JP2533845B2 - Immunological analysis method - Google Patents

Immunological analysis method

Info

Publication number
JP2533845B2
JP2533845B2 JP60113052A JP11305285A JP2533845B2 JP 2533845 B2 JP2533845 B2 JP 2533845B2 JP 60113052 A JP60113052 A JP 60113052A JP 11305285 A JP11305285 A JP 11305285A JP 2533845 B2 JP2533845 B2 JP 2533845B2
Authority
JP
Japan
Prior art keywords
antigen
light
antibody
test substance
photoconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60113052A
Other languages
Japanese (ja)
Other versions
JPS61271458A (en
Inventor
隆 山田
伸隆 金子
高 田原
威夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP60113052A priority Critical patent/JP2533845B2/en
Priority to DE19863617763 priority patent/DE3617763A1/en
Publication of JPS61271458A publication Critical patent/JPS61271458A/en
Priority to US07/342,589 priority patent/US4980278A/en
Application granted granted Critical
Publication of JP2533845B2 publication Critical patent/JP2533845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は免疫学的分析方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an immunological analysis method.

〔従来技術〕[Prior art]

近年、医療の進歩に伴ない極微量の生体成分の分析が
可能となり、各種疾患の早期診断等に役立つている。例
えば、α−フエトプロテイン、胎児性抗原等で代表され
る悪性腫瘍、インシユリン、サイロキシン等で代表され
るホルモンの異常分泌疾患、免疫グロブリン等で代表さ
れる免疫疾患等の離病とされていた各種疾患の診断が早
期にできるだけでなく、それら疾患の治療後のモニタ、
あるいは最近では薬物等の低分子のハプテン(不完全抗
原)も測定可能となり薬物の投与計画作成にも役立つて
いる。
In recent years, with the progress of medical treatment, it has become possible to analyze a very small amount of biological components, which is useful for early diagnosis of various diseases. For example, malignant tumors represented by α-fetoprotein, fetal antigen, etc., abnormal secretion of hormones represented by insulin, thyroxine, etc., immune disorders represented by immunoglobulin etc. Not only early diagnosis of various diseases, but also monitoring after treatment of those diseases,
Alternatively, recently, low molecular haptens (incomplete antigens) such as drugs can be measured, which is also useful for drug administration planning.

これらの生体成分の多くは抗原抗体反応を利用した免
疫化学的な方法で分析され、このような免疫化学的反応
を利用した分析方法として、本願人は特開昭59−135366
号公報においてサンプル中の被検物質と特異的に抗原抗
体反応をおこす抗原又は抗体を固相化した担体を用い、
この担体をサンプルを収容した反応容器内に投入し、担
体表面の抗原又は抗体とサンプル中の被検物質とを反応
させて被検物質を定量分析する免疫学的自動分析方法を
提案している。この既知の免疫学的分析方法では、反応
後洗浄してB・F分離を行なつてから担体に結合した被
検物質を標識試薬で標識化し、更に第2回目のB・F分
離を行ないその後発色試薬を加えて発色させ、比色測定
により担体に結合した被検物質を定量分析するように構
成されている。
Many of these biological components are analyzed by an immunochemical method utilizing an antigen-antibody reaction. As an analytical method utilizing such an immunochemical reaction, the applicant of the present invention disclosed in JP-A-59-135366.
In the publication, using an antigen or a carrier immobilized with an antibody that specifically causes an antigen-antibody reaction with a test substance in a sample,
An automatic immunological analysis method has been proposed in which this carrier is placed in a reaction container containing a sample, and the antigen or antibody on the surface of the carrier is reacted with the test substance in the sample to quantitatively analyze the test substance. . In this known immunological analysis method, after the reaction, washing and BF separation are performed, then the test substance bound to the carrier is labeled with a labeling reagent, and then a second BF separation is performed. It is configured to add a color-developing reagent to develop color, and to quantitatively analyze the test substance bound to the carrier by colorimetric measurement.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した従来の分析方法では、担体をサンプルと反応
させた後B・F分離を行ない、次に標識試薬で担体に結
合した被検物質を標識化し、更に2回目のB・F分離し
た後、結合した標識酵素を発色させるように構成されて
いる。このため定量するまで多くの工程が必要となり分
析作業が複雑化する欠点があつた。しかも、標識試薬を
介して被検物質を間接的に定量する構成となつているた
め、分析作業中のわずかな外的要因による影響を受け易
すく、例えば洗浄不良等の要因により定量誤差を生じ易
すい欠点もあつた。
In the conventional analysis method described above, after the carrier is reacted with the sample, B / F separation is performed, then the test substance bound to the carrier is labeled with a labeling reagent, and after the second B / F separation, It is configured to cause the bound labeled enzyme to develop color. For this reason, many steps are required until quantification, and the analysis work becomes complicated. Moreover, since the test substance is indirectly quantified via the labeling reagent, it is easily affected by a slight external factor during the analysis work, and a quantification error occurs due to factors such as poor cleaning. There were some easy drawbacks.

