JP2532097B2 - How to start the oxygen concentrator - Google Patents

How to start the oxygen concentrator

Info

Publication number
JP2532097B2
JP2532097B2 JP62147869A JP14786987A JP2532097B2 JP 2532097 B2 JP2532097 B2 JP 2532097B2 JP 62147869 A JP62147869 A JP 62147869A JP 14786987 A JP14786987 A JP 14786987A JP 2532097 B2 JP2532097 B2 JP 2532097B2
Authority
JP
Japan
Prior art keywords
oxygen
adsorption tower
adsorption
gas
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62147869A
Other languages
Japanese (ja)
Other versions
JPS63315504A (en
Inventor
政臣 友村
仁一 戸室
鉄郎 芳賀
舜介 野北
昭夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62147869A priority Critical patent/JP2532097B2/en
Publication of JPS63315504A publication Critical patent/JPS63315504A/en
Application granted granted Critical
Publication of JP2532097B2 publication Critical patent/JP2532097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゼオライト等の窒素及び炭酸ガスを選択的
に吸着する吸着剤を用いて圧力スイング吸着(PSA法と
称する)によって空気から酸素と窒素を分離し、酸素濃
縮ガスを得る酸素濃縮装置の起動方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention uses an adsorbent that selectively adsorbs nitrogen and carbon dioxide, such as zeolite, to convert oxygen from air to oxygen by pressure swing adsorption (PSA method). The present invention relates to a method for starting an oxygen concentrator that separates nitrogen and obtains an oxygen concentrated gas.

〔従来の技術〕[Conventional technology]

従来、空気から酸素を分離し、酸素濃縮ガスを得る方
法として深冷分離法が知られているが省エネルギー及び
起動の容易さの観点から最近ではPSA法による吸着分離
法が検討され、電灯及び漂白等で工業化されている。一
般に、PSA法では合成ゼオライト、改質ゼオライト及び
天然ゼオライト等の窒素を選択的に吸着する吸着剤を充
填した複数個の吸着塔を用い常温かつ比較的低圧におけ
る加圧操作、吸着操作及び脱着操作を経て空気から酸素
濃縮ガスと窒素濃縮ガスを分離する。
Conventionally, a cryogenic separation method has been known as a method for separating oxygen from air to obtain an oxygen-enriched gas, but recently, from the viewpoint of energy saving and ease of start-up, the adsorption separation method by the PSA method has been studied, and an electric lamp and a bleaching method are used. Have been industrialized. Generally, the PSA method uses a plurality of adsorption towers filled with an adsorbent that selectively adsorbs nitrogen, such as synthetic zeolite, modified zeolite, and natural zeolite, and pressurizes, adsorbs, and desorbs at room temperature and relatively low pressure. Oxygen enriched gas and nitrogen enriched gas are separated from the air via.

この種の装置として関連するものには、例えば特公昭
55−321号、同54−9587号等があげられる。
Related devices of this type include, for example,
55-321, 54-9587 and the like.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術による酸素の供給は一般に大型の専用プ
ラントから生成されたものを高圧ガスボンベに充填して
これを持ち運んでいたものであるが、これでは災害時な
ど緊急の場合に用をなさない恐れもあり、あるいは保存
等に難が多く、さらには高圧による危険と取扱い規制を
伴う。また、酸素濃縮装置を設置するにあたってもこれ
らは装置が大型で、従来の運転方法では連続的に使用し
なければ起動後ただちに酸素を生成できないという問題
があった。そこで、本発明は起動及び再起動後ただちに
濃縮酸素を利用しうる酸素濃縮装置の起動方法を提供す
ることを目的とする。
The oxygen supply according to the above-described conventional technology is generally one in which a high-pressure gas cylinder produced by a large-scale dedicated plant is filled and carried, but this may not be useful in an emergency such as a disaster. Yes, or there are many difficulties in storage, etc., and there are dangers due to high pressure and handling restrictions. Further, even when installing the oxygen concentrator, there is a problem that these devices are large in size, and in the conventional operation method, oxygen cannot be generated immediately after starting unless they are continuously used. Therefore, it is an object of the present invention to provide a method for starting an oxygen concentrator that can utilize concentrated oxygen immediately after starting and restarting.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、酸素濃縮装置運転終了時に、切替弁を開
放してバッファタンクから酸素濃縮ガスを吸着塔に供給
した状態で停止することにより、任意時間停止後の再起
動後直ちに酸素濃縮ガスを生成できるようにすることか
ら達成できる。
The purpose of the above is to generate an oxygen-concentrated gas immediately after restarting after stopping for an arbitrary time by stopping the operation with the switching valve opened and supplying the oxygen-concentrated gas from the buffer tank to the adsorption tower at the end of the operation of the oxygen concentrator. It can be achieved by making it possible.

