal crystals is a metastable phase generated as a result of bringing a high temperature phase to a low temperature region, its structure and properties change with time, and particularly 200 ° C. to 400 ° C. When heated at a relatively low temperature, it causes a phase transition to monoclinic,
The deterioration of strength with time is extremely large. Further, this strength deterioration is remarkably promoted in the presence of water or the like, and such deterioration of characteristics over time poses a problem.

【0004】また、高靱性ジルコニア焼結体として、Y
23、MgO、CaOを安定化剤として含むジルコニア
にAl23を0.5〜60重量%まで含む焼結体(特開
昭58−32066)及びY23、MgO、CaOを安
定化剤として含むジルコニアにAl23あるいは各種の
ホウ化物、炭化物、窒化物及びAl23を含む焼結体
(特開昭58−120571)が開示されている。
Further, as a high toughness zirconia sintered body, Y
Zirconia containing 2 O 3 , MgO and CaO as stabilizers, a sintered body containing Al 2 O 3 in an amount of 0.5 to 60 wt% (Japanese Patent Laid-Open No. 58-32066) and Y 2 O 3 , MgO and CaO. There is disclosed a sintered body containing Al 2 O 3 or various borides, carbides, nitrides and Al 2 O 3 in zirconia as a stabilizer (JP-A-58-120571).

【0005】しかし、これらの開示されたジルコニア焼
結体のうちMgO、CaOを安定化剤とするものは、Y
23を安定化剤とするものに比べ機械的強度が低い上、
1000℃付近の長時間の保持により、脱安定化すなわ
ち正方晶から単斜晶への変態を生じ、その結果機械的強
度の低下を生ずるため、構造材としての用途は限られた
ものとなっている。さらに、Y23によって安定化され
た高靱性ジルコニア焼結体は、上記したように200℃
〜400℃の低温において容易に相転移を生じ、時間と
共に焼結体表面より内部へ向かって転移が進行し強度、
靱性の劣化は著しく、強靱化のメカニズムが作用しなく
なることはもとより、相転移にともなう体積膨張によ
り、マイクロクラックが発生してついには破壊してしま
うという重大な欠陥を有し、構造材としての信頼性に乏
しいものである。
However, among these disclosed zirconia sintered bodies, those having MgO or CaO as a stabilizer are Y
In addition to having lower mechanical strength than those using 2 O 3 as a stabilizer,
Holding for a long time at around 1000 ° C causes destabilization, that is, transformation from tetragonal to monoclinic, resulting in a decrease in mechanical strength, so that its use as a structural material is limited. There is. Furthermore, the high toughness zirconia sintered body stabilized by Y 2 O 3 has a temperature of 200 ° C. as described above.
A phase transition easily occurs at a low temperature of up to 400 ° C, and the transition progresses from the surface of the sintered body to the inside with time,
Degradation of toughness is remarkable, and in addition to the mechanism of toughness not working, there is a serious defect that microcracks are generated and eventually fracture due to volume expansion accompanying the phase transition, and as a structural material, It is unreliable.

【0006】またY23を安定化剤とするZrO2にア
ルミナを含有させ、HIP処理を行うことにより、更に
曲げ強度の高い高強度ジルコニアセラミックスの製造法
が開示されている(特開昭60−86073)。
Also disclosed is a method for producing high strength zirconia ceramics having higher bending strength by incorporating alumina into ZrO 2 having Y 2 O 3 as a stabilizer and subjecting it to HIP treatment (Japanese Patent Application Laid-Open No. Sho-6). 60-86073).

【0007】同公報では、ジルコニアセラミックスの強
度は改善されているものの、Y23を安定化剤とするジ
ルコニアを主成分としている為、200℃〜400℃に
おいて相変わらず依然として経時劣化を生じるという問
題がある。
According to the publication, although the strength of zirconia ceramics is improved, since zirconia containing Y 2 O 3 as a stabilizer is the main component, deterioration with time still occurs at 200 ° C. to 400 ° C. There is.

【0008】一方、Y23とCeO2を安定化剤とする
ジルコニア磁器及びその製造法(特開昭60−1416
73)や、CeO2を安定化剤とするジルコニア及びこ
れにアルミナを含有するジルコニア質焼結体が開示され
ている(特開昭60−108367)。
On the other hand, zirconia porcelain using Y 2 O 3 and CeO 2 as stabilizers and a method for producing the same (Japanese Patent Laid-Open No. 60-1416).
73) and zirconia containing CeO 2 as a stabilizer and a zirconia-based sintered body containing alumina therein (JP-A-60-108367).

【0009】これら公報に開示されたCeO2を含有す
るジルコニアセラミックスは、Y23を安定化剤とする
ジルコニアセラミックスと比較して熱安定性は改善され
ているものの、強度が低く、十分でないという欠点があ
り、構造材としての用途は限定されたものとなってい
る。
The zirconia ceramics containing CeO 2 disclosed in these publications have improved thermal stability as compared with zirconia ceramics containing Y 2 O 3 as a stabilizer, but have low strength and are not sufficient. However, its use as a structural material is limited.

【0010】[0010]

【発明が解決しようとする課題】このように、Y23
安定化剤として含むY23−ZrO2系ジルコニアセラ
ミックス及びこれにアルミナを含有するY23−ZrO
2−Al23系ジルコニアセラミックスは、200℃〜
400℃の低温において経時劣化を生じるという欠点を
有している。一方、Y23とCeO2を安定化剤として
含むY23−CeO2−ZrO2系ジルコニアセラミック
スあるいはCeO2を安定化剤として含むCeO2−Zr
2系、CeO2−ZrO2−Al23系ジルコニアセラ
ミックスは強度が低いという欠点を有している。
[Problems that the Invention is to Solve Thus, Y 2 O 3 and Y 2 O 3 containing Y 2 O 3 -ZrO 2 zirconia ceramics and this alumina comprises as a stabilizer -ZrO
2- Al 2 O 3 system zirconia ceramics is 200 ℃ ~
It has a drawback that it deteriorates with time at a low temperature of 400 ° C. On the other hand, CeO 2 -Zr containing Y 2 O 3 and Y 2 O 3 -CeO 2 -ZrO 2 zirconia ceramics or CeO 2 containing CeO 2 as a stabilizer as a stabilizer
O 2 system, CeO 2 -ZrO 2 -Al 2 O 3 zirconia ceramics has the disadvantage of low strength.

【0011】本発明の目的は、強度と熱安定性の両者を
同時に飛躍的に改善した高靱性ジルコニアセラミックス
及びその製造方法を提供しようとするものである。
It is an object of the present invention to provide a high toughness zirconia ceramic which is dramatically improved in both strength and thermal stability, and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】第1の発明(請求項1)
の耐熱安定性に優れた高靱性セラミック焼結体は、 (a) Y23とCeO2を安定化剤として含む主として正
方晶より成る部分安定化ジルコニアに対し (b) 第2成分として、Al23、又はAl23とMgO
・Al23(スピネル)、3Al23・2SiO2(ム
ライト)から選ばれた1種又は2種とを1〜70内部重
量%含み、 (c) 熱間プレス法あるいは熱間静水圧プレス法で焼結さ
れた焼結体であって、 (d) 焼結体中に含まれる正方晶ジルコニアの結晶粒子の
平均粒子径が2μm以下であり、 (e) かつ3点曲げ強度が149kg/mm2以上で、 (f) 焼結体のかさ密度が理論密度の99%以上であり、 (g) 300℃大気中に3000時間保持試験後の焼結体
に含まれるジルコニアの単斜晶量が3%以下でありかつ
3点曲げ強度が147kg/mm2以上であること、 (h) 前記部分安定化ジルコニアは、これに含まれるY2
3、CeO2が添付図面に示すように正三角形に交わる
三軸にそれぞれZrO2、YO1.5、CeO2のmol%
を表示した三角座標において、 点A(ZrO2 87.5mol%、YO1.5 12mo
l%、CeO2 0.5mol%) 点B(ZrO2 95.5mol%、YO1.5 4mol
%、CeO2 0.5mol%) 点C(ZrO2 95.5mol%、YO1.5 2mol
%、CeO2 2.5mol%) 点D(ZrO2 85.0mol%、YO1.5 2mol
%、CeO2 13.0mol%) で示された特定4組成点を結ぶ点で囲まれた範囲内の組
成にあること、を特徴とする。
[Means for Solving the Problems] First invention (Claim 1)
The high toughness ceramic sintered body excellent in heat resistance of (a) is (a) for partially stabilized zirconia mainly composed of tetragonal crystals containing Y 2 O 3 and CeO 2 as stabilizers, and (b) as a second component, Al 2 O 3 , or Al 2 O 3 and MgO
· Al 2 O 3 (spinel), 3Al 2 O 3 · 2SiO 2 and a one or more of the compounds selected from (mullite) 1-70 Internal wt%, (c) hot pressing method or a hot isostatic (D) The average particle size of the tetragonal zirconia crystal particles contained in the sintered body is 2 μm or less, and (e) the three-point bending strength is 149 kg. / F 2 or more, (f) the bulk density of the sintered body is 99% or more of the theoretical density, and (g) the monoclinic crystal of zirconia contained in the sintered body after 3000 hours of holding test in the air at 300 ° C. The amount is 3% or less, and the three-point bending strength is 147 kg / mm 2 or more, (h) the partially stabilized zirconia contains Y 2
O 3 and CeO 2 are mol% of ZrO 2 , YO 1.5 , and CeO 2 , respectively, on the three axes intersecting the equilateral triangle as shown in the attached drawing.
In the triangular coordinate displaying, point A (ZrO 2 87.5 mol%, YO 1.5 12mo
1%, CeO 2 0.5 mol%) Point B (ZrO 2 95.5 mol%, YO 1.5 4 mol
%, CeO 2 0.5 mol%) Point C (ZrO 2 95.5 mol%, YO 1.5 2 mol
%, CeO 2 2.5 mol%) Point D (ZrO 2 85.0 mol%, YO 1.5 2 mol
%, CeO 2 13.0 mol%), and the composition is within the range surrounded by the points connecting the four specific composition points.