従って、本発明の目的は上述した欠点を除去し、サン
プル中の被検物質を簡単な構成によって直接かつ精度良
く定量できる免疫学的分析方法を提供するものである。
Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks and to provide an immunological analysis method capable of directly and accurately quantifying a test substance in a sample with a simple structure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による第1の免疫学的分析方法は、2つの端面
間が光で伝搬するような光路を形成し、外周には光遮断
性の保護層を被覆しているとともに一端面のみに被検物
質と特異的に反応するような抗原または抗体を予め固相
化した光導体を用い、 この光導体の固相化された端面をサンプルに浸漬して
固相化した抗原または抗体と被検物質とを免疫学的に反
応させる工程と、 光導体の一端面に生じる光学的特性変化に応じた光を
2つの端面間で漏れなく伝搬させて光学的に検出する工
程とを有し、 検出された出力に基いてサンプル中の被検物質を定量
分析することを特徴とするものである。
According to the first immunological analysis method of the present invention, an optical path is formed so that light propagates between two end faces, and a light-shielding protective layer is coated on the outer periphery and only one end face is tested. An antigen or antibody that reacts specifically with a substance is immobilized on a photoconductor in advance, and the immobilized end face of this photoconductor is immersed in a sample to immobilize the antigen or antibody and the test substance. And immunologically reacting with each other, and a step of optically propagating light corresponding to a change in optical characteristic occurring on one end face of the light guide between the two end faces to optically detect it. It is characterized in that the test substance in the sample is quantitatively analyzed based on the output.

また、本発明による第2の免疫学的分析方法は、2つ
の端面間で光が伝搬するような光路を形成し、一端面の
みに被検物質と特異的に反応するような抗原または抗体
を交換可能な結合部分を介して予め固相化した光導体を
用い、 この光導体の一端面側に固相化された抗原または抗体
を、前記結合部分によって同一もしくは異なる種類の新
たな抗原または抗体と交換しながら繰り返し分析すべき
サンプルに浸漬して固相化した抗原または抗体と被検物
質とを免疫学的に反応させる工程と、 共通の光導体について抗原または抗体を交換する毎
に、光導体の一端面側から得られる光学的特性変化に応
じた光を、2つの端面間で伝搬させて光学的に検出する
工程とを有し、 検出された出力に基いてサンプル中の被検物質を定量
分析することを特徴とするものである。
In addition, the second immunological analysis method according to the present invention forms an optical path through which light propagates between two end faces, and an antigen or antibody that specifically reacts with a test substance is formed only on one end face. A photoconductor that has been solid-phased in advance via an exchangeable binding part is used, and the antigen or antibody that has been solid-phased on one end surface side of this photoconductor is replaced with a new antigen or antibody of the same or different type by the binding part. The immunological reaction between the antigen or antibody immobilized on the sample to be repeatedly analyzed and the analyte is exchanged with the sample to be analyzed while exchanging with each other. A step of propagating light, which is obtained from one end surface side of the conductor, according to an optical characteristic change between the two end surfaces and optically detecting the light, and based on the detected output, the test substance in the sample Characterized by quantitative analysis Is shall.

〔作用〕[Action]

本発明の第1の方法では、光導体の一端面をサンプル
中に浸漬すると一端面に被検物質が結合し、この被検物
質の結合に伴う一端面上の光学的特性の変化を2つの端
面間を伝搬する光を検出することで直接的に被検物質が
定量される。このとき、光遮断性の保護層により光導体
中を伝搬する光を漏れなく利用できるので、光学的検出
精度が向上する。また、第2の発明によれば、共通の光
導体を用いて常時一定量の抗原または抗体が交換され、
一定の反応性を保ちながら繰り返し分析できるので、検
出精度が一定となって比較性に優れた結果が得られる。
In the first method of the present invention, when one end face of the light guide is immersed in the sample, the test substance is bound to the one end face, and there are two changes in the optical characteristics on the one end face due to the binding of the test substance. The test substance is directly quantified by detecting the light propagating between the end faces. At this time, the light propagating protective layer allows the light propagating in the optical conductor to be used without leakage, so that the optical detection accuracy is improved. According to the second invention, a constant amount of antigen or antibody is constantly exchanged using a common light guide,
Since the analysis can be repeated while maintaining a constant reactivity, the detection accuracy becomes constant and excellent results can be obtained.