〔作 用〕[Work]

本発明の酸素濃縮ガスの起動方法においては、バッフ
ァタンクから酸素濃縮ガスを塔上部に供給することによ
って、塔上部の酸素分圧が増加し、塔低部に窒素吸着帯
が移動するため、吸着操作を実施した場合、塔上部から
製品として酸素濃度の高いガスが直ちに得られるので、
起動時間が短くてすむ。
In the method for starting the oxygen-enriched gas of the present invention, by supplying the oxygen-enriched gas from the buffer tank to the upper part of the tower, the oxygen partial pressure in the upper part of the tower increases and the nitrogen adsorption zone moves to the lower part of the tower, so that the adsorption When the operation is performed, a gas having a high oxygen concentration is immediately obtained as a product from the upper part of the tower,
Start-up time is short.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG.

4個の吸着塔1A,1B,1C,1Dにはそれろえ原料ガス送入
切り替え用の弁11A〜D、減圧時脱着ガス抜き出し切り
替え用の弁12A〜D、大気開放時脱着ガス抜き出し切り
替え用の弁13A〜D、直列接続時の中間濃縮ガス送り出
し切り替え用の弁14A〜D、製品ガス送り出し切り替え
用の弁15A〜D、製品ガス送入切り替え用の弁16A〜Dを
備えている。原料ガス21は圧縮機3により吸着圧力まで
加圧された後、弁11で選択された吸着塔1に供給され
る。吸着工程で分離濃縮されたガスは弁16で選択された
吸着塔1から取り出され製品タンク2に一時的に貯えら
れ、大部分が製品ガス22として系外に取り出される。製
品タンク2に貯えられたガスの残部は弁15で選択された
吸着塔1に送られ、減圧パージ、予備加圧に使用され
る。脱着ガスに関しては、大気圧開放時は弁13で選択さ
た吸着塔1から吸着ガス24が大気に放出され、減圧時・
減圧パージ時は弁12で選択された吸着塔1から真空ポン
プ4で吸引された脱着ガス23が大気に放出される。
For the four adsorption towers 1A, 1B, 1C, 1D, valves 11A to 11D for switching feed gas inflow, valves 12A to 12D for switching desorption gas extraction during depressurization, switching for desorption gas extraction during atmospheric release 13A to D, valves 14A to D for switching the intermediate concentrated gas delivery when connected in series, valves 15A to D for switching the product gas delivery, and valves 16A to 16D for switching the product gas delivery. The raw material gas 21 is pressurized to the adsorption pressure by the compressor 3 and then supplied to the adsorption tower 1 selected by the valve 11. The gas separated and concentrated in the adsorption step is taken out from the adsorption tower 1 selected by the valve 16 and temporarily stored in the product tank 2, and most of it is taken out as the product gas 22 out of the system. The rest of the gas stored in the product tank 2 is sent to the adsorption tower 1 selected by the valve 15 and used for decompression purging and prepressurization. Regarding the desorbed gas, when the atmospheric pressure is released, the adsorbed gas 24 is released from the adsorption tower 1 selected by the valve 13 to the atmosphere, and when depressurized.
During the depressurization purge, the desorption gas 23 sucked by the vacuum pump 4 from the adsorption tower 1 selected by the valve 12 is released to the atmosphere.

4個の吸着塔1A,1B,1C,1Dは経時的に吸着と再生が繰
り返されるが、空気から酸素を分離濃縮する場合を例と
してその内容を更に詳細に説明する。
The adsorption and regeneration of the four adsorption towers 1A, 1B, 1C and 1D are repeated over time, and the details thereof will be described in detail by taking the case of separating and concentrating oxygen from air as an example.

吸着塔1Aに原料ガスである空気を供給する工程を工程
Iとし、以下連続する工程を順を追って説明する。
The step of supplying air, which is a raw material gas, to the adsorption tower 1A is referred to as step I, and successive steps will be described below in sequence.

工程Iにおいては、圧縮機3で1.5気圧に加圧された
空気が弁11Aを通り吸着塔1Aに供給される。吸着塔1Aで
粗濃縮された酸素は14Aを通り吸着塔1Bに供給され、更
に濃縮される。吸着塔1Bから取り出されるガスは製品酸
素として弁16Bを通り製品タンク2に貯蔵される。
In step I, the air pressurized to 1.5 atm by the compressor 3 is supplied to the adsorption tower 1A through the valve 11A. Oxygen roughly concentrated in the adsorption tower 1A is supplied to the adsorption tower 1B through 14A and further concentrated. The gas taken out from the adsorption tower 1B passes through the valve 16B as product oxygen and is stored in the product tank 2.

この間に、吸着塔1C及び吸着塔1Dが再生されるが、操
作は前半の工程Iaと後半の工程Ibとに分かれる。
During this period, the adsorption tower 1C and the adsorption tower 1D are regenerated, but the operation is divided into the first half step Ia and the second half step Ib.