【0013】第2の発明(請求項2)は、第1の発明に
対し、第2成分としてMgO・Al23(スピネル)及
び3Al23・2SiO2(ムライト)の1種又は2種
を用いること、300℃大気中の保持試験前後の曲げ強
度を夫々137kg/mm2以上、135kg/mm2
上とした以外、第1の発明と同様である。
[0013] The second invention (Claim 2), relative to the first invention, one of MgO · Al 2 O 3 (spinel) and 3Al 2 O 3 · 2SiO 2 (mullite) as a second component or 2 The same as the first invention except that the seeds are used and the bending strength before and after the holding test in the atmosphere at 300 ° C. is set to 137 kg / mm 2 or more and 135 kg / mm 2 or more, respectively.

【0014】第3の発明(請求項3)の耐熱安定性に優
れた高靱性セラミック焼結体の製造方法は、 (a) Y23とCeO2を安定化剤として含む第1成分と
してのZrO2粉末材料であって、該ZrO2粉末材料
は、ZrO2のゾルおよび/または水溶性の塩をY
23、CeO2を生ずる水溶性の塩と共に溶液の 状態で
均一に混合した後、沈澱の形で分離して得られ、Y
23、CeO2が正三角形に交わる三軸にそれぞれZr
2、YO1.5、CeO2のmol%を表示した三角座標
において、 点A(ZrO2 87.5mol%、YO1.5 12mo
l%、CeO2 0.5mol%) 点B(ZrO2 95.5mol%、YO1.5 4mol
%、CeO2 0.5mol%) 点C(ZrO2 95.5mol%、YO1.5 2mol
%、CeO2 2.5mol%) 点D(ZrO2 85.0mol%、YO1.5 2mol
%、CeO2 13.0mol%) で示された特定4組成点を結ぶ点で囲まれた範囲内の組
成にあるZrO2粉末材料に対し、 (b) 第2成分として、Al23、MgO・Al23(ス
ピネル)、3Al23・2SiO2(ムライト)から選
ばれた1種又は2種以上との粉末を合計で1〜70内部
重量%の範囲で含む混合粉末を (c) 温度1100℃以上1600℃以下で熱間プレス法
あるいは熱間静水圧プレス法で、 (d) 含まれる正方晶ジルコニアの結晶粒子の平均粒子径
が2μm以下であり、焼結体のかさ密度が理論密度の9
9%以上であり、かつ300℃大気中に3000時間保
持試験後の焼結体に含まれるジルコニアの単斜晶量が3
%以下となるように焼結することを特徴とする。
The method for producing a high toughness ceramic sintered body excellent in heat resistance stability according to the third aspect of the invention (claim 3) is (a) as a first component containing Y 2 O 3 and CeO 2 as stabilizers. ZrO 2 powder material, wherein the ZrO 2 powder material comprises a ZrO 2 sol and / or a water-soluble salt.
2 O 3 and CeO 2 are uniformly mixed with a water-soluble salt in the form of a solution and then separated in the form of a precipitate to obtain Y.
2 O 3 and CeO 2 each have Zr on the three axes intersecting the equilateral triangle.
On the triangular coordinate showing the mol% of O 2 , YO 1.5 , and CeO 2 , the point A (ZrO 2 87.5 mol%, YO 1.5 12mo
1%, CeO 2 0.5 mol%) Point B (ZrO 2 95.5 mol%, YO 1.5 4 mol
%, CeO 2 0.5 mol%) Point C (ZrO 2 95.5 mol%, YO 1.5 2 mol
%, CeO 2 2.5 mol%) Point D (ZrO 2 85.0 mol%, YO 1.5 2 mol
%, CeO 2 13.0 mol%) for the ZrO 2 powder material having a composition within the range surrounded by the points connecting the four specific composition points, (b) as the second component, Al 2 O 3 , A mixed powder containing a powder of one or more selected from MgO.Al 2 O 3 (spinel) and 3Al 2 O 3 .2SiO 2 (mullite) in a total amount of 1 to 70 internal weight% ( c) Hot pressing method or hot isostatic pressing method at a temperature of 1100 ° C. or more and 1600 ° C. or less, (d) the average particle size of tetragonal zirconia crystal particles contained is 2 μm or less, and the bulk density of the sintered body is Is the theoretical density of 9
9% or more, and the amount of zirconia monoclinic crystal contained in the sintered body after the holding test at 300 ° C. in the atmosphere for 3000 hours is 3
It is characterized in that it is sintered so as to be less than or equal to%.

【0015】[0015]

【作用】本発明の耐熱安定性に優れた高靱性セラミック
焼結体は、後述する実施例の焼結体の強度、破壊靱性
値、熱劣化試験結果を参照すれば明らかなように、極め
て高強度でしかも同時に熱安定性に著しく優れる。
The high toughness ceramic sintered body of the present invention, which is excellent in heat stability, has an extremely high strength as can be seen by referring to the strength, fracture toughness value and heat deterioration test result of the sintered body of Examples described later. It is strong and at the same time has excellent thermal stability.

【0016】従って、Y23−ZrO2系の部分安定化
ジルコニア焼結体が不安定とされる200〜400℃の
温度領域における長時間の熱劣化試験後もジルコニア結
晶相の変化及び強度劣化も殆ど無い。すなわち、300
℃大気中に3000時間保持試験後の焼結体に含まれる
ジルコニアの単斜晶量が3%以下でありかつ3点曲げ強
度が147kg/mm2以上(請求項1)ないし135
kg/mm2以上(請求項2)であり、最高約200k
g/mm2にも達する。
Therefore, even after a long-term thermal deterioration test in the temperature range of 200 to 400 ° C. where the Y 2 O 3 —ZrO 2 system partially stabilized zirconia sintered body is unstable, the change and strength of the zirconia crystal phase are obtained. Almost no deterioration. That is, 300
The monoclinic crystal content of zirconia contained in the sintered body after the 3000 hour holding test in the atmosphere is 3% or less and the three-point bending strength is 147 kg / mm 2 or more (Claim 1) to 135.
It is more than kg / mm 2 (claim 2), and the maximum is about 200k.
It even reaches g / mm 2 .

【0017】これは第1にY23とCeO2の両者の同
時添加によって安定化された正方晶ジルコニアの結晶構
造が従来のY23のみによって安定化された正方晶ジル
コニアよりもジルコニアの高温安定相である立方晶の結
晶構造により近くなるので、正方晶ジルコニア自体の安
定性が高まったためであると考えられる。
This is because the crystal structure of tetragonal zirconia stabilized by simultaneous addition of both Y 2 O 3 and CeO 2 is higher than that of conventional tetragonal zirconia stabilized by Y 2 O 3 alone. It is thought that this is because the stability of the tetragonal zirconia itself is increased because it is closer to the crystal structure of cubic crystal which is a high temperature stable phase.

【0018】第2に、主成分であるジルコニアよりも高
弾性なAl23等の第2成分の添加によって、ZrO2
粒界あるいは周囲に高弾性物質が存在する微細組織とな
った。
Secondly, by adding a second component such as Al 2 O 3 having a higher elasticity than that of zirconia as the main component, ZrO 2 is added.
It became a fine structure in which highly elastic substances existed at or around the grain boundaries.

【0019】すなわち、ZrO2粒子が、周囲の高弾性
物質に押さえ込まれた形となり、体積膨張を伴う正方晶
→単斜晶相転移にもとづく熱劣化反応が生じにくくなっ
たと考えられる。
In other words, it is considered that the ZrO 2 particles were pressed into the surrounding high elasticity material, and the thermal deterioration reaction based on the tetragonal → monoclinic phase transition accompanied by volume expansion did not easily occur.

【0020】第3に、熱間プレス法あるいは熱間静水圧
プレス法等の加圧焼結により、焼結体は一段と緻密化さ
れた為、体積膨張を伴う正方晶→単斜晶相転移(熱劣化
反応)が生じにくくなったものと考えられる。
Thirdly, the sintered body is further densified by pressure sintering such as hot pressing or hot isostatic pressing, so that the tetragonal to monoclinic phase transition accompanied by volume expansion ( It is considered that the heat deterioration reaction) is less likely to occur.

