JP2531623B2 - Manufacturing method of W-based sintered alloy flying body having high toughness - Google Patents

Manufacturing method of W-based sintered alloy flying body having high toughness

Info

Publication number
JP2531623B2
JP2531623B2 JP61026868A JP2686886A JP2531623B2 JP 2531623 B2 JP2531623 B2 JP 2531623B2 JP 61026868 A JP61026868 A JP 61026868A JP 2686886 A JP2686886 A JP 2686886A JP 2531623 B2 JP2531623 B2 JP 2531623B2
Authority
JP
Japan
Prior art keywords
powder
flying body
hydrogen
manufacturing
green compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61026868A
Other languages
Japanese (ja)
Other versions
JPS62185805A (en
Inventor
保穂 今井
昭雄 泉
重道 柏木
治 間山
正一 水野
通 河野
忠輝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Nippon Koki Co Ltd
Original Assignee
Mitsubishi Materials Corp
Nippon Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Nippon Koki Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP61026868A priority Critical patent/JP2531623B2/en
Publication of JPS62185805A publication Critical patent/JPS62185805A/en
Application granted granted Critical
Publication of JP2531623B2 publication Critical patent/JP2531623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、靭性にすぐれ、かつ高比重を有するW基
焼結合金製飛翔体の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a W-based sintered alloy flying body having excellent toughness and high specific gravity.

〔従来の技術〕[Conventional technology]

従来、一般にW基焼結合金製飛翔体などが、例えば特
開昭59−13037号公報に記載されるように、 (a) 原料粉末としてW粉末、Ni粉末、Fe粉末、およ
びNi−Fe合金粉末を用意し、 (b) これら原料粉末のうちから必要なものを用い
て、W:85〜97重量%、Ni+Fe:残り(ただし、Fe:Ni+Fe
に占める割合で20〜50重量%)、からなる配合組成に配
合し、混合して混合粉末とし、 (c) 上記混合粉末を1〜4ton/cm2の圧力で圧粉体に
プレス成形し、 (d) 上記圧粉体を5〜20℃程度の露点を有する水素
を用いた雰囲気中で液相焼結して焼結体を形成し、 (e) 上記焼結体を、切削や研削などの機械加工およ
び/またはスエージングなどの塑性加工にて所定形状の
飛翔体に成形する、 以上(a)〜(e)からなる工程にて製造されることは
良く知られるところである。
Conventionally, a W-based sintered alloy flying body or the like is generally described, for example, in JP-A-59-13037. (A) As a raw material powder, W powder, Ni powder, Fe powder, and Ni-Fe alloy Prepare powders, and (b) use the necessary ones from these raw material powders, W: 85-97 wt%, Ni + Fe: balance (however, Fe: Ni + Fe
20 to 50% by weight), and mixed to form a mixed powder. (C) The mixed powder is press-molded into a green compact at a pressure of 1 to 4 ton / cm 2 , (D) The green compact is liquid-phase sintered in an atmosphere using hydrogen having a dew point of about 5 to 20 ° C. to form a sintered body, and (e) the sintered body is cut or ground. It is well known that it is manufactured by the steps (a) to (e) in which a flying body having a predetermined shape is formed by plastic working such as machining and / or swaging.

