JP2534980B2 - Method for manufacturing crystalline semiconductor thin film - Google Patents

Method for manufacturing crystalline semiconductor thin film

Info

Publication number
JP2534980B2
JP2534980B2 JP60168856A JP16885685A JP2534980B2 JP 2534980 B2 JP2534980 B2 JP 2534980B2 JP 60168856 A JP60168856 A JP 60168856A JP 16885685 A JP16885685 A JP 16885685A JP 2534980 B2 JP2534980 B2 JP 2534980B2
Authority
JP
Japan
Prior art keywords
film
semiconductor thin
thin film
silicon nitride
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60168856A
Other languages
Japanese (ja)
Other versions
JPS6230314A (en
Inventor
俊之 鮫島
光信 関谷
節夫 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60168856A priority Critical patent/JP2534980B2/en
Publication of JPS6230314A publication Critical patent/JPS6230314A/en
Application granted granted Critical
Publication of JP2534980B2 publication Critical patent/JP2534980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は結晶性半導体薄膜の製造方法に関するもので
あって、絶縁性基板上に多結晶Si膜を形成するのに用い
て最適なものである。
TECHNICAL FIELD The present invention relates to a method for producing a crystalline semiconductor thin film, which is optimum for forming a polycrystalline Si film on an insulating substrate. is there.

〔発明の概要〕[Outline of Invention]

本発明は、結晶性半導体薄膜の製造方法において、絶
縁性基板上にプラズマCVD法により形成した水素含有窒
化シリコン膜上に半導体薄膜をこの窒化シリコン膜と直
接に接するように形成するとともに、上記半導体薄膜の
上方からこの半導体薄膜にエキシマーレーザーを照射す
ることにより上記半導体薄膜を結晶化させるとともに上
記窒化シリコン膜中の水素を上記半導体薄膜中に拡散さ
せることによって、きわめて均一に結晶化されかつ表面
の平滑性がきわめて良好な良質の結晶性半導体薄膜を製
造することができ、しかも、上記半導体薄膜中に拡散す
る多量の水素によりこの半導体薄膜の結晶欠陥をきわめ
て効果的に減少させることができるようにしたものであ
る。
The present invention is a method for producing a crystalline semiconductor thin film, wherein a semiconductor thin film is formed on a hydrogen-containing silicon nitride film formed on an insulating substrate by a plasma CVD method so as to be in direct contact with the silicon nitride film. By irradiating the semiconductor thin film with an excimer laser from above the thin film, the semiconductor thin film is crystallized and the hydrogen in the silicon nitride film is diffused into the semiconductor thin film, so that the semiconductor film is extremely uniformly crystallized and the surface It is possible to manufacture a crystalline semiconductor thin film of good quality with extremely good smoothness, and furthermore, it is possible to extremely effectively reduce the crystal defects of this semiconductor thin film by a large amount of hydrogen diffusing into the semiconductor thin film. It was done.

〔従来の技術〕 従来、ガラス等の絶縁体基板上に例えばアモルファス
Si膜を形成し、このアモルファスSi膜をレーザービーム
等のエネルギービームにより加熱して結晶化させる技術
が知られている。
[Prior Art] Conventionally, for example, amorphous is formed on an insulating substrate such as glass.
A technique is known in which a Si film is formed and the amorphous Si film is heated by an energy beam such as a laser beam to be crystallized.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、Si膜と基板との熱膨張係数や熱伝導度
が違うため、ビーム加熱による結晶化の際にSi膜にひず
みや応力が生じて膜質の良好な結晶性Si膜を得るのが難
しいという問題がある。特にパルスレーザー等による短
時間加熱によって結晶化を行う場合は、温度勾配が非常
に大きくなる結果熱的ひずみが大きくなり、このため膜
質の良好な結晶性Si膜を得るのが困難である。
However, since the thermal expansion coefficient and thermal conductivity of the Si film and the substrate are different, it is difficult to obtain a crystalline Si film with good film quality due to strain and stress in the Si film during crystallization by beam heating. There's a problem. In particular, when crystallization is performed by heating for a short time with a pulse laser or the like, the temperature gradient becomes extremely large, resulting in a large thermal strain, which makes it difficult to obtain a crystalline Si film having a good film quality.