前半の工程Iaにおいて、吸着塔1Cは前工程(後述する
工程IV bに相当)に引き続き弁12Cを開いたまま真空ポ
ンプ4により減圧排気されるが、これに加えて弁15Cを
開き吸着塔1Cの圧力がほぼ0.4気圧に保たれるよう流量
制御弁19で流量を調節しながら製品酸素を吸着時と逆方
向に流し、吸着剤からの窒素の脱着を促進する。一方、
前工程で空気を供給されていた吸着塔1Dは弁13Dを開き
大気圧付近まで降圧し吸着剤に吸着されていたガスの一
部を脱着ガス24として大気に放出する。この時、必要に
応じて本工程の全期間または一部の期間弁15Dを開き製
品酸素を吸着時と逆方向に流すことにより吸着剤からの
窒素の脱着を促進し、大気に放出する脱着ガス24の量を
増大させ真空ポンプ4の所要動力を一層低減することも
可能である。
In the first half of step Ia, the adsorption tower 1C is decompressed and evacuated by the vacuum pump 4 while keeping the valve 12C open after the previous step (corresponding to step IVb described later). In addition to this, the adsorption tower 1C is opened by opening the valve 15C. The product oxygen is caused to flow in the opposite direction to that during adsorption while the flow rate is controlled by the flow control valve 19 so that the pressure is maintained at about 0.4 atm, thereby promoting desorption of nitrogen from the adsorbent. on the other hand,
The adsorption tower 1D, which was supplied with air in the previous step, opens the valve 13D and reduces the pressure to near atmospheric pressure, and releases part of the gas adsorbed by the adsorbent to the atmosphere as desorption gas 24. At this time, if necessary, the valve 15D is opened for the entire period or a part of this process to flow product oxygen in the direction opposite to that at the time of adsorption to promote desorption of nitrogen from the adsorbent, and desorbed gas released to the atmosphere. It is also possible to increase the amount of 24 and further reduce the required power of the vacuum pump 4.

後半の工程Ibにおいて、吸着塔1Cは弁15Cを開いたま
ま流量制御弁19を全開とし、製品酸素を吸着時と逆方向
に流し、吸着圧力である1.5気圧付近まで加圧する。一
方、吸着塔1Dは弁12Dを開き大気圧付近から0.4気圧まで
真空ポンプ4により減圧され脱着ガス23を排気する。
In the latter step Ib, the adsorption tower 1C fully opens the flow rate control valve 19 while keeping the valve 15C open, and causes product oxygen to flow in the direction opposite to that at the time of adsorption to increase the adsorption pressure to around 1.5 atm. On the other hand, in the adsorption tower 1D, the valve 12D is opened to reduce the pressure from near atmospheric pressure to 0.4 atmospheric pressure by the vacuum pump 4 and exhaust the desorbed gas 23.

次の工程IIにおいては、圧縮機3で1.5気圧に加圧さ
れた空気が弁11Bを通り吸着塔1Bに供給される。吸着塔1
Bで粗濃縮された酸素は弁14Bを通り吸着塔1Cに供給さ
れ、更に濃縮される。吸着塔1Cから取り出されるガスは
製品酸素として弁16Cを通り製品タンク2に貯蔵され
る。
In the next step II, the air pressurized to 1.5 atm by the compressor 3 is supplied to the adsorption tower 1B through the valve 11B. Adsorption tower 1
The oxygen roughly concentrated in B is supplied to the adsorption tower 1C through the valve 14B and further concentrated. The gas taken out from the adsorption tower 1C is stored as product oxygen in the product tank 2 through the valve 16C.

この間に、吸着塔1D及び吸着塔1Aが再生されるが、操
作は前半の工程II aと後半の工程II bとに分かれる。
During this period, the adsorption tower 1D and the adsorption tower 1A are regenerated, but the operation is divided into the first half step IIa and the second half step IIb.

前半の工程II aにおいて、吸着塔1Dは工程1bに引き続
き弁12Dを開いたまま真空ポンプ4により減圧排気され
るが、これに加えて弁15Dを開き吸着塔1Dの圧力がほぼ
0.4気圧に保たれるよう流量制御弁19で流量を調節しな
がら製品酸素を吸着時と逆方向に流し、吸着剤からの窒
素の脱着を促進する。一方、前工程で空気を供給されて
いた吸着塔1Aは弁13Aを開き大気圧付近まで降圧し吸着
剤に吸着されていたガスの一部を脱着ガス24として大気
に放出する。この時、必要に応じて本工程の全期間また
は一部の期間弁15Aを開くことは工程Iaと同様である。
In the first half step IIa, the adsorption tower 1D is decompressed and evacuated by the vacuum pump 4 with the valve 12D open after the step 1b. In addition to this, the valve 15D is opened and the pressure of the adsorption tower 1D is almost equal.
While adjusting the flow rate with the flow rate control valve 19 so as to maintain 0.4 atm, the product oxygen is caused to flow in the opposite direction to that at the time of adsorption to promote the desorption of nitrogen from the adsorbent. On the other hand, the adsorption tower 1A, to which air was supplied in the previous step, opens the valve 13A and reduces the pressure to near atmospheric pressure, and releases part of the gas adsorbed by the adsorbent to the atmosphere as desorption gas 24. At this time, opening the valve 15A for the entire period or a part of this process as needed is the same as in process Ia.

