JP2532173B2 - Developer for positive type photoresist - Google Patents

Developer for positive type photoresist

Info

Publication number
JP2532173B2
JP2532173B2 JP3104313A JP10431391A JP2532173B2 JP 2532173 B2 JP2532173 B2 JP 2532173B2 JP 3104313 A JP3104313 A JP 3104313A JP 10431391 A JP10431391 A JP 10431391A JP 2532173 B2 JP2532173 B2 JP 2532173B2
Authority
JP
Japan
Prior art keywords
pattern
developer
etching
width
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3104313A
Other languages
Japanese (ja)
Other versions
JPH04226466A (en
Inventor
秀夫 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP3104313A priority Critical patent/JP2532173B2/en
Publication of JPH04226466A publication Critical patent/JPH04226466A/en
Application granted granted Critical
Publication of JP2532173B2 publication Critical patent/JP2532173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSIの超微細パター
ンを形成させる技術に関し、詳しくはポジタイプフォト
レジストの現像に使用する現像液に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for forming an ultrafine pattern of an LSI, and more particularly to a developing solution used for developing a positive type photoresist.

【0002】[0002]

【従来の技術】現在、ULSIに採用されている形式パ
ターンの寸法は1μm以下0.5μmに至り、近い将来
には0.3μmに達すると考えられる。
2. Description of the Related Art At present, the size of a formal pattern adopted in ULSI reaches 1 μm or less and 0.5 μm, and it is considered that it will reach 0.3 μm in the near future.

【0003】該ULSI製造技術の中核をなすものは、
写真製版技術の応用であるフォトリソグラフィとエッチ
ングである。フォトリソグラフィとエッチングはパター
ン形成に密接に関連した技術であるが、それぞれ独立し
た技術として位置づけられ改良が加えられてきた。超微
細パターン形成のためのフォトリソグラフィ技術の改良
は、主としてフォトレジストの改良に集中し、現像液の
改良には、以下の点を除き余り注目がなされなかった。
即ち、ポジタイプフォトレジスト用現像液中にナトリウ
ム、カリウムに代表されるアルカリ金属が存在すると、
該アルカリ金属が吸着されてLSIの電気特性を劣化さ
せることが明らかとなり、苛性ソーダの如き無機アルカ
リからなる現像液は、現在では水酸化第四級アンモニウ
ムに代表される水溶性有機アルカリ化合物を主成分とす
る現像液、いわゆる“メタルフリー現像液”に置き換え
られ、広く使用されるようになった。
The core of the ULSI manufacturing technology is
These are photolithography and etching, which are applications of photoengraving technology. Photolithography and etching are techniques closely related to pattern formation, but they have been positioned as independent techniques and have been improved. Improvements in photolithography technology for forming ultrafine patterns have focused mainly on improvements in photoresists, and improvements in developers have received little attention except for the following points.
That is, when an alkali metal typified by sodium and potassium is present in the developer for positive type photoresist,
It has been revealed that the alkali metal is adsorbed and deteriorates the electrical characteristics of the LSI. Therefore, a developer composed of an inorganic alkali such as caustic soda is currently composed mainly of a water-soluble organic alkali compound represented by quaternary ammonium hydroxide. It has been widely used after being replaced with the so-called "metal-free developer".

【0004】[0004]

【発明が解決しようとする課題】しかしながら、現在一
般に使用されているメタルフリー現像液では、露光・現
像後の形成パターン寸法とエッチング後の形成パターン
寸法とは正確に一致しないと云う欠点があった。該欠点
は、形成パターン寸法が1μm以上である場合はほぼ一
定の相関関係をもってずれ(不一致)ていたので、均一
な露光が可能なLSIの集積度が余り高くない、換言す
れば形成パターン寸法が大きな場合はさほど大きな影響
を与えなかった。ところが形成パターン寸法が1μm以
下、例えば4MDRAMでは約0.8μmの如きULS
Iの領域では、露光・現像後とエッチング後の形成パタ
ーン寸法の不一致に相関がなく、不規則なずれ現象を示
し寸法再現性の観点から大きな問題となってきた。
However, the metal-free developing solution which is generally used at present has a drawback that the size of the pattern formed after exposure / development does not exactly match the size of the pattern formed after etching. . The drawback is that when the formed pattern size is 1 μm or more, they are shifted (mismatched) with a substantially constant correlation, so that the degree of integration of LSIs capable of uniform exposure is not so high. In other words, the formed pattern size is Larger cases did not have much impact. However, the size of the formed pattern is 1 μm or less, for example, in the case of 4M DRAM, the ULS is about 0.8 μm.
In the region I, there is no correlation between the inconsistencies in the formed pattern dimensions after exposure / development and after etching, and an irregular deviation phenomenon is exhibited, which has become a serious problem from the viewpoint of dimensional reproducibility.