〔実施例〕〔Example〕

第1図は本発明による免疫学的分析方法を説明するた
めの図である。本例では血液試料から血球抗原を定量分
析する場合について説明する。光導体1の外周を保護層
2で被覆し、光導体1の一方の端面1aには血液試料中の
血球抗原と特異的に抗原抗体反応を起こす抗体3を固相
化しセンサとする。光導体1は、例えば多数の光フアイ
バを束ねたフアイババンドルや光導波体等のように光束
を入射端から出射端まで伝搬できるものであれば種々の
ものを用いることができる。
FIG. 1 is a diagram for explaining the immunological analysis method according to the present invention. In this example, a case of quantitatively analyzing a blood cell antigen from a blood sample will be described. The outer periphery of the light guide 1 is covered with a protective layer 2, and one end face 1a of the light guide 1 is immobilized with an antibody 3 that specifically causes an antigen-antibody reaction with a blood cell antigen in a blood sample to serve as a sensor. As the light guide 1, various ones can be used as long as they can propagate a light flux from an incident end to an emission end, such as a fiber bundle in which a large number of optical fibers are bundled or an optical waveguide.

分析すべか血液試料4を反応容器5内に収容し、血液
試料4内に光導体1の抗体3を固相した先端を浸漬し、
抗体3と血液試料4とを反応させる。光導体1の端面に
固相化した抗体3は血液試料4中に含まれる血球抗原と
抗原抗体反応を起こし、光導体1の端面には血球6が結
合する。
All the blood samples 4 to be analyzed are housed in the reaction container 5, and the tip of the photoconductor 1 on which the antibody 3 is solid-phased is immersed in the blood sample 4,
The antibody 3 and the blood sample 4 are reacted. The antibody 3 immobilized on the end surface of the light guide 1 causes an antigen-antibody reaction with the blood cell antigen contained in the blood sample 4, and blood cells 6 are bound to the end surface of the light guide 1.

反応後センサを取出し、その先端を洗浄してから透明
容器7内に収容した純水8に浸漬する。光導体1の他方
の端面側に照明光源9及びフイルタ10を配置すると共に
透明容器7の下側の光導体1の端面と対抗する位置に受
光素子11を配置する。フイルタ10の透過特性は被検物質
である血球6の吸収ピークに一致させる。照明光源9か
ら発した照明光はフイルタ10を透過し、光導体1の内部
を伝搬して血球6が結合している端面1aに到達する。端
面1aに到達した照明は、抗原抗体反応によつて結合した
血球の量に応じて吸収され、減衰した照明光が純水8及
び透明容器7の底部を透過して受光素子11で受光され
る。光導体1の端面1aには血液試料4中に含まれる血球
6の濃度に応じて血球6が結合し、結合した血球の量に
応じて照明光が減衰するので受光素子11の光電出力は血
液試料4中に含まれる血球4の量を表わすことになり、
従つて、受光素子11の光電出力を適切に信号処理すれば
容易に被検物質である血球の濃度を定量することができ
る。尚、上述した実施例では光導体1の先端を洗浄した
後純水8中に浸漬させた状態で測定したが、洗浄した後
直接空気中で測定したり、反応容器5の中で直接測定し
てもよい。また、受光素子11と照明光源9の位置を互い
に逆にして、すなわち透明容器7の底部側に照明光源9
を配置して血球6からの透過光を光導体1内を伝搬させ
て測定してもよい。
After the reaction, the sensor is taken out, its tip is washed, and then immersed in pure water 8 contained in the transparent container 7. The illumination light source 9 and the filter 10 are arranged on the other end face side of the light guide 1, and the light receiving element 11 is arranged at a position facing the end face of the light guide 1 below the transparent container 7. The transmission characteristic of the filter 10 is made to coincide with the absorption peak of the blood cell 6, which is the test substance. The illumination light emitted from the illumination light source 9 passes through the filter 10, propagates inside the light guide 1, and reaches the end face 1a to which the blood cells 6 are coupled. The illumination reaching the end face 1a is absorbed according to the amount of blood cells bound by the antigen-antibody reaction, and the attenuated illumination light passes through the pure water 8 and the bottom of the transparent container 7 and is received by the light receiving element 11. . The blood cells 6 are bound to the end surface 1a of the light guide 1 according to the concentration of the blood cells 6 contained in the blood sample 4, and the illumination light is attenuated according to the amount of the bound blood cells. It represents the amount of blood cells 4 contained in the sample 4,
Therefore, if the photoelectric output of the light receiving element 11 is appropriately signal-processed, the concentration of blood cells as the test substance can be easily quantified. Incidentally, in the above-mentioned examples, the measurement was carried out in a state where the tip of the light guide 1 was washed and then immersed in pure water 8. However, after the measurement, it was measured directly in the air or directly in the reaction vessel 5. May be. The positions of the light receiving element 11 and the illumination light source 9 are opposite to each other, that is, the illumination light source 9 is provided on the bottom side of the transparent container 7.
Alternatively, the transmitted light from the blood cells 6 may be propagated through the light guide 1 for measurement.