後半の工程II bにおいて、吸着塔1Dは弁15Dを開いた
まま流量制御弁19を全開とし、製品酸素を吸着時と逆方
向に流し、吸着圧力である1.5気圧付近まで加圧する。
一方、吸着塔1Aは弁12Aを開き大気圧付近から0.4気圧ま
で真空ポンプ4により減圧され脱着ガス23を排気する。
In the latter half of the process IIb, the adsorption tower 1D fully opens the flow control valve 19 while keeping the valve 15D open, and causes product oxygen to flow in the direction opposite to that at the time of adsorption to increase the adsorption pressure to around 1.5 atm.
On the other hand, in the adsorption tower 1A, the valve 12A is opened, and the desorption gas 23 is exhausted by reducing the pressure from near atmospheric pressure to 0.4 atmospheric pressure by the vacuum pump 4.

次の工程IIIにおいては、圧縮機3で1.5気圧に加圧さ
れた空気が弁11Cを通り吸着塔1Cに供給される。吸着塔1
Cで粗濃縮された酸素は弁14Cを通り吸着塔1Dに供給さ
れ、更に濃縮される。吸着塔1Dから取り出されるガスは
製品酸素として弁16Dを通り製品タンク2に貯蔵され
る。
In the next step III, the air pressurized to 1.5 atm by the compressor 3 is supplied to the adsorption tower 1C through the valve 11C. Adsorption tower 1
The oxygen roughly concentrated in C is supplied to the adsorption tower 1D through the valve 14C and further concentrated. The gas taken out from the adsorption tower 1D passes through the valve 16D as product oxygen and is stored in the product tank 2.

この間に、吸着塔1A及び吸着塔1Bが再生されるが、操
作は前半の工程III aと後半の工程III bとに分かれる。
During this period, the adsorption tower 1A and the adsorption tower 1B are regenerated, but the operation is divided into the first half step IIIa and the second half step IIIb.

前半の工程III aにおいて、吸着塔1Aは工程II bに引
き続き弁12Aを開いたまま真空ポンプ4により減圧排気
されるが、これに加えて弁15Aを開き吸着塔1Aの圧力が
ほぼ0.4気圧に保たれるよう流量制御弁19で流量を調節
しながら製品酸素を吸着時と逆方向に流し、吸着剤から
の窒素の脱着を促進する。一方、前工程で空気を供給さ
れていた吸着塔1Bは弁13Bを開き大気圧付近まで降圧し
吸着剤に吸着されていたガスの一部を脱着ガス24として
大気に放出する。この時、必要に応じて本工程の全期間
または一部の期間弁15Bを開くことは工程Iaと同様であ
る。
In the step IIIa in the first half, the adsorption tower 1A is evacuated by the vacuum pump 4 with the valve 12A open after the step IIb, and in addition to this, the valve 15A is opened and the pressure of the adsorption tower 1A becomes approximately 0.4 atm. While controlling the flow rate with the flow rate control valve 19 so that the product oxygen flows in the direction opposite to that during adsorption, the desorption of nitrogen from the adsorbent is promoted. On the other hand, the adsorption tower 1B, which was supplied with air in the previous step, opens the valve 13B and reduces the pressure to near atmospheric pressure, and releases part of the gas adsorbed by the adsorbent to the atmosphere as desorption gas 24. At this time, opening the valve 15B for the whole period or a part of the present process as needed is the same as the process Ia.

後半の工程III bにおいて、吸着塔1Aは弁15Aを開いた
まま流量制御弁19を全開とし、製品酸素を吸着時と逆方
向に流し、吸着圧力である1.5気圧付近まで加圧する。
一方、吸着塔1Bは弁12Bを開き大気圧付近から0.4気圧ま
で真空ポンプ4により減圧され脱着ガス23を排気する。
In the latter half of step IIIb, the adsorption tower 1A fully opens the flow control valve 19 while keeping the valve 15A open, and allows product oxygen to flow in the direction opposite to that at the time of adsorption to increase the adsorption pressure to around 1.5 atm.
On the other hand, the adsorption tower 1B opens the valve 12B to reduce the pressure from near atmospheric pressure to 0.4 atmospheric pressure by the vacuum pump 4 and exhaust the desorbed gas 23.