【0021】焼結体の強度についてみると、本発明の焼
結体では3点曲げ強度が149kg/mm2以上ないし
137kg/mm2以上であり、Y23を安定化剤とし
て含むY23−ZrO2系、及びこれにアルミナ等の第
2成分を含有するY23−ZrO2−Al23系、Y2
3とCeO2を安定化剤として含むY23−CeO2−Z
rO2系及びこれにアルミナ等の第2成分を含有するY2
3−CeO2−ZrO2−Al23系、CeO2を安定化
剤として含むCeO2−ZrO2系、及びこれにアルミナ
等の分散成分を含有するCeO2−ZrO2−Al23
の常圧焼結体と比較して一段と高強度であることはもと
より、Y23−ZrO2系、Y23−CeO2−ZrO2
系、CeO2−ZrO2系のAl23等の第2成分を含有
しない加圧焼結体と比較してもより一層高強度である。
With respect to the strength of the sintered body, the three-point bending strength of the sintered body of the present invention is 149 kg / mm 2 or more or 137 kg / mm 2 or more, and Y 2 O 3 containing Y 2 O 3 as a stabilizer is used. O 3 —ZrO 2 system, Y 2 O 3 —ZrO 2 —Al 2 O 3 system containing a second component such as alumina, Y 2 O
Y 2 O 3 containing 3 and CeO 2 as a stabilizer -CeO 2 -Z
rO 2 system and Y 2 containing a second component such as alumina
O 3 -CeO 2 -ZrO 2 -Al 2 O 3 system, CeO 2 -ZrO 2 system containing CeO 2 as a stabilizer, and CeO 2 -ZrO 2 -Al 2 O containing a dispersion component such as alumina to 3 system as compared to the normal pressure sintering of well it is further high strength, Y 2 O 3 -ZrO 2 system, Y 2 O 3 -CeO 2 -ZrO 2
The strength is even higher than that of a pressure-sintered body that does not contain a second component such as a CeO 2 -ZrO 2 -based Al 2 O 3 system.

【0022】これは第1に熱間プレス法あるいは熱間静
水圧プレス法等の加圧焼結により、焼結体中に含まれる
気孔等の欠陥が除去されるとともに一層緻密化した。緻
密体では体積膨張をともなうような、ZrO2粒の正方
晶→単斜晶相転移が生じにくいと考えられる。
First, defects such as pores contained in the sintered body were removed and further densified by pressure sintering such as hot pressing or hot isostatic pressing. It is considered that a dense body is unlikely to undergo a tetragonal → monoclinic phase transition of ZrO 2 grains accompanied by volume expansion.

【0023】すなわち、焼結体が破壊される際に応力集
中部分で生じる正方晶から単斜晶への相転移現象におい
て、この相転移を生じさせるのに必要な破壊エネルギー
が増大する為と考えられる。
That is, it is considered that, in the phenomenon of the phase transition from tetragonal to monoclinic which occurs in the stress concentration portion when the sintered body is destroyed, the fracture energy required to cause this phase transition increases. To be

【0024】第2に、主成分であるZrO2よりも高弾
性なAl23等の第2成分の添加と加圧焼結の相乗効果
により、正方晶ZrO2粒界及びその周囲に高弾性物質
が存在する緻密な微細組織となった。これにより破壊時
に正方晶ジルコニア粒子が単斜晶ジルコニアへ相転移す
るのをさまたげられるとともに焼結体全体の弾性率も上
昇し、破壊エネルギーが増大した為と考えられる。
Secondly, due to the synergistic effect of the addition of the second component such as Al 2 O 3 having a higher elasticity than ZrO 2 which is the main component, and the pressure sintering, the tetragonal ZrO 2 grain boundary and its surroundings are highly enhanced. It became a fine microstructure with the presence of elastic material. It is considered that this prevents the tetragonal zirconia particles from undergoing phase transition to monoclinic zirconia at the time of fracture and also increases the elastic modulus of the entire sintered body, thereby increasing fracture energy.

【0025】また別の作用として、第2成分の存在によ
り硬度も改善され、耐摩耗性も優れたものとなった。
As another function, the presence of the second component improves the hardness and the abrasion resistance.

【0026】第3の作用として、第2成分の存在により
焼結性が改善され、より高密度・微細結晶粒径の焼結体
が得られ、耐熱安定性のより一層の増大に寄与する。
As a third action, the presence of the second component improves the sinterability, obtains a sintered body having a higher density and a fine crystal grain size, and contributes to a further increase in heat stability.

【0027】本発明ではジルコニアの安定化剤としてY
23及びCeO2を必須とする。Y23、CeO2、Zr
2の3成分の配合量は、図1に示すような三角座標に
おいて、点A、B、C、Dを結ぶ線で囲まれた範囲内で
選ぶ。この範囲内であると正方晶の安定性が特に高く耐
熱性に優れるが、この範囲を外れると大幅に耐熱性が低
下する傾向を示し、また機械的特性も劣ったものとなる
傾向がある。すなわち、点A(YO1.5 12mol
%)よりもYO1.5を多く含むと靱性が低下し、点B
(YO1.5 4mol%)よりもYO1.5が少ない場合に
は、耐熱安定性が失われる。点C(YO1.5 2mol
%、CeO2 2.5mol%)よりもYO1.5及びCe
2が少ない場合には、耐熱安定性が乏しくなる。ま
た、点D(CeO213.0mol%)よりもCeO2
多い場合には充分な機械的強度が得られない。
In the present invention, Y is used as a stabilizer for zirconia.
2 O 3 and CeO 2 are essential. Y 2 O 3 , CeO 2 , Zr
The blending amounts of the three components of O 2 are selected within the range surrounded by the line connecting points A, B, C and D on the triangular coordinates as shown in FIG. Within this range, the stability of the tetragonal crystal is particularly high and the heat resistance is excellent, but outside this range, the heat resistance tends to be significantly reduced and the mechanical properties tend to be inferior. That is, point A (YO 1.5 12 mol
Containing more YO 1.5 than%) the toughness is lowered, the point B
When YO 1.5 is less than (YO 1.5 4 mol%), heat stability is lost. Point C (YO 1.5 2 mol
%, CeO 2 2.5 mol%) and YO 1.5 and Ce
If the O 2 content is low, the heat stability becomes poor. Further, when CeO 2 is more than the point D (CeO 2 13.0 mol%), sufficient mechanical strength cannot be obtained.

【0028】図1に関し、表4に示す参考例を上記3成
分の組成に関し参照されたい。
With reference to FIG. 1, see the reference example shown in Table 4 for the composition of the above three components.

【0029】本発明をより効果あるものとするために
は、上記3成分の配合量を図面に示すような三角座標に
おいて、 点A(ZrO2 87.5mol%、YO1.5 12mo
l%、CeO2 0.5mol%) 点H(ZrO2 94.5mol%、YO1.5 4mol
%、CeO2 1.5mol%) 点G(ZrO2 94.5mol%、YO1.5 2.5m
ol%、CeO2 3.0mol%) 点F(ZrO2 89mol%、YO1.5 2mol%、
CeO2 9mol%) 点D(ZrO2 85mol%、YO1.5 2mol%、
CeO2 13mol%) を結ぶ実線で囲まれた範囲内に選択するとよい。なお、
23の一部をNd23、Yb23、La23、Er2
3等の希土類金属酸化物で置換することも可能であ
る。
In order to make the present invention more effective, the compounding amounts of the above three components are represented by the points A (ZrO 2 87.5 mol%, YO 1.5 12 mo) in the triangular coordinates as shown in the drawing.
1%, CeO 2 0.5 mol%) Point H (ZrO 2 94.5 mol%, YO 1.5 4 mol
%, CeO 2 1.5 mol%) Point G (ZrO 2 94.5 mol%, YO 1.5 2.5 m
ol%, CeO 2 3.0 mol%) F (ZrO 2 89 mol%, YO 1.5 2 mol%,
CeO 2 9 mol%) Point D (ZrO 2 85 mol%, YO 1.5 2 mol%,
CeO 2 ( 13 mol%) is preferably selected within the range surrounded by a solid line. In addition,
Part of Y 2 O 3 is Nd 2 O 3 , Yb 2 O 3 , La 2 O 3 , Er 2
Substitution with a rare earth metal oxide such as O 3 is also possible.

【0030】本発明では、Al23、MgO・Al23
(スピネル)、3Al23・2SiO2(ムライト)か
ら選ばれた1種又は2種以上を第2成分として1〜70
内部重量%含む必要がある。第2成分の添加量を限定し
た理由は、1内部重量%以下では添加の効果が少なく、
70内部重量%以上では靱性あるZrO2の含有量を低
めるからである。
In the present invention, Al 2 O 3 , MgO.Al 2 O 3
1 to 70 or more selected from (spinel) and 3Al 2 O 3 .2SiO 2 (mullite) as the second component.
Must contain internal weight percent. The reason why the addition amount of the second component is limited is that the effect of addition is small when the content is 1% by weight or less
This is because the content of tough ZrO 2 is lowered when the content is 70% by weight or more.

【0031】本発明をより効果あるものとするためには
第2成分の添加量を5〜50内部重量%の範囲に選択す
るとよい。
In order to make the present invention more effective, it is advisable to select the addition amount of the second component in the range of 5 to 50% by weight.

【0032】なお、この範囲内では第2成分は主として
分散成分として作用すると考えられるが、これより第2
成分が多くなると第2成分が連続相を成す場合がある。
Within this range, the second component is considered to act mainly as a dispersive component.
When the amount of the component increases, the second component may form a continuous phase.