本発明は、従来技術が有する上述のような欠点を是正
した結晶性半導体薄膜の製造方法を提供することを目的
とする。
An object of the present invention is to provide a method for manufacturing a crystalline semiconductor thin film, in which the above-mentioned drawbacks of the prior art are corrected.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る結晶性半導体薄膜の製造方法は、絶縁性
基板上にプラズマCVD法により水素含有窒化シリコン膜
を形成する工程と、上記水素含有窒化シリコン膜上に半
導体薄膜をこの窒化シリコン膜と直接に接するように形
成する工程と、上記半導体薄膜の上方からこの半導体薄
膜にエキシマーレーザーを照射することにより上記半導
体薄膜を結晶化させるとともに上記窒化シリコン膜中の
水素を上記半導体薄膜中に拡散させる工程とを有するも
のである。
The method for producing a crystalline semiconductor thin film according to the present invention includes a step of forming a hydrogen-containing silicon nitride film on an insulating substrate by a plasma CVD method, and a semiconductor thin film directly on the hydrogen-containing silicon nitride film and the silicon nitride film. And a step of crystallizing the semiconductor thin film by irradiating the semiconductor thin film with an excimer laser from above the semiconductor thin film and diffusing hydrogen in the silicon nitride film into the semiconductor thin film. And have.

〔作 用〕[Work]

このようにすることによって、半導体薄膜の下方にこ
の半導体薄膜に直接に接するように配された窒化シリコ
ン膜によりこの半導体薄膜の結晶化の際に生ずる熱的ひ
ずみをきわめて良好に緩和することができ、また、エキ
シマーレーザーのきわめて優れた結晶化作用により上記
半導体薄膜をきわめて確実にかつきわめて良好に結晶化
することができ、さらに、窒化シリコン膜をプラズマCV
D法により形成するようにしたことによって、この窒化
シリコン膜中に多量の水素を含ませることができ、しか
も、上記半導体薄膜の下方にこの半導体薄膜に直接に接
するように配された窒化シリコン膜中に存在する多量の
水素を、上記半導体薄膜の上方からこの半導体薄膜にエ
キシマーレーザーを照射することによって、主として上
方に向う水素の特性を利用して上記半導体薄膜中にきわ
めて良好に拡散させることができる。
By doing so, the thermal strain generated during crystallization of the semiconductor thin film can be remarkably excellently relaxed by the silicon nitride film arranged below the semiconductor thin film so as to be in direct contact with the semiconductor thin film. In addition, the semiconductor thin film can be crystallized very reliably and excellently by the extremely excellent crystallization effect of the excimer laser.
Since the silicon nitride film is formed by the D method, a large amount of hydrogen can be contained in the silicon nitride film, and the silicon nitride film is disposed below the semiconductor thin film so as to be in direct contact with the semiconductor thin film. By irradiating the semiconductor thin film with an excimer laser from above the semiconductor thin film, a large amount of hydrogen present therein can be diffused very well in the semiconductor thin film mainly by utilizing the characteristic of hydrogen that is directed upward. it can.

〔実施例〕〔Example〕

以下本発明の実施例につき図面を参照しながら説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

まず本発明を多結晶Si膜の製造に適用した第1実施例
につき説明する。
First, a first embodiment in which the present invention is applied to the production of a polycrystalline Si film will be described.

第1A図に示すように、まず例えばガラス基板1上にプ
ラズマCVD法により例えば基板温度260℃で膜厚600Åの
水素含有のSi3N4膜(窒化シリコン膜)2を形成し、次
いでこのSi3N4膜2上に同じくプラズマCVD法により例え
ば膜厚1000Åのa−Si:H膜(水素化アモルファスSi膜)
3を上記Si3N4膜2上に直接に接するように形成する。
As shown in FIG. 1A, first, a hydrogen-containing Si 3 N 4 film (silicon nitride film) 2 having a film thickness of 600 Å is formed on a glass substrate 1, for example, by a plasma CVD method at a substrate temperature of 260 ° C. Similarly, on the 3 N 4 film 2, for example, an a-Si: H film (hydrogenated amorphous Si film) having a film thickness of 1000 Å is formed by the plasma CVD method.
3 is formed on the Si 3 N 4 film 2 so as to be in direct contact therewith.