最後に工程IVにおいては、圧縮機3で1.5気圧に加圧
された空気が弁11Dを通り吸着塔1Dに供給される。吸着
塔1Dで粗濃縮された酸素は弁14Dを通り吸着塔1Aに供給
され、更に濃縮される。吸着塔1Aから取り出されるガス
は製品酸素として弁16Aを通り製品タンク2に貯蔵され
る。
Finally, in step IV, the air pressurized to 1.5 atm by the compressor 3 is supplied to the adsorption tower 1D through the valve 11D. Oxygen roughly concentrated in the adsorption tower 1D is supplied to the adsorption tower 1A through the valve 14D and further concentrated. The gas taken out from the adsorption tower 1A is stored as product oxygen in the product tank 2 through the valve 16A.

この間に、吸着塔1B及び吸着塔1Cが再生されるか、操
作は前半の工程IV aと後半の工程IV bとに分かれる。
During this period, the adsorption tower 1B and the adsorption tower 1C are regenerated, or the operation is divided into the first half step IVa and the second half step IVb.

前半の工程IV aにおいて、吸着塔1Bは工程III bに引
き続き弁12Bを開いたまま真空ポンプ4により減圧排気
されるが、これに加えて弁15Bを開き吸着塔1Bの圧力が
ほぼ0.4気圧に保たれるよう流量制御弁19で流量を調節
しながら製品酸素を吸着時と逆方向に流し、吸着剤から
の窒素の脱着を促進する。一方、前工程で空気を供給さ
れていた吸着塔1Cは弁13Cを開き大気圧付近まで降圧し
吸着剤に吸着されていたガスの一部を脱着ガス24として
大気に放出する。この時、必要に応じて本工程の全期間
または一部の期間弁15Cを開くことは工程Iaと同様であ
る。
In the step IVa in the first half, the adsorption tower 1B is decompressed and evacuated by the vacuum pump 4 with the valve 12B open after the step IIIb. In addition to this, the pressure of the adsorption tower 1B is set to about 0.4 atm by opening the valve 15B. While controlling the flow rate with the flow rate control valve 19 so that the product oxygen flows in the direction opposite to that during adsorption, the desorption of nitrogen from the adsorbent is promoted. On the other hand, the adsorption tower 1C, which was supplied with air in the previous step, opens the valve 13C and reduces the pressure to near atmospheric pressure, and releases part of the gas adsorbed by the adsorbent to the atmosphere as desorption gas 24. At this time, opening the valve 15C for the whole period or a part of the present process as needed is similar to the process Ia.

後半の工程IV bにおいて、吸着塔1Bは弁15Bを開いた
まま流量制御弁19を全開とし、製品酸素を吸着時と逆方
向に流し、吸着圧力である1.5気圧付近まで加圧する。
一方、吸着塔1Cは弁12Cを開き大気圧付近から0.4気圧ま
で真空ポンプ4により減圧され脱着ガス23を排気する。
In the latter step IVb, the adsorption tower 1B fully opens the flow rate control valve 19 while keeping the valve 15B open, and causes product oxygen to flow in the direction opposite to that at the time of adsorption to increase the adsorption pressure to around 1.5 atm.
On the other hand, in the adsorption tower 1C, the valve 12C is opened and the desorption gas 23 is exhausted by reducing the pressure from near atmospheric pressure to 0.4 atmospheric pressure by the vacuum pump 4.

通常運転では工程IV完了後は再び工程Iに戻る。 In normal operation, the process returns to the process I after completion of the process IV.

なお、弁11〜16については特に記載されているものを
除き次の工程へ移行する時に閉じられる。
It should be noted that the valves 11 to 16 are closed at the time of shifting to the next step, unless otherwise specified.

本発明によれば、装置運転終了時には、工程IV完了後
に工程Vに移行し、その状態にてサイクルを止め、任意
時間停止後の再起動時に工程Iから開始し、工程I〜IV
を順次繰り返す。
According to the present invention, at the end of the operation of the apparatus, the process moves to the process V after the completion of the process IV, the cycle is stopped in that state, and the process is started from the process I when restarted after being stopped for an arbitrary time.
Are sequentially repeated.

工程Vにおいて、タンク2からの酸素富化ガスは弁16
A,16Bを通り、それぞれ吸着塔1A,1Bに供給されに。この
操作により、吸着塔1A,1Bの塔上部の酸素分圧が増加す
るため、任意時間停止後の再起動後直ちに酸素濃縮ガス
を生成しうる。従って、本発明による弁の開閉シーケン
スは第1表の通りとなる。
In step V, the oxygen-enriched gas from tank 2 is valve 16
Pass through A and 16B and be supplied to adsorption towers 1A and 1B, respectively. By this operation, the oxygen partial pressure in the upper part of the adsorption towers 1A and 1B increases, so that the oxygen-enriched gas can be generated immediately after restarting after stopping for an arbitrary time. Therefore, the opening / closing sequence of the valve according to the present invention is as shown in Table 1.