また、飛翔体は、比重が高ければ高いほど高い運動エ
ネルギーを発揮することから、これの製造に高比重を有
するW基焼結合金が用いられることも知られている。
Further, it is also known that a W-based sintered alloy having a high specific gravity is used for the production of a flying object, since the higher the specific gravity, the higher the kinetic energy is exhibited.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記の従来方法で製造されたW基焼結合金製
飛翔体においては、靭性不足が原因で飛翔体自体が破壊
し易く、満足な貫徹力を示さないのが現状である。
However, in the W-based sintered alloy flying body manufactured by the above-mentioned conventional method, the flying body itself is easily broken due to lack of toughness, and the present situation is that the penetrating force is not satisfactory.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、高比
重を有するW基焼結合金製飛翔体の靭性向上をはかるべ
き研究を行なった結果、上記W基焼結合金製飛翔体を製
造するに際して、圧粉体の焼結を0〜−60℃の露点を有
する水素を用いて形成した雰囲気中で行なうと、この水
素雰囲気によって圧粉体、すなわち原料粉末中に含有す
る酸化物が還元されるばかりでなく、P成分やS成分な
どの微量不純物も除去されるようになり、この焼結で含
有するようになった脆化の原因となる水素は、真空加
熱、好ましくは真空中、700〜1400℃の温度に2〜10時
間保持し、保持後の冷却を少なくとも300℃までを40℃
/分以上の冷却速度で行なう真空加熱処理を施すことに
より除去でき、この結果の焼結体の粒界には酸化物や微
量不純物の含有量が著しく低減するようになることか
ら、焼結体の靭性向上が著しいものとなるという研究結
果を得たのである。
Therefore, the inventors of the present invention have conducted research to improve the toughness of a W-based sintered alloy flying body having a high specific gravity from the above viewpoints, and as a result, manufactured the W-based sintered alloy flying body. When the green compact is sintered in an atmosphere formed by using hydrogen having a dew point of 0 to −60 ° C., the hydrogen atmosphere reduces the oxide contained in the green compact, that is, the raw material powder. Not only that, but also trace impurities such as P component and S component are removed, and the hydrogen causing embrittlement that is contained in this sintering is heated in vacuum, preferably in vacuum, Hold at a temperature of 700-1400 ℃ for 2-10 hours, then cool down to at least 300 ℃ up to 40 ℃
It can be removed by performing a vacuum heat treatment performed at a cooling rate of not less than 1 minute / minute. As a result, the content of oxides and trace impurities in the grain boundaries of the sintered body will be significantly reduced. The research results show that the toughness of the steel is significantly improved.

この発明は、上記の研究結果にもとづいてなされたも
のであって、 (a) 原料粉末としてW粉末、Ni粉末、Fe粉末、およ
びNi−Fe合金粉末を用意し、 (b) これら原料粉末のうちから必要なものを用い
て、W:85〜97重量%、Ni+Fe:残り(ただし、Fe:Ni+Fe
に占める割合で20〜50重量%)、からなる配合組成に配
合し、混合して混合粉末とし、 (c) 上記混合粉末を1〜4ton/cm2の圧力で圧粉体に
プレス成形し、 (d) 上記圧粉体を0〜−60℃の露点を有する水素を
用いた雰囲気中で液相焼結して焼結体を形成し、 (e) 上記焼結体を、切削や研削などの機械加工およ
び/またはスエージングなどの塑性加工にて所定形状の
飛翔体または飛翔体素材に成形し、 (f) 上記飛翔体または飛翔体素材に真空加熱の水素
除去処理を施す、 以上(a)〜(f)の基本工程により高靭性を有するW
基焼結合金製飛翔体を製造する方法に特徴を有するもの
である。
The present invention has been made based on the above research results. (A) W powders, Ni powders, Fe powders, and Ni-Fe alloy powders are prepared as raw material powders, and (b) these raw material powders are prepared. W: 85-97 wt%, Ni + Fe: remainder (however, Fe: Ni + Fe)
20 to 50% by weight), and mixed to form a mixed powder. (C) The mixed powder is press-molded into a green compact at a pressure of 1 to 4 ton / cm 2 , (D) The green compact is liquid-phase sintered in an atmosphere using hydrogen having a dew point of 0 to -60 ° C to form a sintered body, and (e) the sintered body is cut or ground. And a plastic material such as swaging to form a flying body or a flying body material having a predetermined shape, and (f) subject the flying body or the flying body material to hydrogen removal treatment by vacuum heating. )-(F) has high toughness due to the basic process
It is characterized by a method of manufacturing a base sintered alloy flying body.

つぎに、この発明の方法において、製造条件を上記の
通りに限定した理由を説明する。
Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be described.

(1) 配合組成 W粉末の配合割合に関し、その割合が85重量%未満で
は、飛翔体に要求される高比重、すなわち比重:16以上
を確保することができず、一方その割合が97重量%を越
えると、相対的にNi+Feの割合が少なくなりすぎて、焼
結性が低下し、強度低下の原因となることから、その割
合を85〜97重量%と定めた。
(1) Blending composition Regarding the blending proportion of W powder, if the proportion is less than 85% by weight, it is not possible to secure a high specific gravity required for a flying vehicle, that is, a specific gravity of 16 or more, while the proportion is 97% by weight. %, The relative proportion of Ni + Fe becomes too small, which lowers the sinterability and causes a decrease in strength. Therefore, the proportion was set to 85 to 97% by weight.