【0033】本発明の製造方法は、通常次のように実施
される。Y23及びCeO2を安定化剤として含むZr
2粉末材料(但し、Y23は1モル%以上)に対し、
第2成分としてAl23、MgO・Al23(スピネ
ル)、3Al23・2SiO2(ムライト)から選ばれ
た1種又は2種以上の粉末を合計で1〜70内部重量%
の範囲で加えた粉末を粉末混合した混合粉末または予備
成形体を温度1100℃〜1600℃の範囲でホットプ
レス(HP)、またはホットアイソスタティックプレス
(HIP)にて加圧焼結する。
The manufacturing method of the present invention is usually carried out as follows. Zr containing Y 2 O 3 and CeO 2 as stabilizers
O 2 powder material (however, Y 2 O 3 is 1 mol% or more),
As a second component, 1 to 70 internal weight% of one or two or more kinds of powder selected from Al 2 O 3 , MgO · Al 2 O 3 (spinel) and 3Al 2 O 3 · 2SiO 2 (mullite) are added in total.
The mixed powder obtained by powder-mixing the powders added in the above range or a preformed body is pressure-sintered by a hot press (HP) or a hot isostatic press (HIP) in a temperature range of 1100 ° C to 1600 ° C.

【0034】ZrO2粉末としては、比表面積10m2
g以上、好ましくは15m2/g以上、より好ましくは
20m2/g以上のものを用いる。
The ZrO 2 powder has a specific surface area of 10 m 2 /
g or more, preferably 15 m 2 / g or more, more preferably 20 m 2 / g or more.

【0035】加圧焼結の際上記温度としたのは、温度が
1100℃未満では十分に高密度な焼結体が得られず、
1600℃を超えると焼結体中のジルコニア結晶粒子が
粒成長し、2μm以上となり好ましくないためである。
In the pressure sintering, the above temperature is set because the temperature is less than 1100 ° C., a sufficiently high density sintered body cannot be obtained.
This is because if the temperature exceeds 1600 ° C., the zirconia crystal particles in the sintered body grow and the particle size becomes 2 μm or more, which is not preferable.

【0036】HP法の場合は50〜300kg/cm2
の圧力下でHIP法の場合は常圧焼結、ガス加圧焼結、
ホットプレス等で予め相対密度95%以上の非通気性焼
結体を得たのち、熱間静水圧プレス内にて1000kg
/cm2以上のガス圧力、1100℃以上1600℃以
下の温度条件にて0.5hr以上の焼結を行うことが好
適である。あるいはカプセル中に混合粉末を充填し、そ
のまま熱間静水圧プレス処理する方法もまた好適であ
る。
In the case of HP method, 50 to 300 kg / cm 2
In the case of the HIP method under normal pressure, normal pressure sintering, gas pressure sintering,
After obtaining a non-breathable sintered body with a relative density of 95% or more in advance by hot pressing etc., 1000 kg in a hot isostatic press
It is preferable to perform sintering for 0.5 hr or more under a gas pressure of 1 / cm 2 or more and a temperature condition of 1100 ° C. or more and 1600 ° C. or less. Alternatively, a method in which the mixed powder is filled in a capsule and hot isostatic pressing is performed as it is is also suitable.

【0037】本発明の部分安定化ジルコニアはZrO2
のゾルおよび/または水溶性の塩を安定化剤の水溶性の
塩と共に溶液の状態で均一に混合した後沈澱の形で分離
して得られた原料を用いた場合、ZrO2に安定化剤が
均一に分散し、極めて微粒子からなる易焼結性の粉体を
原料とすることができる。この結果、微粒で均一な組成
を有し、マイクロポアの殆どない焼結体が得られ、強度
及び靱性についても所期の値が得られる。
The partially stabilized zirconia of the present invention is ZrO 2
When the raw material obtained by uniformly mixing the sol and / or the water-soluble salt of the above with the water-soluble salt of the stabilizer in the form of a solution and then separating in the form of a precipitate is used, ZrO 2 It is possible to use as a raw material a powder that is uniformly dispersed and that is made of extremely fine particles and that is easily sintered. As a result, a sintered body having fine particles and a uniform composition and almost no micropores can be obtained, and desired values can be obtained for strength and toughness.

【0038】なお、本発明の高靱性セラミック焼結体
は、耐熱安定性を高めるため焼結体の相対密度が本実施
例にあるように99%以上であり、より好ましくは9
9.5%以上がよい。また、相対密度が高いほど焼結体
に含まれる正方晶ジルコニアの安定性が高まり、耐熱安
定性に優れ、強度及び靱性に優れると共にその熱劣化を
生じない。
In the high toughness ceramic sintered body of the present invention, the relative density of the sintered body is 99% or more, and more preferably 9%, as in the present embodiment, in order to enhance the heat resistance stability.
9.5% or more is preferable. In addition, the higher the relative density, the higher the stability of the tetragonal zirconia contained in the sintered body, the excellent heat resistance stability, the excellent strength and toughness, and the less thermal deterioration thereof.

【0039】なお、焼結後の状態では、単斜晶はジルコ
ニア中に実質上含まれない。熱劣化試験後の単斜晶は3
%以下であるが、さらに実質的に0%のものが得られ
る。
In the state after sintering, monoclinic crystals are substantially not contained in zirconia. The number of monoclinic crystals after the heat deterioration test is 3
% Or less, but substantially 0% is obtained.

【0040】本発明の組成を有するジルコニア焼結体は
主として正方晶より成る部分安定化ジルコニアであるの
で、高強度・高靱性を示す。本来正方晶は準安定相であ
るため試料表面の研削によって一部が単斜晶へ転移を生
じ表面相の残留圧縮応力により焼結体の強化に寄与す
る。この強化の程度は研削による表面粗さと焼結体の粒
径に依存している。このため、本発明による主として正
方晶より成る部分安定化ジルコニアとは、X線回折によ
る結晶相の測定において鏡面状態で正方晶系を少なくと
も50%以上含むジルコニアをいう。正方晶系が50%
以下になると、靱性が低下するので正方晶系は50%以
上含まれることが必要である。
Since the zirconia sintered body having the composition of the present invention is a partially stabilized zirconia mainly composed of tetragonal crystals, it exhibits high strength and high toughness. Since the tetragonal phase is a metastable phase by nature, a part of the sample surface is transformed into a monoclinic structure by grinding, and the residual compressive stress of the surface phase contributes to strengthening of the sintered body. The degree of this strengthening depends on the surface roughness due to grinding and the grain size of the sintered body. Therefore, the partially stabilized zirconia mainly composed of tetragonal crystals according to the present invention means zirconia containing at least 50% or more of tetragonal system in a mirror state in the measurement of the crystal phase by X-ray diffraction. Tetragonal system is 50%
If it is less than the above range, the toughness decreases, so it is necessary that the content of the tetragonal system is 50% or more.

【0041】本発明の焼結体は、焼結体に含まれる正方
晶ジルコニアの平均結晶粒子径が2μm以下であること
が必要である。好ましくは1μm以下であることが良
い。さらに好ましくは0.5μm以下が良い。平均結晶
粒子径が2μmを越えると単斜晶に変わり靱性が低下す
る。また、正方晶ジルコニアの平均粒子径が小さいほ
ど、安定性が向上し耐熱性に優れたものとなる。
In the sintered body of the present invention, the average crystal grain size of tetragonal zirconia contained in the sintered body needs to be 2 μm or less. It is preferably 1 μm or less. More preferably, it is 0.5 μm or less. If the average crystal grain size exceeds 2 μm, it changes to monoclinic and the toughness decreases. Further, the smaller the average particle size of the tetragonal zirconia, the higher the stability and the better the heat resistance.

【0042】本発明において、ジルコニアの平均結晶粒
子径はCuKα線を用いたX線回折法で行い、式として D=0.89λ/(B−b)cosθ より求めた。ここでDは求めるジルコニアの結晶粒子
径、λはCuKα線の波長で1.541Å、Bはジルコ
ニアの単斜晶(111)面あるいは正方晶(111)面
の回折線の半減値幅(ラジアン)のうち大きい方の値、
bは内部標準として添加する結晶粒子径3000Å以上
のα石英の(101)面の半減値幅(ラジアン)、θは
ジルコニアの半減値幅の測定に用いた回折線の回折角2
θの1/2の値である。
In the present invention, the average crystal grain size of zirconia was determined by an X-ray diffraction method using CuKα rays, and was obtained from the equation D = 0.89λ / (Bb) cosθ. Here, D is the crystal grain size of the zirconia to be obtained, λ is the wavelength of the CuKα line of 1.541Å, and B is the half-value width (radian) of the diffraction line of the monoclinic (111) plane or tetragonal (111) plane of zirconia. The larger value,
b is the half-value width (radian) of the (101) plane of α-quartz with a crystal grain size of 3000 Å or more, which is added as an internal standard, and θ is the diffraction angle 2 of the diffraction line used to measure the half-value width of zirconia.
It is a value of 1/2 of θ.

【0043】本発明のジルコニア焼結体のZrO2は、
その一部以上全部までHfO2によって置換しても、全
く同様の特性を示すものである。
ZrO 2 of the zirconia sintered body of the present invention is
Even if a part or more of them are replaced with HfO 2 , the same characteristics are exhibited.

【0044】[0044]

【実施例】以下に本発明の実施例を説明し、本発明の効
果を明らかにする。
EXAMPLES Examples of the present invention will be described below to clarify the effects of the present invention.