吸着塔1として内径39mm、長さ1.7mの塔を4個用い、
それぞれの塔に約1.2kgの5A型ゼオライトを吸着剤とし
て充填し、前半工程10秒、後半工程50秒、計1分を一工
程とし、上記の工程を繰り返した時の酸素濃度の経時変
化を第2図に示した。比較のために、本発明を実施せず
に工程I〜IVを運転した通常運転の場合の結果を第2図
に併記した。本発明によってPSAの起動特性が改善でき
ることが分った。
As the adsorption tower 1, use four towers with an inner diameter of 39 mm and a length of 1.7 m,
Each column was filled with about 1.2 kg of 5A zeolite as an adsorbent, and the first half step was 10 seconds, the second half step was 50 seconds, and a total of 1 minute was one step. It is shown in FIG. For comparison, the results in the case of normal operation in which steps I to IV were operated without carrying out the present invention are also shown in FIG. It has been found that the present invention can improve the start-up characteristics of PSA.

本発明の酸素濃縮ガスの起動方法を自動車用エンジン
に適用する場合の構成図を第3図に示す。エンジンの混
合器のような被供給装置51から供給されたガスをPSA酸
素濃縮装置52に導いて、酸素富化ガスを生成し、そのガ
スを自動車用エンジンに導いてエンジンの燃焼効率を高
めることができる。PSA酸素濃縮装置52として、本発明
の起動方法、すなわち、第1図の装置により、第1表の
シーケンスを行なわせることにより、酸素濃度の立ち上
がりが早くなるため、自動車への適用が可能となり、エ
ンジンの起動特性の向上が図れる。その際に、自動車の
イグニッションキーを切った場合に、前記第1表の工程
Vまで行わせてから工程を完了させる。
FIG. 3 shows a configuration diagram when the method for starting oxygen-enriched gas according to the present invention is applied to an automobile engine. To guide a gas supplied from a supply target device 51 such as an engine mixer to a PSA oxygen concentrator 52 to generate an oxygen-enriched gas, and to guide the gas to an automobile engine to improve combustion efficiency of the engine. You can As the PSA oxygen concentrating device 52, the start-up method of the present invention, that is, by performing the sequence of Table 1 by the device of FIG. 1, the oxygen concentration rises quickly, which makes it possible to apply to automobiles. The engine starting characteristics can be improved. At that time, when the ignition key of the automobile is turned off, the steps up to the step V in Table 1 are performed and then the steps are completed.

また、本発明は医療用にも良好に適用できる。すなわ
ち、従来のPSAでは、移動してから正常運転に至るまで
に数10分要し、災害時など緊急の場合に難があったが、
本発明により、起動、再起動後ただちに酸素富化ガスを
得ることが可能となるため、吸着法による酸素濃縮の信
頼性の向上が図れた。
Further, the present invention can be well applied to medical purposes. That is, in the conventional PSA, it takes several tens of minutes from moving to normal operation, which is difficult in an emergency such as a disaster.
According to the present invention, the oxygen-enriched gas can be obtained immediately after starting and restarting, so that the reliability of oxygen concentration by the adsorption method can be improved.

さらに、本発明は微生物の培養にも適用できる。すな
わち、微生物は成長に伴って酸素を消費するが、成長速
度に応じて酸素を供給できれば増殖効率が高くなる。そ
のためには、酸素要求量に対する負荷応答性の高さが要
求されており、本発明によって、微生物培養への適用が
可能となる。
Furthermore, the present invention can be applied to the culture of microorganisms. That is, although the microorganism consumes oxygen as it grows, if the oxygen can be supplied according to the growth rate, the multiplication efficiency will be high. For that purpose, high load responsiveness to oxygen demand is required, and the present invention enables application to microorganism culture.

さらに、本発明の酸素濃縮装置の起動方法を石炭ガス
化複合発電(Integrated Gasification Conbined Cycl
e;通称IGCC)に適用した場合の構成図を第4図に示す。
酸素吹きIGCCを実用化するためには、昼間と夜間の電力
使用量に応じたDSS(Daily Start and Stop)運転が不
可決であり、そのためには酸素濃縮装置の起動時間を短
縮しなければならない。本発明は、その要求を満たすも
のであり、PSA酸素濃縮装置をIGCCに適用することが可
能となった。
Furthermore, the method for starting the oxygen concentrator of the present invention is based on the integrated gasification combined cycle
Fig. 4 shows the block diagram when applied to e; commonly known as IGCC).
In order to put oxygen-blown IGCC into practical use, DSS (Daily Start and Stop) operation according to the amount of power used during the day and night is inevitable, and therefore the start-up time of the oxygen concentrator must be shortened. . The present invention satisfies the demand, and it has become possible to apply the PSA oxygen concentrator to the IGCC.