【0005】[0005]

【課題を解決するための手段】本発明者は、メタルフリ
ー現像液について詳細に研究を進めた結果、現像液中に
存在する各種イオン、特にハロゲンイオンの影響によ
り、現像時に未現像部が生じ、次いで該未現像部の残存
によりエッチングが妨害されて最終形成パターン寸法が
変動することを見い出し、本発明を完成するに到った。
As a result of detailed research on a metal-free developing solution, the present inventor has found that undeveloped areas are generated during development due to the influence of various ions present in the developing solution, particularly halogen ions. Then, it was found that the dimension of the final formed pattern fluctuates because the etching is disturbed by the remaining undeveloped portion, and the present invention has been completed.

【0006】即ち、本発明は、2.0〜2.5重量%の
水酸化第四級アンモニウムの水溶液からなり、且つ金属
イオン及びハロゲンイオンの含有量が各々10ppb以
下であることを特徴とするポジタイプフォトレジスト用
現像液である。
That is, the present invention is characterized in that it comprises an aqueous solution of quaternary ammonium hydroxide of 2.0 to 2.5% by weight, and the content of metal ions and halogen ions is 10 ppb or less each. It is a developer for positive type photoresist.

【0007】本発明の現像液は、水酸化第四級アンモニ
ウム(以下、アルカリ化合物ともいう)からなる水溶液
であり、該アルカリ化合物の含有量は、通常2.0〜
2.5重量%である。2.0重量%より含有量が少ない
と、極めて現像速度が遅くなり、実質的に現像液として
作用し得ない。又、2.5重量%より含有量が多いと、
極めて現像速度が速くなる他に、未露光部分も溶解する
ので現像液として好ましくない。本発明のアルカリ化合
物としては、水に溶解して第四級アンモニウムカチオン
と水酸化イオンを生じる各種アミン、即ち水酸化第四級
アンモニウムが使用され、具体的にはコリン、水酸化テ
トラメチルアンモニウム、水酸化テトラエチルアンモニ
ウム、水酸化トリス(2−ヒドロキシエチル)メチルア
ンモニウム、水酸化テトラキス(ヒドロキシエチル)ア
ンモニウム等が挙げられるが、これらに限定されるもの
ではない。
The developer of the present invention is an aqueous solution containing a quaternary ammonium hydroxide (hereinafter also referred to as an alkali compound), and the content of the alkali compound is usually 2.0 to.
It is 2.5% by weight. When the content is less than 2.0% by weight, the developing speed becomes extremely slow, and it cannot substantially act as a developing solution. If the content is more than 2.5% by weight,
It is not preferable as a developing solution because the developing speed becomes extremely high and the unexposed portion is also dissolved. As the alkaline compound of the present invention, various amines that generate a quaternary ammonium cation and a hydroxide ion when dissolved in water, that is, quaternary ammonium hydroxide is used. Specifically, choline, tetramethylammonium hydroxide, Examples thereof include tetraethylammonium hydroxide, tris (2-hydroxyethyl) methylammonium hydroxide, and tetrakis (hydroxyethyl) ammonium hydroxide, but are not limited thereto.

【0008】本発明の現像液は、金属イオン及びハロゲ
ンイオンの含有量が各々10ppb以下であることが必
須である。金属イオン含有量が10ppbを超えた場合
は、金属イオンの表面吸着によってLSIの電気特性が
劣悪となり、又、ハロゲンイオン含有量が10ppbを
超えてppmのオーダで存在する場合は、図6(A)、
(B)に模式的に示す如く、未現像部を生じ、この未現
像部の影響を受けて所定のエッチングが行なわれず、最
終的に得られる形成パターン寸法が変動する。尚、パタ
ーン寸法とは基板上に形成されたパターンの底部幅を云
う。
It is essential that the developer of the present invention has a metal ion content and a halogen ion content of 10 ppb or less, respectively. When the metal ion content exceeds 10 ppb, the electrical characteristics of the LSI are deteriorated due to the surface adsorption of the metal ions, and when the halogen ion content exceeds 10 ppb and exists in the order of ppm, the results shown in FIG. ),
As schematically shown in (B), an undeveloped portion is generated, the predetermined etching is not performed due to the influence of the undeveloped portion, and the finally obtained pattern size varies. The pattern dimension means the bottom width of the pattern formed on the substrate.