【0045】(実施例1) 25m2/gの比表面積を有する純度99%以上の単斜
晶系ジルコニアに対し、安定化剤としてY23、CeO
2を表1の割合で添加し、これに第2成分として、平均
粒径0.3μm、純度99.9%のAl23、平均粒径
0.3μm、純度99.9%のMgO・Al23(スピ
ネル)、比表面積28m2/g、Al23/SiO2比が
71.8/28.2の合成ムライト(3Al23・2S
iO2)を表1の割合で加え、湿式混合後乾燥させた粉
末を200kg/cm2、1400〜1500℃の条件
で、ホットプレス法により約1時間焼成した。
Example 1 For monoclinic zirconia having a specific surface area of 25 m 2 / g and a purity of 99% or more, Y 2 O 3 and CeO were used as stabilizers.
2 was added at the ratio shown in Table 1, and as the second component, Al 2 O 3 having an average particle size of 0.3 μm and a purity of 99.9%, MgO having an average particle size of 0.3 μm and a purity of 99.9% were added. Al 2 O 3 (spinel), a specific surface area of 28m 2 / g, Al 2 O 3 / synthetic mullite SiO 2 ratio is 71.8 / 28.2 (3Al 2 O 3 · 2S
iO 2 ) was added at the ratio shown in Table 1, and the powder obtained by wet-mixing and then drying was fired under a condition of 200 kg / cm 2 and 1400-1500 ° C. for about 1 hour by a hot pressing method.

【0046】得られた焼結体に含まれる正方晶ジルコニ
アの平均結晶粒子は、総て2μm以下であった。得られ
た焼結体は、3×4×40mmに切断研磨加工し、嵩密
度、結晶相、抗折強度、及び破壊靱性並びに熱劣化試験
後の焼結体表面の結晶相及び抗折強度を測定しその結果
を表1に示す。
The average crystal grains of tetragonal zirconia contained in the obtained sintered body were all 2 μm or less. The obtained sintered body was cut and polished to 3 × 4 × 40 mm, and the bulk density, crystal phase, bending strength, fracture toughness, and crystal phase and bending strength of the surface of the sintered body after the heat deterioration test were performed. The results are shown in Table 1.

【0047】なお、各物性の測定方法として、抗折強度
はJIS規格に従い、3×4×40mm試料片を用い、
スパン30mm、クロスヘッド速度0.5mm/min
の3点曲げにより10本の平均値を示した。
As a method of measuring each physical property, a bending strength of 3 × 4 × 40 mm sample piece was used in accordance with JIS standard.
Span 30mm, Crosshead speed 0.5mm / min
The average value of 10 pieces was shown by 3-point bending.

【0048】破壊靱性は、マイクロインデンテーション
法により、荷重50kgで圧痕を入れて測定を行い、K
IC値は新原らの式を用いた。
The fracture toughness was measured by the microindentation method with an indentation with a load of 50 kg.
The IC value used the formula of Niihara et al.

【0049】結晶相の定量測定は、X線回折法によって
行った。すなわち、ダイヤモンドペーストにて鏡面研磨
した試料の単斜晶の(111)面と(111)面の積分
強度IMと正方晶の(111)面及び立方晶の(11
1)面の積分強度IT、ICより単斜晶量は、
The quantitative measurement of the crystal phase was carried out by the X-ray diffraction method. That is, the integrated intensity IM of the monoclinic (111) plane and the (111) plane of the sample mirror-polished with diamond paste, and the tetragonal (111) plane and cubic (11)
1) From the integrated strengths IT and IC of the plane, the amount of monoclinic crystal is

【0050】[0050]

【数1】 [Equation 1]

【0051】の式により決定した。次に焼結体を5μm
以下に微粉砕し、X線回折により同条件で単斜晶ZrO
2と立方晶ZrO2の積分強度IM*及びIC*を求めた。
この微粉砕の過程で焼結体中に存在していた正方晶Zr
2は機械的応力によりすべて単斜晶ZrO2へ変態する
と考えられる。よって立方晶量は、
It was determined by the formula: Next, the sintered body is 5 μm
Finely pulverized into the following, and monoclinic ZrO 2 under the same conditions by X-ray diffraction.
The integrated intensities IM * and IC * of 2 and cubic ZrO 2 were determined.
Tetragonal Zr that was present in the sintered body during this pulverization process
It is considered that O 2 is transformed into monoclinic ZrO 2 by mechanical stress. Therefore, the cubic amount is

【0052】[0052]

【数2】 [Equation 2]

【0053】により決定し、これより正方晶は、 (正方晶量)=100−{(単斜晶量)+(立方晶
量)} により決定した。
From this, the tetragonal crystal was determined by (tetragonal crystal amount) = 100-{(monoclinic crystal amount) + (cubic crystal amount)}.

【0054】熱劣化試験は、300℃の電気炉内に30
00時間保持した後、試料を取り出し物性を測定した。
熱劣化試験後の単斜晶量は、試料表面のX線回折により
同様に上記式(1)より求めた。
The heat deterioration test was conducted in an electric furnace at 300 ° C. for 30 hours.
After holding for 00 hours, the sample was taken out and the physical properties were measured.
The amount of monoclinic crystals after the heat deterioration test was similarly obtained from the above formula (1) by X-ray diffraction of the sample surface.

【0055】[0055]

【表1】 [Table 1]

【0056】本実施例では、安定化剤としてYO1.5
3mol%、CeO2を6mol%添加し、これに種々
の第2成分を30重量%加えたものである。
In this example, 3 mol% of YO 1.5 and 6 mol% of CeO 2 were added as stabilizers, and 30 wt% of various second components were added thereto.

【0057】試料No.1〜3はAl23、MgO・A
23(スピネル)、3Al23・2SiO2(ムライ
ト)を単独で30重量%添加したものである。
Sample No. 1 to 3 are Al 2 O 3 and MgO · A
30% by weight of 1 2 O 3 (spinel) and 3Al 2 O 3 .2SiO 2 (mullite) were added alone.

【0058】表1から明らかなように、いずれも相対密
度、破壊靱性及び曲げ強度が高く、熱劣化試験によって
も単斜晶への転移が見られず、曲げ強度も殆ど劣化しな
い。
As is clear from Table 1, the relative densities, fracture toughness and bending strength are all high, no transition to monoclinic crystals is observed by the heat deterioration test, and bending strength is hardly deteriorated.

【0059】(実施例2) 得られる粉末が表2の割合になるように、純度99.9
%のオキシ塩化ジルコニウムの水溶液の加水分解によっ
て得られたジルコニアゾル溶液に、純度99.9%の塩
化イットリウム、純度99.9%の塩化セリウムを加
え、均一に混合した溶液をアルカリで凝結させ、水酸化
物の沈澱とし、これを脱水乾燥し900℃にて仮焼して
部分安定化ジルコニア粉末を得た。この粉末は25m2
/gの比表面積を示す。
Example 2 The purity of the obtained powder was 99.9 so that the ratio shown in Table 2 was obtained.
% Zirconia sol solution obtained by hydrolysis of an aqueous solution of zirconium oxychloride, yttrium chloride having a purity of 99.9% and cerium chloride having a purity of 99.9% are added, and the uniformly mixed solution is condensed with an alkali, The precipitate of hydroxide was dehydrated, dried, and calcined at 900 ° C. to obtain a partially stabilized zirconia powder. 25m 2 of this powder
The specific surface area of / g is shown.

【0060】この粉末に、平均粒径0.3μm、純度9
9.9%のAl23を、第2成分として表2の割合で加
え、湿式混合後乾燥させた粉末を、1.5ton/cm
2の圧力で等方的に成形し、1350〜1500℃の温
度で2時間予備焼結し、理論密度の95%以上の非通気
性焼結体を得た。この焼結体をArガス雰囲気中で20
00kg/cm2の圧力下1450〜1600℃で1時
間、熱間静水圧プレス内にて焼成を行った。得られた焼
結体に含まれる正方晶ジルコニアの平均粒子は総て2μ
m以下であった。
This powder had an average particle size of 0.3 μm and a purity of 9
9.9% Al 2 O 3 was added as a second component in a ratio shown in Table 2, wet-mixed and dried to obtain a powder of 1.5 ton / cm 2.
It was isotropically molded under a pressure of 2 and pre-sintered at a temperature of 1350 to 1500 ° C. for 2 hours to obtain a non-breathable sintered body having a theoretical density of 95% or more. This sintered body is placed in an Ar gas atmosphere for 20
Firing was performed in a hot isostatic press at 1450 to 1600 ° C. for 1 hour under a pressure of 00 kg / cm 2 . The average particles of tetragonal zirconia contained in the obtained sintered body were all 2 μm.
It was m or less.

【0061】得られた焼結体は実施例1と同様にして嵩
密度、結晶相、抗折強度、及び破壊靱性並びに熱劣化試
験後の焼結体表面の結晶及び抗折強度を測定しその結果
を表2に示した。
The obtained sintered body was measured for bulk density, crystal phase, flexural strength, fracture toughness, and crystal and flexural strength on the surface of the sintered body after the heat deterioration test in the same manner as in Example 1. The results are shown in Table 2.

【0062】[0062]

【表2】 [Table 2]

【0063】表2において、試料No.4〜8は安定化
剤としてYO1.5 4mol%とCeO2 4mol%を
添加し、これに第2成分としてAl23を5〜70重量
%加えたものである。
In Table 2, sample No. Nos. 4 to 8 are obtained by adding YO 1.5 4 mol% and CeO 2 4 mol% as stabilizers and adding Al 2 O 3 as 5 to 70 wt% as a second component.