次にXeClエキシマーレーザーによる波長308nm、パル
ス幅35nsのレーザービーム4をa−Si:H膜3に照射して
加熱することにより常温で結晶化を行って、第1B図に示
すように多結晶Si膜5を形成する。
Next, the a-Si: H film 3 is irradiated with a laser beam 4 having a wavelength of 308 nm and a pulse width of 35 ns by an XeCl excimer laser to heat the a-Si: H film 3 to crystallize it at room temperature. As shown in FIG. The film 5 is formed.

このようにして得られた多結晶Si膜5は、レーザーエ
ネルギー150−250mJ/cm2の範囲で特に均一に結晶化が行
われしかも表面の平滑性が良好な良質の膜であった。一
方、比較のためにSi3N4膜2を形成しないで上述と同様
にして結晶化を行った場合は、レーザービーム照射によ
って表面の荒れが大きくなり、ビーム照射領域全体を均
一に結晶化することはできなかった。
The polycrystalline Si film 5 thus obtained was a good quality film which was crystallized uniformly in the laser energy range of 150 to 250 mJ / cm 2 and had good surface smoothness. On the other hand, for comparison, when the crystallization is performed in the same manner as above without forming the Si 3 N 4 film 2, the surface roughness becomes large due to the laser beam irradiation, and the entire beam irradiation region is crystallized uniformly. I couldn't do that.

上述のように良質の多結晶Si膜5が得られる原因は次
のように考えられる。すなわち、ガラス基板lとa−S
i:H膜3との間に形成したSi3N4膜2の熱膨張係数及び熱
伝導率はSiに近いため、レーザービーム4による加熱の
際にa−Si:H膜3に生ずる熱的なひずみがこのSi3N4
2によって効果的に緩和されるためであると考えられ
る。
The reason why the high quality polycrystalline Si film 5 is obtained as described above is considered as follows. That is, the glass substrate 1 and aS
Since the thermal expansion coefficient and the thermal conductivity of the Si 3 N 4 film 2 formed between the i: H film 3 and the i: H film 3 are close to those of Si, the thermal expansion of the a-Si: H film 3 during heating by the laser beam 4 It is considered that this strain is effectively relaxed by the Si 3 N 4 film 2.

このように、上述の第1実施例によれば、ガラス基板
1上にSi3N4膜2を介してa−Si:H膜3を形成し、次い
でこのa−Si:H膜3にレーザービーム4を照射して加熱
することにより結晶化を行っているので、結晶化の際に
熱的ひずみが緩和され、従って均一に結晶化が行われし
かも表面の平滑性が良好な良質の多結晶Si膜5を容易に
得ることができる。のみならずプラズマCVD法により低
温で形成した上記Si3N4膜2中には多量の水素(約10原
子%)が含まれているため結晶化の際にこのSi3N4膜2
中の水素が多結晶Si膜中に拡散し、この結果この水素に
よって結晶欠陥を減少させることができる。従って結晶
欠陥が少ないという意味においても良質の多結晶Si膜5
を得ることができる。
As described above, according to the first embodiment described above, the a-Si: H film 3 is formed on the glass substrate 1 via the Si 3 N 4 film 2, and then the a-Si: H film 3 is laser-coated. Since the crystallization is performed by irradiating the beam 4 and heating, the thermal strain is relaxed during the crystallization, so that the crystallization is uniformly performed, and the surface is smooth and has a good quality. The Si film 5 can be easily obtained. In addition, since the Si 3 N 4 film 2 formed at a low temperature by the plasma CVD method contains a large amount of hydrogen (about 10 atom%), the Si 3 N 4 film 2 is crystallized during crystallization.
Hydrogen contained therein diffuses into the polycrystalline Si film, and as a result, crystal defects can be reduced by this hydrogen. Therefore, a high-quality polycrystalline Si film 5 in the sense that it has few crystal defects
Can be obtained.

次に本発明を多結晶SiTFTの製造に適用した第2実施
例につき説明する。
Next, a second embodiment in which the present invention is applied to manufacture of polycrystalline Si TFT will be described.

まず第1A図及び第1B図に示すと同様にしてガラス基板
1上に膜厚600ÅのSi3N4膜2及び膜厚1000Åのa−Si:H
膜3を順次形成し、次いでXeClエキシマーレーザーによ
るレーザービーム4をエネルギー185mJ/cm2でこのa−S
i:H膜3に照射して結晶化を行うことにより多結晶Si膜
5を形成する。
First, in the same manner as shown in FIGS. 1A and 1B, a Si 3 N 4 film 2 having a film thickness of 600 Å and an a-Si: H film having a film thickness of 1000 Å are formed on a glass substrate 1.
A film 3 is sequentially formed, and then a laser beam 4 by an XeCl excimer laser is applied to this aS with an energy of 185 mJ / cm 2.
The i: H film 3 is irradiated and crystallized to form a polycrystalline Si film 5.