【0009】金属イオンとしては、Al、Ba、Ca、
Cr、Cu、Fe、K、Li、Mg、Mn、Na、N
i、Pb、Zn、Ag、Cd等が挙げられハロゲンイオ
ンとしては塩素、ヨウ素、臭素、フッ素等が挙げられ、
現在、上市されているメタルフリー現像液中の金属イオ
ン含有量は0.5〜100ppbであり、ハロゲンイオ
ン含有量は3000〜18000ppbである。
The metal ions include Al, Ba, Ca,
Cr, Cu, Fe, K, Li, Mg, Mn, Na, N
i, Pb, Zn, Ag, Cd and the like, and the halogen ion includes chlorine, iodine, bromine, fluorine and the like,
The metal-free developer currently on the market has a metal ion content of 0.5 to 100 ppb and a halogen ion content of 3000 to 18,000 ppb.

【0010】本発明の、アルカリ化合物水溶液からな
り、金属イオン及びハロゲンイオン含有量が各々10p
pb以下の現像液の製法は何ら制限されないが、その一
例を水酸化第四級アンモニウムの場合で以下に示す。
It consists of an aqueous solution of an alkali compound of the present invention and has a metal ion content and a halogen ion content of 10 p each.
The method for producing a developer having a pb or less is not limited at all, but one example thereof is shown below in the case of quaternary ammonium hydroxide.

【0011】本発明の、アルカリ化合物水溶液からな
り、金属イオン及びハロゲンイオンの含有量が各々1p
pb以下の現像液の製法は制限されないが、その一例を
第四級アンモニウム塩を原料とする場合について、以下
に示す。
It is composed of an aqueous solution of an alkali compound of the present invention and has a metal ion content and a halogen ion content of 1 p each.
The method for producing a developer having a pb or less is not limited, but an example thereof is shown below in the case of using a quaternary ammonium salt as a raw material.

【0012】ポジタイプフォトレジスト用現像液中にハ
ロゲンイオンが存在すると、該ハロゲンイオンに起因す
る第四級アンモニウム塩が強力なカチオン性界面活性剤
であるので、現像液中の主成分である水酸化第四級アン
モニウムと一種の競争反応剤又は競争吸着剤として作用
し、水酸化第四級アンモニウムによる現像作用を妨害し
未現像部を生じるものと考えられる。そして該未現像部
の残存が次工程のエッチングに大きく影響し、結果とし
て形成パターン寸法の再現性が失われるものと考えられ
る。
When a halogen ion is present in the developer for a positive type photoresist, the quaternary ammonium salt resulting from the halogen ion is a strong cationic surfactant, and therefore water, which is the main component in the developer, is used. It is considered that the compound acts as a kind of competitive reaction agent or competitive adsorbent with the quaternary ammonium oxide and interferes with the developing action of the quaternary ammonium hydroxide to form an undeveloped area. It is considered that the remaining undeveloped portion has a great influence on the etching in the next step, and as a result, the reproducibility of the size of the formed pattern is lost.

【0013】しかるに、本発明の現像液を用うれば上記
現像を抑制できて他のパターン形成プロセス条件を変更
することなしに正確にサブミクロンのパターンを寸法再
現性よく形成でき、特に集積度の高いULSIの製造に
極めて有用である。
However, when the developer of the present invention is used, the above development can be suppressed and a submicron pattern can be accurately formed with good dimensional reproducibility without changing other pattern forming process conditions. Very useful for high ULSI manufacturing.

【0014】第5図、第6図には、各々本発明の現像液
と従来の現像液を用いた、現像後のレジストパターン
(A)、及びエッチング後の形成されたパターン(B)
の各断面形状を、走査型電子顕微鏡写真を基にして模式
的に示した。
FIGS. 5 and 6 show a resist pattern (A) after development and a formed pattern (B) after etching using the developer of the present invention and the conventional developer, respectively.
Each cross-sectional shape of the above was schematically shown based on a scanning electron micrograph.