【0064】いずれの試料も相対密度、破壊靱性及び抗
折強度共に高い数字を示し、さらに熱劣化試験後におい
ても単斜晶への転移が測定されず、抗折強度も殆ど劣化
せず本発明の効果が確認された。なお、試料No.9は
安定化剤としてそれぞれ4mol%のYO1.5及びCe
2を添加し、第2成分として本発明の組成範囲以上の
Al23を添加した比較例であるが、相対密度は高いも
のの破壊靱性、曲げ強度に充分な値が得られない。
All of the samples showed high relative density, fracture toughness, and bending strength, and after the thermal deterioration test, the transition to monoclinic crystals was not measured, and the bending strength was hardly deteriorated. The effect of was confirmed. Sample No. 9 is a stabilizer of 4 mol% of YO 1.5 and Ce, respectively.
This is a comparative example in which O 2 is added and Al 2 O 3 in the composition range of the present invention or more is added as the second component. However, although the relative density is high, sufficient values for fracture toughness and bending strength cannot be obtained.

【0065】試料No.10〜16では、安定化剤とし
てYO1.5を6mol%と一定にしCeO2を無添加の場
合と添加した場合について、第2成分の添加量を変えた
ものである。CeO2を全く添加しない試料No.10
〜12では、第2成分を添加しても、熱劣化が甚だし
く、熱劣化試験後に単斜晶へ転移してしまって、曲げ強
度が著しく劣化してしまう。試料No.13は、安定化
剤としてCeO2 1.5mol%添加し、第2成分を
全く添加しない比較例であるが、同様に熱劣化が生じ
る。
Sample No. In Nos. 10 to 16, YO 1.5 as a stabilizer was kept constant at 6 mol%, and the addition amount of the second component was changed with and without addition of CeO 2 . Sample No. in which CeO 2 was not added at all. 10
In Nos. 12 to 12, even if the second component was added, the thermal deterioration was so great that it was transformed into a monoclinic crystal after the thermal deterioration test, and the bending strength was significantly deteriorated. Sample No. No. 13 is a comparative example in which 1.5 mol% of CeO 2 is added as a stabilizer and the second component is not added at all, but thermal deterioration similarly occurs.

【0066】これに対して、試料No.14〜16は安
定化剤としてY23及びCeO2を含み、第2成分とし
てAl23を10〜40重量%添加した実施例である
が、いずれも破壊靱性、曲げ強度共に高い値が得られ、
熱劣化試験によっても単斜晶への転移が起こらず強度の
劣化が見られないことが確認された。
On the other hand, sample No. Nos. 14 to 16 are examples containing Y 2 O 3 and CeO 2 as stabilizers and adding 10 to 40% by weight of Al 2 O 3 as a second component, but both have high fracture toughness and high bending strength. Is obtained,
It was also confirmed by the heat deterioration test that the transition to the monoclinic crystal did not occur and the strength was not deteriorated.

【0067】また、本実施例の試料のうち、No.5〜
6、10について、ロックウエルスーパーフィッシャル
硬度計を用いて荷重45kgで硬度を測定しその結果を
表3に示した。
Of the samples of this example, No. 5-
For Nos. 6 and 10, the hardness was measured with a load of 45 kg using a Rockwell Superficial hardness meter, and the results are shown in Table 3.

【0068】[0068]

【表3】 [Table 3]

【0069】表3より、安定化剤として4mol%のY
1.5とCeO2を添加し、さらに第2成分としてAl2
3等を添加した実施例である試料No.5〜6は、安
定化剤として6mol%のYO1.5のみを添加し、分散
成分を全く添加しない比較例である試料No.10の部
分安定化ジルコニア焼結体よりも、著しく硬度が改善さ
れていることが判る。
From Table 3, 4 mol% Y was added as a stabilizer.
O 1.5 and CeO 2 were added, and Al 2 was added as the second component.
Sample No. which is an example in which O 3 and the like are added. Sample Nos. 5 to 6 are comparative examples in which only 6 mol% of YO 1.5 was added as a stabilizer and no dispersion component was added. It can be seen that the hardness is remarkably improved over the partially stabilized zirconia sintered body of No. 10.

【0070】また表4に熱間プレス処理あるいは熱間静
水圧プレス処理を施さずに、常圧焼結した参考例試料N
o.17〜30の特性値を示す。
Further, in Table 4, reference example sample N which was sintered under normal pressure without hot pressing or hot isostatic pressing was used.
o. The characteristic values of 17 to 30 are shown.

【0071】[0071]

【表4】 [Table 4]

【0072】表4の結果より、本実施例試料の曲げ強度
および熱劣化試験後の曲げ強度の値は、常圧焼結した参
考例試料の値よりも極めて優れていることが確認され
た。
From the results in Table 4, it was confirmed that the flexural strength values of the samples of this example and the flexural strength values after the thermal deterioration test were significantly superior to those of the reference example samples sintered under normal pressure.

【0073】(実施例3) 実施例1及び実施例2の方法により調整した焼結体のう
ち試料No.1、6、15を、比較例として試料No.
10、11、13を用い、300℃の電気炉中に所定時
間保持し、熱劣化試験を行い、焼結体表面の単斜晶量を
測定し、保持時間と単斜晶量の関係を図2に示した。
Example 3 Of the sintered bodies prepared by the methods of Example 1 and Example 2, sample No. Sample Nos. 1, 6 and 15 were used as comparative examples.
Using 10, 11, 13 and holding it in an electric furnace at 300 ° C for a predetermined time, performing a thermal deterioration test, measuring the amount of monoclinic crystal on the surface of the sintered body, and showing the relationship between the holding time and the amount of monoclinic crystal. Shown in 2.

【0074】図2において、本実施例である試料No.
1、6、15は1500時間保持したにも拘らず、単斜
晶への転移が殆ど起こっていない。これに対してY23
−ZrO2系で第2成分を含まない比較例No.10、
23−ZrO2−Al23系でCeO2を含まない比較
例No.11、及びY23−CeO2−ZrO2系で第2
成分を全く添加しない比較例No.13は、300℃空
気中で保持する間に単斜晶への転移が起こり、熱劣化す
ることが判る。これより本発明の組成の高靱性セラミッ
ク焼結体は、比較例の各焼結体に比べて極めて優れた熱
安定性を示すことが確認された。
In FIG. 2, the sample No.
Although 1, 6, and 15 were held for 1500 hours, the transition to monoclinic crystals hardly occurred. On the other hand, Y 2 O 3
Comparative Example -ZrO 2 system does not include the second component No. 10,
Comparative Example does not contain CeO 2 with Y 2 O 3 -ZrO 2 -Al 2 O 3 system No. 11 and Y 2 O 3 —CeO 2 —ZrO 2 system second
Comparative example no. It can be seen that No. 13 undergoes a transition to a monoclinic crystal while being held in air at 300 ° C. and is thermally deteriorated. From this, it was confirmed that the high toughness ceramic sintered body having the composition of the present invention exhibits extremely excellent thermal stability as compared with the respective sintered bodies of Comparative Examples.

【0075】[0075]

【発明の効果】第1、2の発明(請求項1、2)の耐熱
安定性に優れた高靱性セラミック焼結体は、Y23とC
eO2を所定量安定化剤として含む主として正方晶より
成る部分安定化ジルコニアと、Al23、MgO・Al
23(スピネル)、3Al23・2SiO2(ムライ
ト)より選ばれた1種又は2種以上の第2成分(分散成
分)とから成り、熱間プレス法あるいは熱間静水圧プレ
ス法等により高密度にかつ平均2μm以下のジルコニア
結晶粒子径となるよう製造された加圧焼結体であるの
で、極めて高強度でしかも同時に熱安定性に著しく優れ
る。すなわち、強度、靱性の熱経時劣化が極めて少ない
高靱性セラミック焼結体であり、このようなジルコニア
系焼結体は従来かつてないものである。なお、加圧焼結
の効果は、そうでない常圧焼結の場合に比して通常強度
が約1.5倍増という予期せざる顕著な効果を奏する。
The high toughness ceramic sintered body excellent in heat resistance stability according to the first and second inventions (claims 1 and 2) comprises Y 2 O 3 and C.
Partially stabilized zirconia mainly composed of tetragonal crystals containing eO 2 as a stabilizer in a predetermined amount, and Al 2 O 3 and MgO.Al.
2 O 3 (spinel), 3Al 2 O 3 · 2SiO 2 become from the one or more second component selected from (mullite) (dispersion component), a hot press method or a hot isostatic pressing method Since the pressure-sintered body is manufactured to have a high density and an average zirconia crystal grain size of 2 μm or less, the strength is extremely high and at the same time the thermal stability is remarkably excellent. That is, it is a high-toughness ceramic sintered body with extremely little deterioration of strength and toughness due to heat, and such a zirconia-based sintered body has never been seen before. The effect of pressure sintering has an unexpectedly remarkable effect that the normal strength is increased by about 1.5 times as compared with the case of normal pressure sintering that is not the case.