〔発明の効果〕〔The invention's effect〕

本発明では、吸着塔を2塔直列に接続して使用するた
め、原料ガス側の吸着塔はより吸着成分(窒素)に富む
状態となり、次の脱着操作時に系外に排出される製品酸
素ガス成分が少なくなり、プロセス全体としての製品ガ
ス収率が向上するという効果がある。そして、本発明の
酸素濃縮ガスの起動方法によれば、起動後直ちに酸素濃
縮ガスを得ることができるので、負荷応答性を要求され
る酸素利用機器への利用が可能となる。
In the present invention, since two adsorption towers are connected in series and used, the adsorption tower on the side of the raw material gas is in a state richer in the adsorbed component (nitrogen), and the product oxygen gas discharged to the outside of the system during the next desorption operation. This has the effect of reducing the components and improving the product gas yield of the entire process. In addition, according to the method of starting the oxygen-enriched gas of the present invention, the oxygen-enriched gas can be obtained immediately after the start-up, so that the oxygen-enriched gas can be used for the equipment using oxygen.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の4塔式酸素濃度装置のシス
テム図、第2図は第1図のシステム運転時の起動特性
図、第3図は本発明の応用例の構成図、第4図は本発明
のもう一つの応用例の構成図である。 1……吸着塔、2……バッファタンク、3……圧縮機、
4……真空ポンプ、11〜16……切替弁。
FIG. 1 is a system diagram of a 4-tower oxygen concentration apparatus according to an embodiment of the present invention, FIG. 2 is a starting characteristic diagram during system operation of FIG. 1, and FIG. 3 is a configuration diagram of an application example of the present invention. FIG. 4 is a block diagram of another application example of the present invention. 1 ... Adsorption tower, 2 ... Buffer tank, 3 ... Compressor,
4 ... Vacuum pump, 11-16 ... Switching valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野北 舜介 日立市久慈町4026番地 株式会社日立製 作所日立研究所内 (72)発明者 山本 昭夫 下松市東豊井794番地 株式会社日立製 作所笠戸工場内 (56)参考文献 特開 昭61−187916(JP,A) 特開 昭59−8605(JP,A) 特開 昭60−246206(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunsuke Nokita 4026 Kujimachi, Hitachi City Hitachi, Ltd., Hitachi Research Laboratory (72) Inventor Akio Yamamoto 794, Higashi-Toyoi, Kumamatsu City Hitachi, Ltd. In-factory (56) Reference JP 61-187916 (JP, A) JP 59-8605 (JP, A) JP 60-246206 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素に比べて窒素及び炭酸ガスをより多く
吸着する吸着剤を充填し、中間濃縮ガス送り出し用切り
替え弁を介して互いに直列接続された第1、第2、第3
及び第4の吸着塔を用い、各吸着塔についての次の
(1)〜(4)の操作、すなわち (1)第1の吸着塔に加圧空気を供給して粗濃縮分離
し、該第1の吸着塔で粗濃縮分離された酸素を前記中間
濃度ガス送り出し用切り替え弁を介して第2の吸着塔に
供給する操作、 (2)第2の吸着塔で濃縮された酸素ガスを製品として
バッファタンクに供給する操作、 (3)前工程で減圧排気された第3の吸着塔に前記バッ
ファタンクから酸素富化ガスを吸着時と逆方向に低流量
で流しながら減圧排気し、次いで吸着時と逆方向に流し
た製品酸素で前記第3の吸着塔を吸着圧力付近まで加圧
する操作、 (4)前工程で加圧空気を供給されて粗濃縮分離を行っ
ていた第4の吸着塔を大気圧付近まで降圧し、次いで減
圧排気する操作、 を一工程とし、続く工程では前工程で製品酸素ガスをバ
ッファタンクに供給していた吸着塔を前記第1の吸着塔
とし、順次前記工程を反復して酸素濃縮運転を行い、酸
素濃縮運転運転終了時には、前記工程終了後、酸素ガス
の濃縮を行っていた前記第1及び第2の吸着塔にバッフ
ァタンクからの酸素富化ガスを吸着時と逆方向に供給し
た後、運転を停止することにより、任意時間停止後の再
起動後直ちに酸素濃縮ガスを生成し得るようにすること
を特徴とする酸素濃縮装置の起動方法。
1. A first, a second, and a third which are filled with an adsorbent that adsorbs more nitrogen and carbon dioxide than oxygen and are connected in series with each other through a switching valve for feeding an intermediate concentrated gas.
And the fourth adsorption tower, the following operations (1) to (4) for each adsorption tower, that is, (1) supplying pressurized air to the first adsorption tower to roughly concentrate and separate, An operation of supplying oxygen, which has been roughly concentrated and separated in the first adsorption tower, to the second adsorption tower through the intermediate concentration gas delivery switching valve, (2) Oxygen gas concentrated in the second adsorption tower as a product Operation for supplying to the buffer tank, (3) Evacuating under reduced pressure while flowing the oxygen-enriched gas from the buffer tank to the third adsorption tower, which was depressurized and exhausted in the previous step, at a low flow rate in the direction opposite to that during adsorption, and then during adsorption The operation of pressurizing the third adsorption tower to the vicinity of the adsorption pressure with the product oxygen flowed in the opposite direction to (4) the fourth adsorption tower which was supplied with the pressurized air in the previous step to perform the coarse concentration separation. The operation of reducing the pressure to near atmospheric pressure and then exhausting it under reduced pressure is one step, and continues. In the previous step, the adsorption tower that was supplying the product oxygen gas to the buffer tank in the previous step was used as the first adsorption tower, and the above steps were sequentially repeated to carry out the oxygen concentration operation. After that, the oxygen-enriched gas from the buffer tank was supplied to the first and second adsorption towers that had been concentrating the oxygen gas in the opposite direction to the adsorption time, and then the operation was stopped to stop the operation for an arbitrary time. A method for starting an oxygen concentrating device, characterized in that an oxygen-concentrated gas can be generated immediately after restarting.
JP62147869A 1987-06-16 1987-06-16 How to start the oxygen concentrator Expired - Lifetime JP2532097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147869A JP2532097B2 (en) 1987-06-16 1987-06-16 How to start the oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147869A JP2532097B2 (en) 1987-06-16 1987-06-16 How to start the oxygen concentrator