第2図は本発明による免疫学的分析方法の変形例の構
成を示す図である。本例ではセンサとして第1及び第2
の2本の光導体20及び21を一体に結合し、第1の光導体
20を測定用とし、その端面20aには被検物質である血球
と特異的に抗原抗体反応を起こす抗体3を固相化し、第
2の光導体21は基準用光導体とする。また、本例では端
面に結合した血球6からの反射光を利用して血球を定量
するものとする。光導体20及び21の他方の端面側に照明
光源22、全反射ミラー23及びミラー23を介して第1及び
第2の光導体20及び21の他方の端面と対応する位置に第
1及び第2の受光素子24及び25をそれぞれ配置する。照
明光源22から発した照明光はミラー23で反射し第1及び
第2の光導体20及び21内を伝搬し、他方の端面に到達す
る。第1の光導体20の端面には血球6が結合しているか
ら、照明光は結合した血球量に応じて反射し、再び光導
体21の内部を伝搬し、ミラー23で反射して第1の受光素
子24に入射する。一方、基準用の第2の光導体の端面に
は血球が存在せず、照明光は第2の受光素子25にほとん
ど入射しない。第1の受光素子24には第1光導体の端面
に結合した血球量に応じた光が入射するから、第1及び
第2の受光素子24及び25の光電出力値を比較することに
よつて正確に血球試料中に含まれる血球量を定量できる
ことになる。特に、基準用光導体を用いる構成としてい
るので誤差成分を除去でき定量精度を一層向上させるこ
とができる。
FIG. 2 is a diagram showing a configuration of a modified example of the immunological analysis method according to the present invention. In this example, the first and second sensors are used.
The two light guides 20 and 21 of are joined together to form the first light guide.
20 is used for measurement, an antibody 3 that specifically causes an antigen-antibody reaction with blood cells as a test substance is immobilized on its end face 20a, and the second light guide 21 is used as a reference light guide. Further, in this example, it is assumed that the blood cells are quantified by utilizing the reflected light from the blood cells 6 coupled to the end surface. On the other end face side of the light guides 20 and 21, through the illumination light source 22, the total reflection mirror 23, and the mirror 23, the first and second positions are provided at positions corresponding to the other end faces of the first and second light guides 20 and 21. The light receiving elements 24 and 25 are arranged respectively. The illumination light emitted from the illumination light source 22 is reflected by the mirror 23, propagates in the first and second light guides 20 and 21, and reaches the other end face. Since the blood cells 6 are bound to the end surface of the first light guide 20, the illumination light is reflected according to the amount of bound blood cells, propagates inside the light guide 21 again, and is reflected by the mirror 23 to be reflected by the first light guide. Is incident on the light receiving element 24. On the other hand, blood cells do not exist on the end face of the second reference light guide, and the illumination light hardly enters the second light receiving element 25. Since light corresponding to the amount of blood cells coupled to the end surface of the first light guide is incident on the first light receiving element 24, by comparing the photoelectric output values of the first and second light receiving elements 24 and 25, The amount of blood cells contained in the blood cell sample can be accurately quantified. In particular, since the reference light guide is used, the error component can be removed and the quantitative accuracy can be further improved.