また、Ni+Feの相互割合については、NiとFeの合金化
で低融点化をはかり、もって効果的な液相焼結を可能な
らしめるものであり、この低融点化はNi+Feに占める割
合でFeの含有量が20〜50重量%の場合に満足に行なえる
ものであり、したがってFeが20重量%未満でも、またFe
が50重量%を越えても所望の低融点化がはかれないこと
から、Ni+FeにおけるFeの割合を20〜50重量%と定め
た。
Regarding the mutual proportion of Ni + Fe, the melting point is reduced by alloying Ni and Fe, which enables effective liquid phase sintering, and this reduction in melting point is the proportion of Fe in Ni + Fe. The content of 20 to 50% by weight is satisfactory, and therefore even if Fe is less than 20% by weight,
Since the desired lowering of the melting point cannot be achieved even if the content exceeds 50% by weight, the proportion of Fe in Ni + Fe is set to 20 to 50% by weight.

なお、原料粉末の粒径は、プレス成形性、焼結性の点
から、平均粒径で1〜10μmが望ましい。
In addition, the particle size of the raw material powder is preferably 1 to 10 μm in terms of average particle size in terms of press moldability and sinterability.

(2) プレス成形圧力 その圧力が1ton/cm2未満では、焼結体に2〜3%程度
の気孔が残留するのが避けられず、これが靭性および強
度低下の原因となり、一方その圧力が4ton/cm2を越える
と、圧粉体の密度が高くなりすぎて、焼結時の昇温過程
で気孔はほとんどがいわゆるクローズドポアとなるた
め、雰囲気の水素による酸化物還元や不純物除去が効果
的に行なえず、この場合も上記の通り高靭性の確保は困
難となることから、その圧力を1〜4ton/cm2と定めた。
(2) Press forming pressure If the pressure is less than 1 ton / cm 2, it is unavoidable that 2-3% of pores remain in the sintered body, which causes toughness and strength decrease, while the pressure is 4 ton. If it exceeds / cm 2 , the density of the green compact becomes too high and most of the pores become so-called closed pores during the temperature rising process during sintering, so oxide reduction by hydrogen in the atmosphere and impurity removal are effective. Since it is difficult to secure high toughness as described above even in this case, the pressure is set to 1 to 4 ton / cm 2 .

なお、焼結体の均質性の面からは通常の一軸プレスで
はなく、静水圧プレスを行なうのが望ましい。
From the viewpoint of the homogeneity of the sintered body, it is desirable to carry out hydrostatic pressing instead of normal uniaxial pressing.

(3) 焼結雰囲気形成用水素 通常、焼結雰囲気の形成には、上記の通り5〜20℃程
度の露点を有する水素が用いられているが、この水素に
よって形成された焼結雰囲気では圧粉体中に存在する酸
化物の還元や不純物の除去を十分に行なうことができ
ず、これらが焼結体中に残留するようになって靭性およ
び強度低下の原因となる。また、この現象は水素の露点
が0℃近くになるまで続くが、前記酸化物還元および不
純物除去は0℃以下の露点を有する水素を用いることに
よって急激に進行する。しかし−60℃未満の低い露点を
有する水素を用いても前記酸化物還元および不純物除去
に一段の向上効果も現われないことから、経済性も考慮
して、焼結雰囲気の形成に用いられる水素を0〜−60℃
の露点を有する水素に限定したのである。
(3) Hydrogen for Sintering Atmosphere Formation Generally, hydrogen having a dew point of about 5 to 20 ° C. is used to form a sintering atmosphere as described above. Oxides existing in the powder cannot be sufficiently reduced or impurities cannot be sufficiently removed, and these remain in the sintered body, which causes toughness and strength to be reduced. Further, this phenomenon continues until the dew point of hydrogen becomes close to 0 ° C., but the oxide reduction and the impurity removal rapidly proceed by using hydrogen having a dew point of 0 ° C. or lower. However, even if hydrogen having a low dew point of less than −60 ° C. is used, no further improvement effect appears in the oxide reduction and the impurity removal. 0 to -60 ° C
It is limited to hydrogen, which has a dew point of.

また、焼結に関しては、NiとFeによって少なくとも液
総が形成される温度に、かつ十分なぬれ性が確保される
時間保持する必要があり、具体的には1450℃以上の温度
に30分間以上保持する必要がある。
Regarding sintering, it is necessary to hold at a temperature at which at least the total liquid is formed by Ni and Fe, and for a time to ensure sufficient wettability, specifically, at a temperature of 1450 ° C or higher for 30 minutes or longer. Need to hold.