【0076】第1、2の発明(請求項1、2)の耐熱安
定性に優れた高靱性セラミック焼結体を摺動部材として
使用する場合は、3モルY23部分安定化ジルコニア焼
結体と比較して、約10倍以上の耐摩耗性が得られる。
本発明はこのように部分安定化ジルコニア焼結体の硬度
を改善し、耐摩耗性も一段と優れるものである。さらに
主として分散成分をなす第2成分の添加により、高温に
おいて従来のジルコニア焼結体と比較し、硬度、強度、
クリープ等の機械的特性にも優れる。
When the high toughness ceramic sintered body having excellent heat resistance stability of the first and second inventions (claims 1 and 2) is used as a sliding member, 3 mol Y 2 O 3 partially stabilized zirconia firing is carried out. The wear resistance is about 10 times higher than that of the bonded body.
As described above, the present invention improves the hardness of the partially stabilized zirconia sintered body and further improves the wear resistance. Furthermore, the addition of the second component, which mainly constitutes the dispersion component, makes it possible to obtain hardness, strength, and
Excellent mechanical properties such as creep.

【0077】第1、2の発明(請求項1、2)の耐熱安
定性に優れた高靱性セラミック焼結体は、このように常
温及び高温において優れた特性を有するので、熱可塑性
樹脂やセラミックスの射出成型機用の耐摩耗性セラミッ
クススクリュウ、真ちゅうロッドや銅管シェル等の熱間
押出しダイス、ガスタービン部品、ディーゼルエンジン
部品等の内燃機関、ポンプ部品、工業用カッター、切削
工具、粉砕機械用部品、摺動部材、人工骨、人工歯、鋳
造セラミックによる人工歯のブリッジ芯材料、人工歯
根、ゲージ等の機械工具、固体電解質等への応用及び実
用化と、性能向上に大きく寄与するものである。
The high toughness ceramic sintered body of the first and second inventions (Claims 1 and 2) having excellent heat resistance stability has excellent characteristics at room temperature and high temperature as described above. Wear-resistant ceramics screws for injection molding machines, hot extrusion dies such as brass rods and copper tube shells, gas turbine parts, internal combustion engines such as diesel engine parts, pump parts, industrial cutters, cutting tools, crushing machines Parts, sliding members, artificial bones, artificial teeth, bridge core materials for artificial teeth made of cast ceramics, artificial roots, mechanical tools such as gauges, application and practical application to solid electrolytes, etc., and contribute greatly to performance improvement. is there.

【0078】上記効果は、部分安定化ジルコニアに含ま
れるY23とCeO2の組成を、添付図面のABCDの
4組成点を結ぶ点で囲まれた範囲内の組成にすることで
より確実に達成される(請求項2)。
The above effect can be more surely achieved by making the composition of Y 2 O 3 and CeO 2 contained in the partially stabilized zirconia within the range surrounded by the points connecting the four composition points of ABCD in the attached drawings. (Claim 2).

【0079】また、第3の発明(請求項3)の耐熱安定
性に優れた高靱性セラミック焼結体の製造方法では、特
定の組成と特定の加圧焼結法の適用に基づき上記の耐熱
安定性に優れた高靱性セラミック焼結体を容易に得るこ
とができる。
Further, in the method for producing a high toughness ceramic sintered body excellent in heat resistance stability of the third invention (Claim 3), the above heat resistance is applied based on the application of a specific composition and a specific pressure sintering method. It is possible to easily obtain a high toughness ceramic sintered body having excellent stability.

【0080】加うるに、Y23とCeO2を安定化剤と
して含むZrO2粉末を、ZrO2のゾルおよび/または
水溶性の塩をY23、CeO2を生ずる水溶性の塩と共
に溶液の状態で均一に混合した後、沈澱の形で分離して
得られたものとすることにより、ZrO2に安定化剤が
均一分散し、極めて微粒子からなる易焼結性の粉体の原
料となるため、微粒で均一な組成を有し、マイクロポア
の殆どない焼結体が得られ、強度及び靱性値の優れたも
のとなる(請求項3)。
In addition, a ZrO 2 powder containing Y 2 O 3 and CeO 2 as stabilizers, a ZrO 2 sol and / or a water-soluble salt is converted into a water-soluble salt which produces Y 2 O 3 and CeO 2. After uniformly mixing with the solution in the form of a solution, the mixture is obtained by separating in the form of a precipitate, whereby the stabilizer is uniformly dispersed in ZrO 2 , and a sinterable powder of extremely fine particles is obtained. Since it is used as a raw material, a sintered body having fine particles and a uniform composition and almost no micropores can be obtained, and the strength and toughness are excellent (claim 3).

【図面の簡単な説明】[Brief description of drawings]

【図1】ZrO2、YO1.5、CeO2の組成範囲を示す
三角座標である。
FIG. 1 is a triangular coordinate showing the composition range of ZrO 2 , YO 1.5 , and CeO 2 .