第3図は本発明による免疫学的分析方法の別の変形例
の構成を示す図である。本例では、容器30の底部にミラ
ー面31を形成し、この容器30内に純水を満たし、この純
水中に反応後血球が端面に結合した光導体1を浸漬して
定量を行なう。照明光源22、ミラー23及び受光素子24を
第2図と同様に配置する。照明光源22から発した照明光
はミラー23で反射し光導体1内を伝搬して血球6が結合
している端面に到達する。この端面において、照明光は
反射し、血球6に吸収され、または血球6を透過する。
血球6で反射した光束は再び伝搬して受光素子24に入
射、透過した光束は容器底部のミラー面31で反射し再び
血球6で反射、透過及び吸収され、透過光だけが光導体
1内を伝搬して受光素子24に入射する。従つて、受光素
子24では血球6で反射した光束及び血球6を2回透過し
た光束を受光することになり、S/N比が向上し、定量精
度を向上させることができる。
FIG. 3 is a diagram showing the configuration of another modified example of the immunological analysis method according to the present invention. In this example, a mirror surface 31 is formed on the bottom of a container 30, the container 30 is filled with pure water, and the photoconductor 1 having blood cells bound to the end surface after reaction is immersed in this pure water for quantitative determination. The illumination light source 22, the mirror 23 and the light receiving element 24 are arranged in the same manner as in FIG. Illumination light emitted from the illumination light source 22 is reflected by the mirror 23, propagates in the light guide 1 and reaches the end face to which the blood cells 6 are coupled. At this end face, the illumination light is reflected, absorbed by the blood cells 6, or transmitted through the blood cells 6.
The light beam reflected by the blood cells 6 propagates again and enters the light receiving element 24, and the transmitted light beam is reflected by the mirror surface 31 at the bottom of the container and reflected, transmitted and absorbed by the blood cells 6 again, and only the transmitted light passes through the inside of the light guide 1. The light propagates and enters the light receiving element 24. Therefore, the light receiving element 24 receives the light flux reflected by the blood cells 6 and the light flux transmitted through the blood cells 6 twice, so that the S / N ratio is improved and the quantification accuracy can be improved.

第4図A及びBは更に別の変形例の構成を示すもので
あり、測光するための容器30の底面を球形とすると共に
ミラー面31を形成する。そして、反応が終了した光導体
1をその先端が球形底面31の中心に位置するように配置
し、容器30の上方から平行光束の照明光を照射する。こ
のように構成すれば、容器30の底面のミラー面31で反射
した照面光が光導体の中心に収束するから照明光を無駄
なく利用できる。更に第4図Bに示すように光導体1と
測光用の容器3を一体的に結合して使用することもでき
る。この場合には光導体1と容器30とを一体的に結合し
たものを反応容器内に浸漬させ、反応後反応容器内で直
接測光するか、または反応容器から取り出して洗浄して
測光する。
FIGS. 4A and 4B show the configuration of still another modified example, in which the bottom surface of the container 30 for photometry is spherical and the mirror surface 31 is formed. Then, the photoconductor 1 which has completed the reaction is arranged so that its tip is located at the center of the spherical bottom surface 31, and the illumination light of parallel light flux is irradiated from above the container 30. According to this structure, the illumination light reflected by the mirror surface 31 on the bottom surface of the container 30 converges on the center of the light guide, so that the illumination light can be used without waste. Further, as shown in FIG. 4B, the light guide 1 and the photometric container 3 may be integrally combined and used. In this case, the one obtained by integrally combining the light guide 1 and the container 30 is immersed in the reaction container, and after the reaction, the light is measured directly in the reaction container, or it is taken out from the reaction container and washed to measure the light.