次に第2A図に示すように、この多結晶Si膜5に膜厚20
0ÅのSi3N4膜6、膜厚1500ÅのSiO2膜7及び膜厚6000Å
の所定形状を有するMo膜から成るゲート電極8を形成す
る。なお上記Si3N4膜6及びSiO2膜7によりゲート絶縁
膜が構成される。この後、このゲート電極8をマスクと
してP+を例えばエネルギー130KeV、ドーズ量1015cm-2
条件でSiO2膜7及びSi3N4膜6を介して多結晶Si膜5中
にイオン注入し、次いて常温でXeClエキシマーレーザー
によるレーザービーム(図示せず)を照射して加熱する
ことにより上記Pの活性化を行って、第2A図に示すよう
にn+層から成るソース領域9及びドレイン領域10を形成
する。
Next, as shown in FIG. 2A, the polycrystalline Si film 5 has a film thickness of 20
0 Å Si 3 N 4 film 6, 1500 Å SiO 2 film 7 and 6000 Å film thickness
The gate electrode 8 made of a Mo film having a predetermined shape is formed. The Si 3 N 4 film 6 and the SiO 2 film 7 form a gate insulating film. Then, using this gate electrode 8 as a mask, P + is ion-implanted into the polycrystalline Si film 5 through the SiO 2 film 7 and the Si 3 N 4 film 6 under the conditions of an energy of 130 KeV and a dose amount of 10 15 cm -2. Then, the P is activated by irradiating a laser beam (not shown) by a XeCl excimer laser at room temperature to heat the source region 9 composed of the n + layer and the source region 9 as shown in FIG. 2A. A drain region 10 is formed.

次に第2B図に示すように、SiO2膜7及びSi3N4膜6の
所定部分をエッチング除去して開口11、12を形成した
後、これらの開口11、12を通じてAlから成る電極13、14
を形成して、目的とするnチャネルの多結晶SiTFTを完
成させる。
Next, as shown in FIG. 2B, predetermined portions of the SiO 2 film 7 and the Si 3 N 4 film 6 are removed by etching to form openings 11 and 12, and then an electrode 13 made of Al is formed through these openings 11 and 12. ,14
Are formed to complete the intended n-channel polycrystalline Si TFT.

このようにして製造された多結晶SiTFTの特性を測定
した所、電子移動度は96cm2/Vsと極めて高く、またオン
/オフ比も第3図に示すように従来(破線で示す曲線)
の103程度であったのに対し約105程度と2桁高い優れた
特性が得られていることがわかる。このような優れた特
性が得られるのは、第1実施例で述べたようにSi3N4
2によって結晶化の際の熱的ひずみが緩和されたこと
と、プラズマCVD法により低温で形成した上記Si3N4膜2
中の水素が結晶化の際に多結晶Si膜中に拡散して結晶欠
陥が減少したこととによるものと考えられる。
When the characteristics of the polycrystalline Si TFT manufactured in this way were measured, the electron mobility was extremely high at 96 cm 2 / Vs, and the on / off ratio was conventional (curve indicated by the broken line) as shown in FIG.
It can be seen that about 105 degrees and two orders of magnitude higher excellent characteristics while was 10 3 about is obtained. Such excellent characteristics are obtained because, as described in the first embodiment, the Si 3 N 4 film 2 relaxes the thermal strain during crystallization and the plasma CVD method is used to form the film at a low temperature. The above Si 3 N 4 film 2
It is considered that this is because hydrogen contained therein was diffused into the polycrystalline Si film during crystallization and crystal defects were reduced.

このように、上述の第2実施例によれば、Si3N4膜2
を介してガラス基板1上に形成したa−Si:H膜3を結晶
化させることにより得られた膜質の良好な多結晶Si膜5
を用いて、特性の優れた多結晶SiTFTを製造することが
できる。
Thus, according to the second embodiment described above, the Si 3 N 4 film 2
Poly-Si film 5 of good film quality obtained by crystallizing a-Si: H film 3 formed on glass substrate 1 through
Using, it is possible to manufacture a polycrystalline Si TFT having excellent characteristics.