Publications (2)

Publication Number Publication Date
JPS63315504A JPS63315504A (en) 1988-12-23
JP2532097B2 true JP2532097B2 (en) 1996-09-11

Family

ID=15440078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147869A Expired - Lifetime JP2532097B2 (en) 1987-06-16 1987-06-16 How to start the oxygen concentrator

Country Status (1)

Country Link
JP (1) JP2532097B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2988696B2 (en) * 1990-08-10 1999-12-13 新日本製鐵株式会社 Shutdown method in concentrated oxygen recovery equipment by pressure swing
JP5065714B2 (en) * 2007-03-06 2012-11-07 帝人ファーマ株式会社 Oxygen concentrator
JP2013117346A (en) * 2011-12-02 2013-06-13 Osaka Gas Co Ltd Industrial furnace apparatus
JP6747479B2 (en) * 2018-08-02 2020-08-26 ダイキン工業株式会社 Oxygen concentrator
JP2020146685A (en) * 2020-05-28 2020-09-17 ダイキン工業株式会社 Oxygen concentration method

Also Published As

Publication number Publication date
JPS63315504A (en) 1988-12-23

Similar Documents

Publication Publication Date Title
US4144037A (en) Gas separation
US4892565A (en) Adsorptive separation utilizing multiple adsorption beds
EP0758625B1 (en) Method of recovering oxygen-rich gas
KR100300939B1 (en) Improved vacuum pressure swing adsorption process
JP2000354726A (en) Pressure swing adsorption process and device
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
CA2255526C (en) Psa process and system using simultaneous top and bottom evacuation of adsorbent bed
JPH09150028A (en) Single bed pressure swing type adsorption method for recovering oxygen from air
CN101869797B (en) Method and apparatus for extracting high-purity nitrogen from air
KR19980081620A (en) Pressure swing adsorption method and device
JPH1024208A (en) Treatment of gaseous mixture by pressure swing adsorption
JPS6391120A (en) Pressure change-over apparatus
JP2532097B2 (en) How to start the oxygen concentrator
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
US4848985A (en) Separation of gas mixtures
WO1995026804A1 (en) Method for removing carbon dioxide from mixed gas and alternative natural gas generating device using the method
JPH01184016A (en) Apparatus for gas separation
JP6218464B2 (en) Usage of pressure swing adsorption device and pressure swing adsorption device
EP1125623A1 (en) Method for separation of gaseous mixtures of oxygen, argon and nitrogen
JPH11267439A (en) Gas separation and gas separator for performing same
CN102160955A (en) One-stage pressure swing adsorption process in ammonia-urea synthesizing production
JP2022523592A (en) Biogas plant and biogas treatment
JP2020163247A (en) Carbon dioxide recovery device, hydrocarbon manufacturing device, and carbon dioxide recovery method
JP2988696B2 (en) Shutdown method in concentrated oxygen recovery equipment by pressure swing
JPH0312307A (en) Method for enriching oxygen