第5図A及びBは本発明による免疫分析方法の別の変
形の構成を示す図である。第5図Aにおいては、光導体
1の端面に被検物質と特異的に抗原抗体反応を起こす抗
体40を固相し、免疫反応により被検物質である抗原41を
結合させ、更に結合した抗原41を色素42と反応させる。
この結果、光導体1の端面にはサンプル中の被検物質の
量に応じた色素42が結合するので、この結合した色素の
量を光学的に測定することにより被検物質を定量する。
第5図Bにおいては色素42の代りに標識酵素43を免疫反
応によつて結合し、更に発色試薬を加えて発色させ、発
色量に基いて被検物質である抗原41を定量する。このよ
うに構成すれば、直接光学的に定量できない被検物質に
ついても光学的に定量できることになる。
5A and 5B are diagrams showing the configuration of another modification of the immunoassay method according to the present invention. In FIG. 5A, an antibody 40 that specifically causes an antigen-antibody reaction with the test substance is solid-phased on the end face of the photoconductor 1, and an antigen 41, which is the test substance, is bound by the immune reaction, and the bound antigen is further added. React 41 with dye 42.
As a result, the dye 42 corresponding to the amount of the test substance in the sample is bound to the end face of the photoconductor 1, and the amount of the bound dye is optically measured to quantify the test substance.
In FIG. 5B, the labeling enzyme 43 is bound by an immunoreaction instead of the dye 42, and a color-developing reagent is further added to develop color, and the antigen 41, which is a test substance, is quantified based on the amount of color development. According to this structure, it is possible to optically quantify the test substance that cannot be directly optically quantified.

第6図A及びBは本発明による免疫分析方法の別の変
形例の構成を示すものであり、繰り返し使用できるセン
サの例を示う。第6図Aに示す例ではポリプロピレン、
ポリカーボネート、スチロール等の透明材料から成るチ
イツプ50を用い、チイツプ50の表面に被検物質と特異的
に抗原抗体反応を起こす抗原又は抗体51を固相化する。
そして、このチイツプ50を光導体1の先端に嵌合装着し
て定量分析を行なう。分析が終了したときは、チイツプ
50を取り除いて別の新しいチイツプ50を装着して分析を
行なう。従つて、多種類の抗原又は抗体を固相化したチ
イツプを用意しておけば、被検物質に応じてランダムに
定量分析を行なうことができる。第6図Bの例では、光
導体1の端面にS−S結合52を固定し、先端のS基に被
検物質と特異的に反応する抗原又は抗体53を固定する。
そして、免疫反応によつて抗原又は抗体53と被検物質と
を結合させて前述した方法によつて定量する。定量後に
おいてS−S結合を切断し、先端側のS基及び抗原又は
抗体を除去し、新たにS−S結合を作る。尚、チイツプ
50やS−S結合を使用しない場合には、分析終了後に光
導体の先端を切り落し、新しい抗原又は抗体を固相化す
れば光導体を繰り返し使用することができる。
6A and 6B show the configuration of another modified example of the immunoassay method according to the present invention, showing an example of a sensor that can be repeatedly used. In the example shown in FIG. 6A, polypropylene,
A chip 50 made of a transparent material such as polycarbonate or styrene is used, and an antigen or antibody 51 that specifically causes an antigen-antibody reaction with a test substance is immobilized on the surface of the chip 50.
Then, the tip 50 is fitted and attached to the tip of the light guide 1, and quantitative analysis is performed. When the analysis is complete,
Remove 50 and install another new Chip 50 for analysis. Therefore, if a chip on which many kinds of antigens or antibodies are immobilized is prepared, quantitative analysis can be performed randomly according to the test substance. In the example of FIG. 6B, the S—S bond 52 is fixed to the end surface of the light guide 1, and the antigen or antibody 53 that specifically reacts with the test substance is fixed to the S group at the tip.
Then, the antigen or the antibody 53 and the test substance are bound by an immune reaction and quantified by the method described above. After the quantification, the S-S bond is cleaved, the S group on the tip side and the antigen or antibody are removed, and a new S-S bond is created. In addition, the tip
When 50 or S-S bond is not used, the photoconductor can be repeatedly used by cutting off the tip of the photoconductor after completion of the analysis and immobilizing a new antigen or antibody.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、光導体を浸漬す
るという簡単な分析作業でありながら、光導体の一端面
に生じる光学的特性変化を、端面間を一定の光学的条件
で伝搬する光でもって光路端から直接的に検出するの
で、サンプル中の被検物質を直接かつ精度良く定量でき
るとともに構成の簡略化も図れる。特に、第1の発明に
よれば、光遮断性の保護層を光導体の外周に被覆するこ
とにより、外的要因の影響を受けにくく、一端面におけ
る抗原抗体反応の結果を漏れなく伝搬して、常に一定の
光学的条件下での検出ができるので、分析精度が向上す
る。また、第2の発明によれば、複数の分析に関するサ
ンプルについて光路を変更することなく繰り返し分析で
きるので、各分析結果が一定精度となって定量的な比較
性能が向上する。
As described above, according to the present invention, the optical characteristic change that occurs on one end face of the light guide is propagated under a constant optical condition between the end faces even though it is a simple analysis work of immersing the light guide. Therefore, since it is detected directly from the optical path end, the test substance in the sample can be directly and accurately quantified and the configuration can be simplified. In particular, according to the first aspect of the invention, by covering the outer periphery of the light guide with a light blocking protective layer, it is less susceptible to external factors, and the result of the antigen-antibody reaction on one end surface is propagated without omission. Since the detection can always be performed under constant optical conditions, the analysis accuracy is improved. Further, according to the second aspect of the present invention, since it is possible to repeatedly analyze samples relating to a plurality of analyzes without changing the optical paths, each analysis result becomes constant accuracy and quantitative comparison performance is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による免疫学的分析方法を説明するため
の図、 第2図は本発明による免疫学的分析方法の変形例の構成
を示す図、 第3図、第4図、第5図及び第6図は本発明による免疫
学的分析方法の別の変形例の構成を示す図である。 1,20,21……光導体、2……保護層 3……抗体、4……血液試料 5……反応容器、6……血球 7……透明容器、9,22……照明光源 10……フイルタ 11,24,25……受光素子 23……ミラー、30……容器 31……ミラー面、40……抗体 41……抗原、42……色素 43……標識試薬、50……チイツプ
FIG. 1 is a diagram for explaining the immunological analysis method according to the present invention, and FIG. 2 is a diagram showing a configuration of a modified example of the immunological analysis method according to the present invention, FIG. 3, FIG. 4, FIG. FIG. 6 and FIG. 6 are diagrams showing the configuration of another modified example of the immunological analysis method according to the present invention. 1,20,21 …… Light guide, 2 …… Protective layer 3 …… Antibody, 4 …… Blood sample 5 …… Reaction vessel, 6 …… Blood cell 7 …… Transparent vessel, 9,22 …… Illumination light source 10… … Filter 11,24,25 …… Light receiving element 23 …… Mirror, 30 …… Container 31 …… Mirror surface, 40 …… Antibody 41 …… Antigen, 42 …… Dye 43 …… Labeling reagent, 50 …… Chip