【0015】[0015]

【実施例】以下、本発明の実施例を示すが、本発明はこ
れらの実施例によって限定されるものではない。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to these examples.

【0016】実施例1 〔露光装置及び条件〕 露光装置として(株)ニコン製ステッパーNSR−15
05G4Dを使用した。NA=0.45の開口数を有す
るステッパーであり、光源は水銀ランプのg線、即ち4
36nmの波長を用いた。最適露光時間は用いた基板の種
類によって各々変更した。
Example 1 [Exposure apparatus and conditions] As an exposure apparatus, Stepper NSR-15 manufactured by Nikon Corporation
05G4D was used. It is a stepper with a numerical aperture of NA = 0.45, and the light source is the g-line of a mercury lamp, that is, 4
A wavelength of 36 nm was used. The optimum exposure time was changed depending on the type of substrate used.

【0017】尚、フォトレジストに対する露光量は、形
成パターン寸法がステッパーの限界解像度、例えば1μ
m以下の領域においては、フォトレジスト層内又は基板
下地膜内における光の多重干渉効果、定在波効果、更に
基板各層間の段差や凹凸形状の側面からの光散乱による
露光性能低下等の影響を受けて、均一性に乏しくなる。
The exposure amount for the photoresist is such that the size of the formed pattern is the critical resolution of the stepper, for example, 1 μm.
In the region of m or less, the effect of multiple interference of light in the photoresist layer or the base film of the substrate, the standing wave effect, and the deterioration of the exposure performance due to the light scattering from the side surface of the unevenness and the steps between the layers of the substrate As a result, the uniformity becomes poor.

【0018】〔現像液の調製〕 チタン板に白金をメッキした陽極はSUS316の陰極
との間に、陽極側より順に陰イオン交換膜(徳山曹達社
製、商品名ネオセプタAM−1、固定イオン濃度8.
9)、二枚の陽イオン交換膜(ディポン社製、商品名ナ
フィオン901)を設けて、4室よりなる有効通電面積
0.2dm2 の電解槽を構成した。なお、陽イオン交換膜
は陽イオン交換基のカルボン酸基を有する面を陰極側に
向けて設置した。
[Preparation of Developer] An anode prepared by plating a titanium plate with platinum was placed between a cathode of SUS316 and an anion exchange membrane (manufactured by Tokuyama Soda Co., Ltd., trade name Neoceptor AM-1, fixed ion concentration) in order from the anode side. 8.
9), two cation exchange membranes (trade name: Nafion 901, manufactured by Dipon Co., Ltd.) were provided to form an electrolytic cell having four chambers and an effective energization area of 0.2 dm 2 . The cation exchange membrane was placed with the surface having the carboxylic acid group of the cation exchange group facing the cathode.

【0019】上記の電解槽を用いて、陽極室に0.5規
定の塩酸、陰イオン交換膜と陽イオン交換とにより形成
された塩溶液室に2.5規定の塩化テトラメチルアンモ
ニウム水溶液、二枚の陽イオン交換膜により形成された
部屋(中間室)に0.01規定の水酸化テトラメチルア
ンモニウム溶液(和光純薬工業製10%溶液の希釈液)
および陰極室に超純水をそれぞれ循環させ、電流密度1
5A/dm2 で連続的に電解を実施した。
Using the above electrolytic cell, 0.5 N hydrochloric acid was used in the anode chamber, 2.5 N tetramethylammonium chloride aqueous solution was used in the salt solution chamber formed by the anion exchange membrane and cation exchange, and 0.01 N tetramethylammonium hydroxide solution (diluted solution of 10% solution manufactured by Wako Pure Chemical Industries) in a room (intermediate room) formed by a sheet of cation exchange membrane
And ultra-pure water were circulated in the cathode chamber and the cathode chamber, respectively, and the current density was 1
Electrolysis was continuously carried out at 5 A / dm 2 .

【0020】陰極室に生成する水酸化テトラメチルアン
モニウムは1.0規定の水溶液となるように調整して取
得し、また中間室の水溶液における塩化テトラメチルア
ンモニウムの濃度が0.25規定(原料である塩化テト
ラメチルアンモニウム水溶液の濃度に対して1/10)
になったところで、該水溶液の全部を取換えた後、さら
に同様の電解を実施した。
Tetramethylammonium hydroxide formed in the cathode chamber was obtained by adjusting it so as to be a 1.0N aqueous solution, and the concentration of tetramethylammonium chloride in the aqueous solution in the intermediate chamber was 0.25N (based on the raw material). 1/10 of the concentration of an aqueous tetramethylammonium chloride solution)
At that point, all the aqueous solution was replaced, and then the same electrolysis was performed.