(4) 水素除去処理 焼結時に、上記の通り圧粉体中の酸化物や不純物の還
元および除去が行なわれるが、この場合焼結体中に水素
が固溶含有するようになるのが避けられず、この固溶水
素が残留すると、著しい靭性低下をもたらすことから、
これを除去する必要があり、そこで真空加熱、望ましく
は真空中、700〜1400℃の温度に2〜10時間保持後、少
なくとも300℃までを40℃/分以上の冷却速度で冷却の
条件での真空加熱を施して前記固溶水素の低減化をはか
る必要がある。
(4) Hydrogen removal treatment During sintering, oxides and impurities in the green compact are reduced and removed as described above. In this case, it is avoided that hydrogen is contained as a solid solution in the sintered body. However, if this solid solution hydrogen remains, it causes a significant decrease in toughness.
It is necessary to remove this, and then heat it under vacuum, preferably in vacuum, after holding it at a temperature of 700 to 1400 ° C for 2 to 10 hours, and then cooling it to a temperature of at least 300 ° C at a cooling rate of 40 ° C / min or more under the conditions It is necessary to perform vacuum heating to reduce the solid solution hydrogen.

また、上記水素除去処理における40℃/分以上の冷却
速度での冷却によって、いずれも靭性低下の原因とな
る、粒界や粒内への微量の析出物の生成が防止され、さ
らにNi+Fe中に過飽和に固溶したW成分の析出も防止さ
れるようになる。
In addition, by cooling at a cooling rate of 40 ° C./min or more in the above hydrogen removal treatment, the formation of a small amount of precipitates at grain boundaries and within the grains, which both cause deterioration in toughness, is prevented. Precipitation of the W component dissolved in supersaturation can also be prevented.

〔実施例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明
する。
Next, the method of the present invention will be specifically described by way of Examples.

原料粉末として、平均粒径5.4μmのW粉末、同5.2μ
mのNi粉末、および同6μmの鉄粉を用意し、これら原
料粉末を第1表に示される配合組成に配合し、ポットミ
ルで72時間湿式混合し、乾燥した後、ラバー容器内に装
入し、同じく第1表に示される圧力での静水圧成形(ラ
バープレス成形)にて圧粉体を形成し、この圧粉体を、
同じく第1表に示される露点を有する水素を導入して形
成した水素雰囲気中、温度:1470℃に90分間保持の条件
で焼結して、直径:40mmφ×長さ:500mmの寸法をもった
飛翔体用焼結体、並びに直径:20mmφ×長さ:150mmの寸
法をもった引張試験用焼結体を形成し、これに切削加工
を施して底部直径:35mm×長さ:480mmの飛翔体および引
張試験片とし、ついでこれに真空中、温度:1250℃に6
時間保持後、300℃までを50℃/分の冷却速度で冷却の
条件で水素除去処理を行ない、あるいは前記水素除去処
理を行なうことなく、本発明方法1〜4および比較方法
1〜7を実施した。
As raw material powder, W powder with an average particle size of 5.4 μm, the same as 5.2 μm
m of Ni powder and 6 μm of iron powder were prepared, and these raw material powders were blended to the blending composition shown in Table 1, wet-mixed for 72 hours in a pot mill, dried, and then placed in a rubber container. Similarly, a green compact is formed by hydrostatic molding (rubber press molding) under the pressure shown in Table 1, and the green compact is
Similarly, in a hydrogen atmosphere formed by introducing hydrogen having the dew point shown in Table 1, sintering was performed under the conditions of holding at a temperature of 1470 ° C for 90 minutes, and had dimensions of diameter: 40 mm φ x length: 500 mm. A flying body sintered body, and a tensile test sintered body having a diameter of 20 mm φ and a length of 150 mm are formed, and are cut to have a bottom diameter of 35 mm and a length of 480 mm. It is used as a flying object and a tensile test piece, and then in a vacuum at a temperature of 1250 ° C.
After holding for a period of time, hydrogen removal treatment is performed under the conditions of cooling up to 300 ° C. at a cooling rate of 50 ° C./min, or the methods 1 to 4 of the present invention and the comparison methods 1 to 7 are performed without performing the hydrogen removal treatment. did.

なお、比較方法1〜7は、製造条件のうちの少なくと
もいずれかの条件がこの発明の範囲から外れた条件で行
なったものである。
The comparison methods 1 to 7 are carried out under the condition that at least one of the manufacturing conditions is out of the scope of the present invention.

また、強度および靭性を評価する目的で、上記引張試
験片を用いて、引張強さと伸びを測定し、さらに比重も
測定した。これらの測定結果を第1表に示した。
Further, for the purpose of evaluating strength and toughness, the tensile test piece was used to measure the tensile strength and the elongation, and the specific gravity was also measured. The results of these measurements are shown in Table 1.