───────────────────────────────────────────────────── フロントページの続き 合議体 審判長 高橋 詔男 審判官 志村 博 審判官 秋月 美紀子 (56)参考文献 特表 昭59−501873(JP,A) 特表 昭59−81560(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page Judgment Chief Judge Takao Hashio Judge Judge Hiroshi Shimura Judge Mikiko Akizuki (56) Bibliographic References Sho 59-501873 (JP, A) Special Table Sho 59-81560 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2つの端面間で光が伝搬するような光路を
形成し、外周には光遮断性の保護層を被覆しているとと
もに一端面のみに被検物質と特異的に反応するような抗
原または抗体を予め固相化した光導体を用い、 この光導体の固相化された端面をサンプルに浸漬して固
相化した抗原または抗体と被検物質とを免疫学的に反応
させる工程と、 光導体の一端面に生じる光学的特性変化に応じた光を2
つの端面間で漏れなく伝搬させて光学的に検出する工程
とを有し、 検出された出力に基いてサンプル中の被検物質を定量分
析することを特徴とする免疫学的分析方法。
1. An optical path for propagating light between two end faces is formed, a light-shielding protective layer is coated on the outer periphery, and only one end face reacts specifically with a test substance. Using a photoconductor on which various antigens or antibodies have been solid-phased in advance, the solid-phased end surface of the photoconductor is immersed in a sample to immunologically react the solid-phased antigen or antibody with the test substance. The process and the light according to the change in the optical characteristics that occur on one end face of the light guide
And a step of optically propagating between the two end faces without any leakage, and quantitatively analyzing the test substance in the sample based on the detected output.
【請求項2】2つの端面間で光が伝搬するような光路を
形成し、一端面のみに被検物質と特異的に反応するよう
な抗原または抗体を交換可能な結合部分を介して予め固
相化した光導体を用い、 この光導体の一端面側に固相化された抗原または抗体
を、前記結合部分によって同一もしくは異なる種類の新
たな抗原または抗体と交換しながら繰り返し分析すべき
サンプルに浸漬して固相化した抗原または抗体と被検物
質とを免疫学的に反応させる工程と、 共通の光導体について抗原または抗体を交換する毎に、
光導体の一端面側から得られる光学的特性変化に応じた
光を、2つの端面間で伝搬させて光学的に検出する工程
とを有し、 検出された出力に基いてサンプル中の被検物質を定量分
析することを特徴とする免疫学的分析方法。
2. An optical path that allows light to propagate between two end faces, and an antigen or antibody capable of specifically reacting with a test substance only on one end face is previously fixed via a binding part capable of exchange. A phased photoconductor is used, and the antigen or antibody immobilized on one end surface of this photoconductor is replaced with a new antigen or antibody of the same or different type by the binding part to form a sample to be repeatedly analyzed. The step of immunologically reacting the antigen or antibody immobilized by immersion with the test substance, and every time the antigen or antibody is exchanged for a common photoconductor,
A step of propagating light according to a change in optical characteristics obtained from one end surface side of the light guide between the two end surfaces and optically detecting the light, and based on the detected output, the test object in the sample is detected. An immunological analysis method, which comprises quantitatively analyzing a substance.
JP60113052A 1985-05-28 1985-05-28 Immunological analysis method Expired - Lifetime JP2533845B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60113052A JP2533845B2 (en) 1985-05-28 1985-05-28 Immunological analysis method
DE19863617763 DE3617763A1 (en) 1985-05-28 1986-05-27 METHOD FOR CARRYING OUT IMMUNOLOGICAL PROVISIONS AND APPARATUS APPARATUS FOR THIS
US07/342,589 US4980278A (en) 1985-05-28 1989-04-24 Method of effecting immunological analysis and apparatus for carrying out the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60113052A JP2533845B2 (en) 1985-05-28 1985-05-28 Immunological analysis method