【0021】次いで、陰極室から取得される1.0規定
の水酸化テトラメチルアンモニウム水溶液に超純水を所
定量加えて2.35wt%の水溶液とした後、0.1μm
のフィルターを用いて濾過して本発明の現像液とした。
該現像液中の塩素イオン含量を高感度比濁法により測定
したところ10ppb 以下であった。又、通常の方法によ
り、ナトリウムイオン及びカリウムイオン含量を測定し
たところ各6ppb 以下、2ppb 以下であった。いづれも
定量下限以下であった。
Next, a predetermined amount of ultrapure water was added to a 1.0 N tetramethylammonium hydroxide aqueous solution obtained from the cathode chamber to make a 2.35 wt% aqueous solution, and then 0.1 μm
The solution of the present invention was obtained by filtering with a filter of No. 1.
When the chlorine ion content in the developer was measured by the high sensitivity turbidimetric method, it was 10 ppb or less. The sodium ion content and the potassium ion content were measured by a conventional method and found to be 6 ppb or less and 2 ppb or less, respectively. All were below the lower limit of quantitation.

【0022】〔パターン形成〕 5インチウエハーのSiO2 上に形成したポリシリコン
膜上に、フェノール・ノボラック樹脂とナフトキノンジ
アジドと有機溶剤からなるポジタイプフォトレジストを
スピンコーターを用いて塗布し、厚さ1.2μmのレジ
スト層を形成した。次いでNA=0.45のG線ステッ
パーを用いて190秒露光した後、前記現像液を用いて
パドル現像しレジストパターンを形成した。得られたレ
ジストパターンをマスクにして、フッ化物を用いる反応
性イオンエッチング(RIE)によりドライエッチング
法でポリシリコンのパターン形成を行ない、その後不用
となったレジスト層を酸素プラズマで除去し、所望のポ
リシリコンパターンを得た。
[Pattern formation] A positive type photoresist composed of a phenol / novolak resin, naphthoquinone diazide and an organic solvent was applied on a polysilicon film formed on a SiO 2 of a 5 inch wafer by using a spin coater to obtain a thickness. A 1.2 μm resist layer was formed. Next, after exposing for 190 seconds using a G-line stepper with NA = 0.45, paddle development was performed using the developing solution to form a resist pattern. Using the obtained resist pattern as a mask, a pattern of polysilicon is formed by a dry etching method by reactive ion etching (RIE) using a fluoride, and then the unnecessary resist layer is removed by oxygen plasma to obtain a desired pattern. A polysilicon pattern was obtained.

【0023】以上のプロセス操作をパターン寸法2.5
μm〜0.6μmにわたって実施し、その結果を第1図
にグラフにして示した。第1図において、横軸は現像後
のレジストのパターン寸法(レジスト幅)であり、縦軸
はエッチングの最終パターン寸法(パターン幅)であ
る。〇印が本実施例の結果であり、レジスト幅とパター
ン幅が極めて良く一致して直線関係を示し、形成パター
ン寸法は正確に制御可能なことを表わしている。
The above process operation is performed with the pattern size of 2.5.
The measurement was carried out over the range of μm to 0.6 μm, and the results are shown in the graph of FIG. In FIG. 1, the horizontal axis represents the pattern size (resist width) of the resist after development, and the vertical axis represents the final pattern size (pattern width) of etching. The ∘ mark indicates the result of this embodiment, which shows that the resist width and the pattern width are extremely well matched and shows a linear relationship, and that the size of the formed pattern can be accurately controlled.

【0024】比較例1 現像液として現像液SD−0(徳山曹達株式会社製)を
用いた以外は、実施例1と同様にパターン形成を行い、
その結果を第1図に△印として示した。尚、本比較例の
現像液中の塩素イオン含量は6400ppb 、ナトリウム
イオンのそれは57ppb 、カリウムイオンのそれは6.
2ppb であった。
Comparative Example 1 Pattern formation was carried out in the same manner as in Example 1 except that Developer SD-0 (manufactured by Tokuyama Soda Co., Ltd.) was used as the developer.
The result is shown as a triangle mark in FIG. The chlorine ion content of the developer of this comparative example was 6400 ppb, that of sodium ion was 57 ppb, and that of potassium ion was 6.
It was 2 ppb.