以上本発明の実施例につき説明したが、本発明は上述
の2つの実施例に限定されるものではなく、本発明の技
術的思想に基ずく各種の変形が可能である。例えば、上
述の2つの実施例においてはSi3N4膜2の膜厚を600Åに
選定したが、必要に応じてこれと異なる膜厚に選定する
ことも可能である。しかし、結晶化の際の熱的ひずみを
効果的に緩和するためには100Å以上の膜厚であること
が好ましい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described two embodiments, and various modifications can be made based on the technical idea of the present invention. For example, in the above-mentioned two embodiments, the film thickness of the Si 3 N 4 film 2 was selected to be 600Å, but it is also possible to select a film thickness different from this if necessary. However, in order to effectively alleviate the thermal strain during crystallization, it is preferable that the film thickness is 100 Å or more.

さらにまた、上述の2つの実施例においては、加熱源
としてXeClエキシマーレーザーによるレーザービーム4
を用いたが、必要に応じてKrFエキシマーレーザー等の
各種エキシマーレーザーによるレーザービームを用いる
ことが可能であり、これらのエキシマーレーザーのきわ
めて優れた結晶化作用により半導体薄膜をきわめて確実
かつ良好に結晶化することができる。同様に、ガラス基
板1の代わりに石英基板その他の絶縁性基板を用いるこ
とが可能である。
Furthermore, in the above two embodiments, the laser beam 4 by the XeCl excimer laser is used as the heating source.
However, it is possible to use laser beams from various excimer lasers such as KrF excimer lasers as necessary, and the extremely excellent crystallization effect of these excimer lasers enables extremely reliable and excellent crystallization of semiconductor thin films. can do. Similarly, instead of the glass substrate 1, a quartz substrate or other insulating substrate can be used.

また上述の2つの実施例においては、半導体薄膜とし
てa−Si:H膜3を形成したが、このa−Si:H膜3の代わ
りに多結晶Si膜を形成した後、これを上述の2つの実施
例と同様にして再結晶化させることも可能である。
Further, in the above-mentioned two embodiments, the a-Si: H film 3 was formed as the semiconductor thin film, but a polycrystalline Si film was formed in place of the a-Si: H film 3, and then the a-Si: H film 3 was formed. It is also possible to recrystallize in the same way as in the one example.

なお上述の2つの実施例においては、本発明を多結晶
Si膜5の製造に適用した場合につき説明したが、Si以外
の各種半導体の結晶性薄膜の製造にも本発明を適用する
ことが可能である。
In the above two embodiments, the present invention is not
The case where the present invention is applied to the production of the Si film 5 has been described, but the present invention can also be applied to the production of crystalline thin films of various semiconductors other than Si.

〔発明の効果〕 本発明に係る結晶性半導体薄膜の製造方法によれば、
絶縁性基板上に形成した窒化シリコン膜上に半導体薄膜
をこの窒化シリコン膜と直接に接するように形成すると
ともに、上記半導体薄膜の上方からこの半導体薄膜にエ
キシマーレーザーを照射することにより上記半導体薄膜
を結晶化させるようにした。従って、上記半導体薄膜の
下方にこの半導体薄膜に直接に接するように配された窒
化シリコン膜によりこの半導体薄膜の結晶化の際に生ず
る熱的ひずみをきわめて良好に緩和することができ、ま
た、エキシマーレーザーのきわめて優れた結晶化作用に
より上記半導体薄膜をきわめて確実にかつきわめて良好
に結晶化することができるから、きわめて均一に結晶化
されかつ表面の平滑性がきわめて良好な良質の結晶性半
導体薄膜を製造することができる。
[Effect of the Invention] According to the method for producing a crystalline semiconductor thin film of the present invention,
A semiconductor thin film is formed on a silicon nitride film formed on an insulating substrate so as to be in direct contact with the silicon nitride film, and the semiconductor thin film is formed by irradiating the semiconductor thin film with an excimer laser from above the semiconductor thin film. It was allowed to crystallize. Therefore, the silicon nitride film disposed below the semiconductor thin film so as to be in direct contact with the semiconductor thin film can remarkably excellently alleviate the thermal strain generated during the crystallization of the semiconductor thin film. Since the semiconductor thin film can be crystallized very reliably and excellently by the extremely excellent crystallization effect of the laser, it is possible to obtain a crystalline semiconductor thin film of good quality which is extremely uniformly crystallized and has a very smooth surface. It can be manufactured.