Publications (2)

Publication Number Publication Date
JPS61271458A JPS61271458A (en) 1986-12-01
JP2533845B2 true JP2533845B2 (en) 1996-09-11

Family

ID=14602276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60113052A Expired - Lifetime JP2533845B2 (en) 1985-05-28 1985-05-28 Immunological analysis method

Country Status (1)

Country Link
JP (1) JP2533845B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738534A (en) * 1987-03-26 1988-04-19 Abbott Laboratories Vertical beam spectrophotometer
JP3107649B2 (en) * 1991-12-20 2000-11-13 イビデン株式会社 Fluorescent immunoassay

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797451A (en) * 1980-12-09 1982-06-17 Amano Pharmaceut Co Ltd Measuring method for enzyme immunity by both sides combination method of proteinic high molecular antigen using regenerable immune adsorption body
US4558014A (en) * 1983-06-13 1985-12-10 Myron J. Block Assay apparatus and methods

Also Published As

Publication number Publication date
JPS61271458A (en) 1986-12-01

Similar Documents

Publication Publication Date Title
US4980278A (en) Method of effecting immunological analysis and apparatus for carrying out the same
FI76432B (en) FARING REQUIREMENTS FOR THE CONSTITUTION OF THE ELEMENT I LOESNING MED EN LJUSLEDARE.
US5081012A (en) Waveguide sensor with input and reflecting gratings and its use in immunoassay
USRE33064E (en) Method for the determination of species in solution with an optical wave-guide
EP0649535B1 (en) Method for improving measurement precision in evanescent wave optical biosensor assays
US4818710A (en) Method for optically ascertaining parameters of species in a liquid analyte
US4775637A (en) An immunoassay apparatus having at least two waveguides and method for its use
US4582809A (en) Apparatus including optical fiber for fluorescence immunoassay
CA2177362C (en) Sensor device for sandwich assay
US6008057A (en) Immunoassay system
CA2253527C (en) Method of assay
EP0512390A1 (en) Test strip for immunoassay, assay method using the same and immunoassay device
JPH0641912B2 (en) Optical immunoassay device
CA2323442C (en) Method and apparatus for measuring proteins
JP2533845B2 (en) Immunological analysis method
CA2021658C (en) Multiplex immunoassay system
JPH05126832A (en) Immune analyzer and immune analysis method
JP4128730B2 (en) Immunochromatographic test piece measuring device
JP2002267664A (en) Measuring apparatus for immunochromatographic test piece
EP0731916A1 (en) Ultrasensitive competitive immunoassays using optical waveguides
Robinson et al. The fluorescent capillary fill device
WO1987006345A1 (en) Colorimetric ratioing immunoassay
KR20240033262A (en) Articles and methods for performing analysis
NO161945B (en) PROCEDURE AND APPARATUS FOR DETERMINATION OF SUBSTANCES IN SOLUTION WITH AN OPTICAL CHAIRMAN.