【0025】第1図から明らかな如く、エッチング後の
パターン幅が全域にわたり不正確であり、特に図中の矢
印で示したG線ステッパーの解像力限界(0.6μm)
に対応する箇所ではプロセストレンドラインから外れて
いる。
As is apparent from FIG. 1, the pattern width after etching is inaccurate over the entire area, and in particular, the resolution limit (0.6 μm) of the G-line stepper indicated by the arrow in the figure.
The part corresponding to is out of the process trend line.

【0026】実施例2 5インチウエハーのSiO2 上に形成したAl−Si合
金膜を用いてパターンを形成すること、最適露光時間を
320秒に変更した以外は実施例1と同様に行った。結
果を第2図に〇印で示した。
[0026] forming a pattern using the Al-Si alloy film formed on the SiO 2 of Example 2 5-inch wafer, except for changing the optimum exposure time to 320 seconds was performed in the same manner as in Example 1. The result is shown by a circle in FIG.

【0027】図から明らかなようにレジスト幅とエッチ
ング後のパターン幅は極めて良く一致し直線関係を有し
ている。
As is clear from the figure, the resist width and the pattern width after etching match very well and have a linear relationship.

【0028】比較例2 実施例2において、現像液として比較例1の現像液を用
いた以外は実施例2と同様に行った。結果を第2図に△
印で示した。エッチング後のパターン幅は、パターン寸
法が微細化するに従い所定のレジスト幅より次第に大き
くなることが明らかに認められ、ULSIの如き超微細
パターンの正確な形成は、事実上不可能である。
Comparative Example 2 The procedure of Example 2 was repeated, except that the developing solution of Comparative Example 1 was used as the developing solution. The results are shown in Figure 2.
It is indicated by a mark. It is clearly recognized that the pattern width after etching gradually becomes larger than a predetermined resist width as the pattern size becomes finer, and it is practically impossible to accurately form an ultrafine pattern such as ULSI.

【0029】実施例3 5インチウエハーのSiO2 上に形成したSi3 4
を用いてパターン形成した以外は実施例1と同様に行っ
た。尚、Si3 4 はNitride Self−Al
igned Processに代表されるようにフォト
リソグラフィの中で最も厳密な寸法制御を必要とする膜
であり、且つWafer Processにおいて最も
広く使用されている。
Example 3 Example 3 was repeated except that a pattern was formed using a Si 3 N 4 film formed on SiO 2 of a 5-inch wafer. Si 3 N 4 is Nitride Self-Al.
It is a film that requires the most rigorous dimensional control in photolithography as represented by the ignited process, and is most widely used in the wafer process.

【0030】結果を第3図に〇印で示す。レジスト幅と
エッチング後のパターン幅は極めて一致し直線関係を有
している。
The results are shown by the circles in FIG. The resist width and the pattern width after etching are extremely coincident with each other and have a linear relationship.

【0031】比較例3 実施例3において、現像液として比較例1の現像液を用
いた以外は実施例3と同様に行った。
Comparative Example 3 The procedure of Example 3 was repeated, except that the developing solution of Comparative Example 1 was used as the developing solution.

【0032】結果を第3図に△印で示した。エッチング
後のパターン幅は、パターン寸法が微細化するに従い所
定のレジスト幅より次第に小さくなる傾向が明らかに認
められる。
The results are shown by a triangle mark in FIG. It is clearly recognized that the pattern width after etching tends to become smaller than a predetermined resist width as the pattern size becomes finer.

【0033】実施例4 5インチウエハーのSiO2 上に形成したりん・硼化硅
酸ガラス(BPSG)膜を用いてコンタクトホール形成
を行った以外は、実施例1と同様に行った。尚、コンタ
クトホール形成はゲート電極形成と同じく最も厳密な寸
法制御を必要とし、とりわけその形状に由来する段差や
凹凸の側面からの光散乱による露光均一性の低下が問題
となる技術分野である。
Example 4 The same procedure as in Example 1 was carried out except that the contact hole was formed using a phosphorous boric silicate glass (BPSG) film formed on SiO 2 of a 5-inch wafer. The formation of contact holes requires the most strict dimensional control as in the formation of gate electrodes, and in particular, this is a technical field in which exposure uniformity is deteriorated due to light scattering from the side surfaces of steps and irregularities due to the shape.