また、絶縁基板上にプラズマCVD法により形成した水
素含有窒化シリコン膜上に半導体薄膜をこの窒化シリコ
ン膜と直接に接するように形成するとともに、上記半導
体薄膜の上方からこの半導体薄膜にエキシマーレーザー
を照射することにより上記窒化シリコン膜中の水素を上
記半導体薄膜中に拡散させるようにした。従って、窒化
シリコン膜をプラズマCVD法により形成するようにした
ことによって、この窒化シリコン膜中に多量の水素を含
ませることができ、また、上記半導体薄膜の下方にこの
半導体薄膜に直接に接するように配された窒化シリコン
膜中に存在する多量の水素を、上記半導体薄膜の上方か
らこの半導体薄膜にエキシマーレーザーを照謝すること
によって、主として上方に向う水素の特性を利用して上
記半導体薄膜中にきわめて良好に拡散させることができ
るから、上記半導体薄膜中に拡散する多量の水素により
この半導体薄膜の結晶欠陥をきわめて効果的に減少させ
ることができ、このために、結晶性半導体薄膜の膜質を
さらに良質にすることができる。
Further, a semiconductor thin film is formed on the hydrogen-containing silicon nitride film formed by the plasma CVD method on the insulating substrate so as to be in direct contact with the silicon nitride film, and the semiconductor thin film is irradiated with an excimer laser from above the semiconductor thin film. By doing so, hydrogen in the silicon nitride film was made to diffuse into the semiconductor thin film. Therefore, since the silicon nitride film is formed by the plasma CVD method, a large amount of hydrogen can be contained in the silicon nitride film, and the silicon nitride film can be directly contacted below the semiconductor thin film. By irradiating an excimer laser to the semiconductor thin film from above the semiconductor thin film, a large amount of hydrogen existing in the silicon nitride film arranged in the above is mainly utilized in the above-mentioned semiconductor thin film in the semiconductor thin film. Since it can be diffused very well into the semiconductor thin film, a large amount of hydrogen diffused in the semiconductor thin film can extremely effectively reduce the crystal defects of the semiconductor thin film. It can be even better.

【図面の簡単な説明】[Brief description of drawings]

第1A図及び第1B図は本発明を多結晶Si膜の製造に適用し
た第1実施例を工程順に示す断面図、第2A図及び第2B図
は本発明を多結晶SiTFTの製造に適用した第2実施例を
工程順に示す断面図、第3図は第2実施例により製造さ
れた多結晶SiTFTのドレイン電流−ゲート電圧特性の一
例を示すグラフである。 なお図面に用いた符号において、 1……ガラス基板 2……Si3N4膜 3……a−Si:H膜 4……レーザービーム 5……多結晶Si膜 8……ゲート電極 9……ソース領域 10……ドレイン領域 である。
1A and 1B are cross-sectional views showing the first embodiment in which the present invention is applied to the production of a polycrystalline Si film in the order of steps, and FIGS. 2A and 2B show the present invention applied to the production of a polycrystalline Si TFT. FIG. 3 is a cross-sectional view showing a second embodiment in the order of steps, and FIG. 3 is a graph showing an example of drain current-gate voltage characteristics of the polycrystalline Si TFT manufactured according to the second embodiment. In the reference numerals used in the drawings, 1 ... Glass substrate 2 ... Si 3 N 4 film 3 ... a-Si: H film 4 ... Laser beam 5 ... Polycrystalline Si film 8 ... Gate electrode 9 ... Source region 10 ... Drain region.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 碓井 節夫 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (56)参考文献 特開 昭58−95814(JP,A) 特開 昭59−54218(JP,A) 特開 昭57−109323(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Setsuo Usui 6-735 Kitashinagawa, Shinagawa-ku, Tokyo Within Sony Corporation (56) Reference JP-A-58-95814 (JP, A) JP-A-SHO 59-54218 (JP, A) JP-A-57-109323 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板上にプラズマCVD法により水素
含有窒化シリコン膜を形成する工程と、 上記水素含有窒化シリコン膜上に半導体薄膜をこの窒化
シリコン膜と直接に接するように形成する工程と、 上記半導体薄膜の上方からこの半導体薄膜にエキシマー
レーザーを照射することにより上記半導体薄膜を結晶化
させるとともに上記窒化シリコン膜中の水素を上記半導
体薄膜中を拡散させる工程とを有することを特徴とする
結晶性半導体薄膜の製造方法。
1. A step of forming a hydrogen-containing silicon nitride film on an insulating substrate by a plasma CVD method, and a step of forming a semiconductor thin film on the hydrogen-containing silicon nitride film so as to be in direct contact with the silicon nitride film. Irradiating the semiconductor thin film with an excimer laser from above the semiconductor thin film to crystallize the semiconductor thin film and diffuse hydrogen in the silicon nitride film into the semiconductor thin film. Manufacturing method of crystalline semiconductor thin film.
JP60168856A 1985-07-31 1985-07-31 Method for manufacturing crystalline semiconductor thin film Expired - Lifetime JP2534980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60168856A JP2534980B2 (en) 1985-07-31 1985-07-31 Method for manufacturing crystalline semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60168856A JP2534980B2 (en) 1985-07-31 1985-07-31 Method for manufacturing crystalline semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS6230314A JPS6230314A (en) 1987-02-09
JP2534980B2 true JP2534980B2 (en) 1996-09-18