【図2】実施例3の熱劣化試験の時間と単斜晶量との関
係を示したグラフである。
FIG. 2 is a graph showing the relationship between the time of the heat deterioration test of Example 3 and the amount of monoclinic crystals.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a) Y23とCeO2を安定化剤として含
む主として正方晶より成る部分安定化ジルコニアに対し (b) 第2成分として、Al23、又はAl23とMgO
・Al23(スピネル)、3Al23・2SiO2(ム
ライト)から選ばれた1種又は2種とを1〜70内部重
量%含み、 (c) 熱間プレス法あるいは熱間静水圧プレス法で焼結さ
れた焼結体であって、 (d) 焼結体中に含まれる正方晶ジルコニアの結晶粒子の
平均粒子径が2μm以下であり、 (e) かつ3点曲げ強度が149kg/mm2以上で、 (f) 焼結体のかさ密度が理論密度の99%以上であり、 (g) 300℃大気中に3000時間保持試験後の焼結体
に含まれるジルコニアの単斜晶量が3%以下でありかつ
3点曲げ強度が147kg/mm2以上であること、 (h) 前記部分安定化ジルコニアは、これに含まれるY2
3、CeO2が添付図面に示すように正三角形に交わる
三軸にそれぞれZrO2、YO1.5、CeO2のmol%
を表示した三角座標において、 点A(ZrO2 87.5mol%、YO1.5 12mo
l%、CeO2 0.5mol%) 点B(ZrO2 95.5mol%、YO1.5 4mol
%、CeO2 0.5mol%) 点C(ZrO2 95.5mol%、YO1.5 2mol
%、CeO2 2.5mol%) 点D(ZrO2 85.0mol%、YO1.5 2mol
%、CeO2 13.0mol%) で示された特定4組成点を結ぶ点で囲まれた範囲内の組
成にあること、 を特徴とする耐熱安定性に優れた高靱性セラミック焼結
体。
1. A partially stabilized zirconia mainly composed of tetragonal crystals containing (a) Y 2 O 3 and CeO 2 as stabilizers, and (b) Al 2 O 3 or Al 2 O 3 as the second component. And MgO
· Al 2 O 3 (spinel), 3Al 2 O 3 · 2SiO 2 and a one or more of the compounds selected from (mullite) 1-70 Internal wt%, (c) hot pressing method or a hot isostatic (D) The average particle size of the tetragonal zirconia crystal particles contained in the sintered body is 2 μm or less, and (e) the three-point bending strength is 149 kg. / F 2 or more, (f) the bulk density of the sintered body is 99% or more of the theoretical density, and (g) the monoclinic crystal of zirconia contained in the sintered body after 3000 hours of holding test in the air at 300 ° C. The amount is 3% or less, and the three-point bending strength is 147 kg / mm 2 or more, (h) the partially stabilized zirconia contains Y 2
O 3 and CeO 2 are mol% of ZrO 2 , YO 1.5 , and CeO 2 , respectively, on the three axes intersecting the equilateral triangle as shown in the attached drawing.
In the triangular coordinate displaying, point A (ZrO 2 87.5 mol%, YO 1.5 12mo
1%, CeO 2 0.5 mol%) Point B (ZrO 2 95.5 mol%, YO 1.5 4 mol
%, CeO 2 0.5 mol%) Point C (ZrO 2 95.5 mol%, YO 1.5 2 mol
%, CeO 2 2.5 mol%) Point D (ZrO 2 85.0 mol%, YO 1.5 2 mol
%, CeO 2 13.0 mol%), which has a composition within a range surrounded by the points connecting the four specific composition points, and a high toughness ceramic sintered body excellent in heat stability.
【請求項2】(a) Y23とCeO2を安定化剤として含
む主として正方晶より成る部分安定化ジルコニアに対し (b) 第2成分として、MgO・Al23(スピネル)、
3Al23・2SiO2(ムライト)から選ばれた1種
又は2種を1〜70内部重量%含み、 (c) 熱間プレス法あるいは熱間静水圧プレス法で焼結さ
れた焼結体であって、 (d) 焼結体中に含まれる正方晶ジルコニアの結晶粒子の
平均粒子径が2μm以下であり、 (e) かつ3点曲げ強度が137kg/mm2以上で、 (f) 焼結体のかさ密度が理論密度の99%以上であり、 (g) 300℃大気中に3000時間保持試験後の焼結体
に含まれるジルコニアの単斜晶量が3%以下でありかつ
3点曲げ強度が135kg/mm2以上であること、 (h) 前記部分安定化ジルコニアは、これに含まれるY2
3、CeO2が添付図面に示すように正三角形に交わる
三軸にそれぞれZrO2、YO1.5、CeO2のmol%
を表示した三角座標において、 点A(ZrO2 87.5mol%、YO1.5 12mo
l%、CeO2 0.5mol%) 点B(ZrO2 95.5mol%、YO1.5 4mol
%、CeO2 0.5mol%) 点C(ZrO2 95.5mol%、YO1.5 2mol
%、CeO2 2.5mol%) 点D(ZrO2 85.0mol%、YO1.5 2mol
%、CeO2 13.0mol%) で示された特定4組成点を結ぶ点で囲まれた範囲内の組
成にあること、 を特徴とする耐熱安定性に優れた高靱性セラミック焼結
体。
2. For (a) partially stabilized zirconia mainly composed of tetragonal crystals containing Y 2 O 3 and CeO 2 as stabilizers, (b) MgO.Al 2 O 3 (spinel) as the second component,
Sintered body containing 1 to 70% by weight of 1 type or 2 types selected from 3Al 2 O 3 .2SiO 2 (mullite) and sintered by the hot pressing method or the hot isostatic pressing method. And (d) the average particle size of the tetragonal zirconia crystal particles contained in the sintered body is 2 μm or less, (e) and the three-point bending strength is 137 kg / mm 2 or more, The bulk density of the aggregate is 99% or more of the theoretical density, and (g) the monoclinic crystal content of zirconia contained in the sintered body after the 3000-hour holding test at 300 ° C in the atmosphere is 3% or less and 3 points. Bending strength is 135 kg / mm 2 or more, (h) The partially stabilized zirconia contains Y 2
O 3 and CeO 2 are mol% of ZrO 2 , YO 1.5 , and CeO 2 , respectively, on the three axes intersecting the equilateral triangle as shown in the attached drawing.
In the triangular coordinate displaying, point A (ZrO 2 87.5 mol%, YO 1.5 12mo
1%, CeO 2 0.5 mol%) Point B (ZrO 2 95.5 mol%, YO 1.5 4 mol
%, CeO 2 0.5 mol%) Point C (ZrO 2 95.5 mol%, YO 1.5 2 mol
%, CeO 2 2.5 mol%) Point D (ZrO 2 85.0 mol%, YO 1.5 2 mol
%, CeO 2 13.0 mol%), which has a composition within a range surrounded by the points connecting the four specific composition points, and a high toughness ceramic sintered body excellent in heat stability.
【請求項3】(a) Y23とCeO2を安定化剤として含
第1成分としてのZrO2粉末材料であって、 該ZrO2粉末材料は、ZrO2のゾルおよび/または水
溶性の塩をY23、CeO2を生ずる水溶性の塩と共に
溶液の 状態で均一に混合した後、沈澱の形で分離して
得られ、 Y23、CeO2が正三角形に交わる三軸にそれぞれZ
rO2、YO1.5、CeO2のmol%を表示した三角座
標において、 点A(ZrO2 87.5mol%、YO1.5 12mo
l%、CeO2 0.5mol%) 点B(ZrO2 95.5mol%、YO1.5 4mol
%、CeO2 0.5mol%) 点C(ZrO2 95.5mol%、YO1.5 2mol
%、CeO2 2.5mol%) 点D(ZrO2 85.0mol%、YO1.5 2mol
%、CeO2 13.0mol%) で示された特定4組成点を結ぶ点で囲まれた範囲内の組
成にあるZrO2粉末材料に対し、 (b) 第2成分として、Al23、MgO・Al23(ス
ピネル)、3Al23・2SiO2(ムライト)から選
ばれた1種又は2種以上との粉末を合計で1〜70内部
重量%の範囲で含む混合粉末を (c) 温度1100℃以上1600℃以下で熱間プレス法
あるいは熱間静水圧プレス法で、 (d) 含まれる正方晶ジルコニアの結晶粒子の平均粒子径
が2μm以下であり、焼結体のかさ密度が理論密度の9
9%以上であり、かつ300℃大気中に3000時間保
持試験後の焼結体に含まれるジルコニアの単斜晶量が3
%以下となるように焼結することを特徴とする耐熱安定
性に優れた高靱性セラミック焼結体の製造方法。
3. A ZrO 2 powder material as a first component containing (a) Y 2 O 3 and CeO 2 as stabilizers, wherein the ZrO 2 powder material is a ZrO 2 sol and / or a water-soluble material. salts of Y 2 O 3, were uniformly mixed with CeO 2 with a water-soluble salt resulting solution state obtained by separating in the form of precipitation, the three of Y 2 O 3, CeO 2 intersects the equilateral triangle Z on each axis
In the triangular coordinates showing the mol% of rO 2 , YO 1.5 , and CeO 2 , the point A (ZrO 2 87.5 mol%, YO 1.5 12mo
1%, CeO 2 0.5 mol%) Point B (ZrO 2 95.5 mol%, YO 1.5 4 mol
%, CeO 2 0.5 mol%) Point C (ZrO 2 95.5 mol%, YO 1.5 2 mol
%, CeO 2 2.5 mol%) Point D (ZrO 2 85.0 mol%, YO 1.5 2 mol
%, CeO 2 13.0 mol%), for a ZrO 2 powder material having a composition within the range surrounded by the points connecting the four specific composition points, (b) as the second component, Al 2 O 3 , A mixed powder containing a powder of one or more selected from MgO.Al 2 O 3 (spinel) and 3Al 2 O 3 .2SiO 2 (mullite) in a total amount of 1 to 70 internal weight% ( c) Hot pressing method or hot isostatic pressing method at a temperature of 1100 ° C or higher and 1600 ° C or lower. Is the theoretical density of 9
9% or more, and the amount of zirconia monoclinic crystal contained in the sintered body after the holding test at 300 ° C. in the atmosphere for 3000 hours is 3
%, And a method for producing a high-toughness ceramic sintered body excellent in heat stability, characterized in that the sintered body is sintered.
JP5227826A 1993-08-23 1993-08-23 High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same Expired - Lifetime JP2537132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5227826A JP2537132B2 (en) 1993-08-23 1993-08-23 High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5227826A JP2537132B2 (en) 1993-08-23 1993-08-23 High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60182726A Division JPH06102574B2 (en) 1985-08-20 1985-08-20 High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06263533A JPH06263533A (en) 1994-09-20
JP2537132B2 true JP2537132B2 (en) 1996-09-25

Family

ID=16866981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5227826A Expired - Lifetime JP2537132B2 (en) 1993-08-23 1993-08-23 High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same

Country Status (1)

Country Link
JP (1) JP2537132B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840777B1 (en) * 2007-01-25 2008-06-23 (주)에큐세라 Tetragonal zirconia composite powder, tetragonal zirconia-alumina composite, preperation method thereof
WO2010114126A1 (en) 2009-04-03 2010-10-07 株式会社住友金属エレクトロデバイス Sintered ceramic and substrate comprising same for semiconductor device
US9545363B2 (en) * 2013-12-27 2017-01-17 Acucera Inc. Machinable zirconia comprising titania nanopowder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202711A (en) * 1982-05-18 1983-11-26 Mitsubishi Metal Corp Circular tool
JPS59199236A (en) * 1983-04-27 1984-11-12 アイカ互業株式会社 Method of reinforcing end section of scagliola board
JPS6059154A (en) * 1983-09-02 1985-04-05 日産自動車株式会社 Stopping of loom at constant position
JPS60215571A (en) * 1984-04-12 1985-10-28 東ソー株式会社 Manufacture of high strength zirconia sintered body
JPS60141671A (en) * 1983-12-27 1985-07-26 日立化成工業株式会社 Manufacture of zirconia sintered body
JPS60141673A (en) * 1983-12-27 1985-07-26 日本碍子株式会社 Zirconia ceramic and manufacture
JPS6126562A (en) * 1984-07-18 1986-02-05 東ソー株式会社 Zirconia sintered body

Also Published As

Publication number Publication date
JPH06263533A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
US7056851B2 (en) ZrO2-Al2O3 composite ceramic material
JP3368090B2 (en) Zirconia-based sintered body, method for producing the same, crushing component material and orthodontic bracket material
EP0466836B1 (en) Ceramics with high toughness, strength and hardness
AU617693B2 (en) Ceramic cutting tool inserts
US20140011661A1 (en) Method of making high toughness high strength zirconia bodies
JP2005082459A (en) Composite ceramic and method of manufacturing the same
KR101575561B1 (en) Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency
JP4870038B2 (en) Dental processing block
JP2537132B2 (en) High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same
JPH0535103B2 (en)
JPS63156063A (en) High temperature strength and hot water stability zirconia base ceramics
JP2517249B2 (en) High-strength zirconia-based HIP sintered body
JP2517253B2 (en) Manufacturing method of high strength zirconia sintered body
JPH06102574B2 (en) High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same
JP2645894B2 (en) Method for producing zirconia ceramics
JPH07215758A (en) Zirconia sintered compact
JPH0772102B2 (en) Method for manufacturing zirconia sintered body
JPH066512B2 (en) High toughness silicon nitride sintered body and method for producing the same
JPH08109065A (en) High-strength zirconia sintered compact and its production and grinding part material
JPH0764631B2 (en) High toughness zirconia sintered body with excellent hot water stability
JPH0811707B2 (en) Alumina-zirconia sintered body and method for producing the same
Nascimento et al. Effect of Addition of Previously-Synthesized Ce-TZP/Al 2 O 3 Submicrometric Powder on the Properties of Al 2 O 3-Based Ceramics
JPH0710746B2 (en) High toughness zirconia sintered body
JPH0694390B2 (en) Silicon nitride sintered body
Mondal et al. Novel synthesis of advanced composites of α-Al2O3 reinforced with Ce TZP through co-precipitation process

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960409