【0034】結果を第4図に〇印で示す。レジスト幅と
エッチング後のパターン幅は良く一致し直線関係を有し
ており上記諸問題を有して厳密な寸法制御を必要とする
分野においても、極めて有用であることが明らかとなっ
た。
The results are shown by the circles in FIG. It has been revealed that the resist width and the pattern width after etching are in good agreement with each other and have a linear relationship, which is extremely useful even in the field where the above-mentioned problems are involved and strict dimension control is required.

【0035】比較例4 実施例4において、現像液として比較例1の現像液を用
いた以外は実施例4と同様に行った。
Comparative Example 4 Example 4 was repeated except that the developing solution of Comparative Example 1 was used as the developing solution.

【0036】結果を第4図に△印で示した。エッチング
後のパターン幅は、サブミクロン領域のみならず1μm
以上の場合でもレジスト幅と全く一致せず、直線傾向す
ら見い出せない。又、この結果から、コンタクトホール
底部においてはステッパーによる均一な露光がなされて
ないことが推定される。
The results are shown by the mark Δ in FIG. Pattern width after etching is 1 μm as well as sub-micron area
Even in the above cases, it does not match the resist width at all, and even a straight line tendency cannot be found. From this result, it is estimated that the stepper does not uniformly expose the bottom of the contact hole.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1図は、実施例1及び比較例1の、フォトレ
ジスト現像後のレジスト幅とエッチング後のパターン幅
の関係を示す図である。図中の〇印は実施例、△印は比
較例の具体的データである。
FIG. 1 is a diagram showing a relationship between a resist width after photoresist development and a pattern width after etching in Example 1 and Comparative Example 1. In the figure, ◯ mark is specific data of the example and Δ mark is specific data of the comparative example.

【図2】第2図は、同様に実施例2及び比較例2のレジ
スト幅とパターン幅の関係を示す図である。
FIG. 2 is a diagram similarly showing a relationship between the resist width and the pattern width in Example 2 and Comparative Example 2.

【図3】第3図は、同様に実施例3及び比較例3のレジ
スト幅とパターン幅の関係を示す図である。
FIG. 3 is a diagram similarly showing a relationship between the resist width and the pattern width in Example 3 and Comparative Example 3.

【図4】第4図は、同様に実施例4及び比較例4のレジ
スト幅とパターン幅の関係を示す図である。
FIG. 4 is a diagram similarly showing a relationship between the resist width and the pattern width in Example 4 and Comparative Example 4.

【図5】第5図(A)は本発明の現像液を用いた場合の
レジストパターンの断面形状を、(B)は次いでエッチ
ングした後のパターンの断面形状を各々走査型電子顕微
鏡観察を基にして模式的に表わした図である。
FIG. 5 (A) is a cross-sectional shape of a resist pattern when the developing solution of the present invention is used, and FIG. 5 (B) is a cross-sectional shape of the pattern after etching, based on scanning electron microscope observation. It is the figure which represented typically.

【図6】第6図(A)、(B)は従来現像液を用いた場
合のレジストパターンの断面形状及びエッチング後のパ
ターン断面形状を同様に模式的に表わした図である。
FIGS. 6 (A) and 6 (B) are diagrams schematically similarly showing the cross-sectional shape of a resist pattern and the pattern cross-sectional shape after etching when a conventional developing solution is used.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2.0〜2.5重量%の水酸化第四級ア
ンモニウムの水溶液からなり、且つ金属イオン及びハロ
ゲンイオンの含有量が各々10ppb以下であることを
特徴とするポジタイプフォトレジスト用現像液。
1. A positive-type photoresist comprising an aqueous solution of quaternary ammonium hydroxide in an amount of 2.0 to 2.5% by weight and containing metal ions and halogen ions in an amount of 10 ppb or less, respectively. Developer.
JP3104313A 1990-06-29 1991-05-09 Developer for positive type photoresist Expired - Lifetime JP2532173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104313A JP2532173B2 (en) 1990-06-29 1991-05-09 Developer for positive type photoresist

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16989990 1990-06-29
JP2-169899 1990-06-29
JP3104313A JP2532173B2 (en) 1990-06-29 1991-05-09 Developer for positive type photoresist

Publications (2)