Family

ID=15875823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60168856A Expired - Lifetime JP2534980B2 (en) 1985-07-31 1985-07-31 Method for manufacturing crystalline semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2534980B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992393A (en) * 1989-06-01 1991-02-12 Ricoh Company, Ltd. Method for producing semiconductor thin film by melt and recrystallization process
US5254208A (en) * 1990-07-24 1993-10-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6008078A (en) * 1990-07-24 1999-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
KR100269349B1 (en) * 1992-05-04 2000-10-16 구본준 Method for recrystallizing of thin film of silicon using pulsed laser
US6884698B1 (en) 1994-02-23 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with crystallization of amorphous silicon
US6867432B1 (en) 1994-06-09 2005-03-15 Semiconductor Energy Lab Semiconductor device having SiOxNy gate insulating film
US20040087116A1 (en) * 2002-10-30 2004-05-06 Junichiro Nakayama Semiconductor devices and methods of manufacture thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895814A (en) * 1981-11-30 1983-06-07 Mitsubishi Electric Corp Preparation of semiconductor device

Also Published As

Publication number Publication date
JPS6230314A (en) 1987-02-09

Similar Documents

Publication Publication Date Title
US5766989A (en) Method for forming polycrystalline thin film and method for fabricating thin-film transistor
US6815269B2 (en) Thin-film transistor and method for manufacturing the same
JP3182893B2 (en) Method for manufacturing thin film transistor
JP3227980B2 (en) Polycrystalline silicon thin film forming method and MOS transistor channel forming method
JPS59195871A (en) Manufacture of metal oxide semiconductor field-effect transistor
JPH07118443B2 (en) Manufacturing method of semiconductor device
JPH01187814A (en) Manufacture of thin film semiconductor device
JPH1050607A (en) Manufacture of semiconductor device
JP2534980B2 (en) Method for manufacturing crystalline semiconductor thin film
JPH0691032B2 (en) Method for manufacturing semiconductor device
JP3359670B2 (en) Method for manufacturing semiconductor device
JPS60150618A (en) Manufacture of semiconductor device
JP3221251B2 (en) Amorphous silicon crystallization method and thin film transistor manufacturing method
JP3924828B2 (en) Method for manufacturing crystalline semiconductor film and method for manufacturing thin film transistor
JPH0917729A (en) Manufacture of semiconductor device
JPH02295111A (en) Manufacture of semiconductor device having thin film crystal layer
JP3203746B2 (en) Semiconductor crystal growth method
JP3211340B2 (en) Method for manufacturing thin film transistor
JPH0773094B2 (en) Method for manufacturing crystalline semiconductor thin film
JPH08139331A (en) Method of manufacturing thin film transistor
JPH073824B2 (en) Method for manufacturing semiconductor device
JP2830718B2 (en) Method for manufacturing thin film transistor
JPH0697196A (en) Semiconductor device and manufacture thereof
JP2831006B2 (en) Method for manufacturing thin film transistor
JP2500484B2 (en) Thin film transistor manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term