Publication Number Publication Date
JPH04226466A JPH04226466A (en) 1992-08-17
JP2532173B2 true JP2532173B2 (en) 1996-09-11

Family

ID=26444815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104313A Expired - Lifetime JP2532173B2 (en) 1990-06-29 1991-05-09 Developer for positive type photoresist

Country Status (1)

Country Link
JP (1) JP2532173B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208049A (en) * 2007-02-23 2008-09-11 Nippon Shokubai Co Ltd Method for producing borazine compound and borazine compound
KR102152665B1 (en) * 2016-03-31 2020-09-07 후지필름 가부시키가이샤 Processing liquid for semiconductor manufacturing, and pattern formation method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263148A (en) * 1984-06-12 1985-12-26 Sumitomo Chem Co Ltd Preparation of positive type photoresist developing solution
JPS62139890A (en) * 1985-12-12 1987-06-23 Tokuyama Soda Co Ltd Production of high purity aqueous solution of quaternary ammonium hydroxide
JPS62177545A (en) * 1986-01-31 1987-08-04 Nippon Zeon Co Ltd Developing solution stabilized in developing speed
JPS62178549A (en) * 1986-01-31 1987-08-05 Nippon Zeon Co Ltd Production of aqueous solution of 2-hydroxyethyltrimethylammonium hydroxide
JPS6315355A (en) * 1986-07-07 1988-01-22 Fujitsu Ltd Program loading system
JPS6357790A (en) * 1986-08-26 1988-03-12 Mitsubishi Gas Chem Co Inc Production of quaternary ammonium hydroxide
JP2643128B2 (en) * 1986-11-25 1997-08-20 三菱瓦斯化学株式会社 Method for producing quaternary ammonium hydroxide
JPH0819538B2 (en) * 1987-01-23 1996-02-28 株式会社トクヤマ Method for producing quaternary ammonium hydroxide
JP2618947B2 (en) * 1988-01-08 1997-06-11 東京応化工業株式会社 Positive photoresist composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「日経サイエンス」1992年4月P.36−47「松崎英夫著ギガビットメモリーを可能にする現像液」

Also Published As

Publication number Publication date
JPH04226466A (en) 1992-08-17

Similar Documents

Publication Publication Date Title
US6107009A (en) Photoresist developer and method
US4784937A (en) Developing solution for positive-working photoresist comprising a metal ion free organic base and an anionic surfactant
KR900002688B1 (en) Double layer photoresist technique for side-wall profile control in plasma etching processes
KR100272797B1 (en) Method for forming resistor pattern and resistor pattern
US20020155723A1 (en) Dry-etching method and apparatus, photomasks and method for the preparation thereof, and semiconductor circuits and method for the fabrication thereof
JP2007525714A (en) Method for extending photoresist stability during direct image writing
US4710449A (en) High contrast low metal ion positive photoresist developing method using aqueous base solutions with surfactants
US6685848B1 (en) Method and apparatus for dry-etching half-tone phase-shift films half-tone phase-shift photomasks and method for the preparation thereof and semiconductor circuits and method for the fabrication thereof
US4670372A (en) Process of developing radiation imaged photoresist with alkaline developer solution including a carboxylated surfactant
JPH0815859A (en) Coating liquid for resist and resist material using same
JP2532173B2 (en) Developer for positive type photoresist
US20010044077A1 (en) Stabilization of chemically amplified resist coating
US20230078946A1 (en) Hybrid Development of EUV Resists
JP4353090B2 (en) Resist developer
US4824769A (en) High contrast photoresist developer
US4822722A (en) Process of using high contrast photoresist developer with enhanced sensitivity to form positive resist image
EP0129106B1 (en) High contrast photoresist developer
US5223376A (en) Method for producing fine patterns utilizing specific polymeric diazonium salt, or diazonium salt/sulfone group containing polymer, as photobleachable agent
JP2532173C (en)
US6709986B2 (en) Method for manufacturing semiconductor memory device by using photoresist pattern exposed with ArF laser beam
KR100819647B1 (en) Method of Manufacturing Semiconductor Device
EP1634126B1 (en) Developer composition for resists and method for formation of resist pattern
KR900002227B1 (en) High contrast photoresist developer with enhanced sensitivity
JPS63182817A (en) Method of development processing
JP3722597B2 (en) Water-soluble polymer coating method and pattern forming method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 15

EXPY Cancellation because of completion of term