〔発明の効果〕 第1表に示される結果から、本発明方法1〜4によれ
ば、靭性にすぐれ、かつ高強度を有する高比重の飛翔体
を製造することができるのに対して、比較方法1〜7に
見られるように、製造条件のうちの少なくともいずれか
の条件がこの発明の範囲から外れると、比重、強度、お
よび靭性のうちの少なくともいずれかの特性が劣った飛
翔体しか製造することができないことが明らかである。
[Effects of the Invention] From the results shown in Table 1, according to the methods 1 to 4 of the present invention, it is possible to produce a high specific gravity projectile having excellent toughness and high strength. As seen in Methods 1 to 7, when at least one of the manufacturing conditions deviates from the scope of the present invention, only a flying object having inferior properties of at least one of specific gravity, strength, and toughness is manufactured. Obviously you can't.

上述のように、この発明の方法によれば、破壊し難
く、かつ十分満足な貫徹力を示す飛翔体を製造すること
ができるのである。
As described above, according to the method of the present invention, it is possible to manufacture a flying body which is hard to break and which has a sufficiently satisfactory penetration force.

フロントページの続き (72)発明者 今井 保穂 東京都世田谷区池尻1丁目2番24号 防 衛庁技術研究本部内 (72)発明者 泉 昭雄 東京都世田谷区池尻1丁目2番24号 防 衛庁技術研究本部内 (72)発明者 柏木 重道 東京都世田谷区池尻1丁目2番24号 防 衛庁技術研究本部内 (72)発明者 間山 治 新潟市小金町3番地1 三菱金属株式会 社新潟製作所内 (72)発明者 水野 正一 新潟市小金町3番地1 三菱金属株式会 社新潟製作所内 (72)発明者 河野 通 大宮市北袋町1丁目297番地 三菱金属 株式会社中央研究所内 (72)発明者 高橋 忠輝 福島県西白河郡西郷村大字長坂字土生2 番地1 日本工機株式会社白河製造所内 (56)参考文献 特開 昭52−37503(JP,A) 特開 昭59−13037(JP,A) 特開 昭61−104002(JP,A)Front page continuation (72) Inventor Yasuho Imai 1-24-2 Ikejiri, Setagaya-ku, Tokyo Inside the Technical Research Division, Defense Agency (72) Inventor Akio Izumi 1-24-2 Ikejiri, Setagaya-ku, Tokyo Defense (72) Inventor Shigemichi Kashiwagi 1-22 Ikejiri, Setagaya-ku, Tokyo Inside the Technical Research Division, Defense Agency (72) Osamu Mayama 1 Kogane-cho, Niigata City 1 Mitsubishi Metal Industries Association In-house Niigata Works (72) Inventor Shoichi Mizuno 1 3 Kogane-cho, Niigata City Mitsubishi Metals Stock Company (72) Inventor Toru Kono 1-297 Kitabukuro-cho, Omiya City Mitsubishi Metals Co. Central Research Institute ( 72) Inventor Tadatoki Takahashi 2 No. 1 Tobu, Nagasaka, Saigo-mura, Nishishirakawa-gun, Fukushima Prefecture Shirakawa Works, Nippon Koki Co., Ltd. (56) Reference JP-A-52-37503 (JP, A) JP-A-59-13037 (JP-A-59-13037) JP, A) JP 61-104002 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a) 原料粉末としてW粉末、Ni粉末、
Fe粉末、およびNi−Fe合金粉末を用意し、 (b) これら原料粉末のうちから必要なものを用い
て、W:85〜97重量%、Ni+Fe:残り(ただし、Fe:Ni+Fe
に占める割合で20〜50重量%)、からなる配合組成に配
合し、混合して混合粉末とし、 (c) 上記混合粉末を1〜4ton/cm2の圧力で圧粉体に
プレス成形し、 (d) 上記圧粉体を0〜−60℃の露点を有する水素を
用いた雰囲気中で液相焼結して焼結体を形成し、 (e) 上記焼結体を、機械加工および/または塑性加
工にて所定形状の飛翔体または飛翔体素材に成形し、 (f) 上記飛翔体または飛翔体素材に真空加熱の水素
除去処理を施す、 以上(a)〜(f)の基本工程からなることを特徴とす
る高靭性を有するW基焼結合金製飛翔体の製造方法。
1. A raw material powder comprising W powder, Ni powder,
Prepare the Fe powder and the Ni-Fe alloy powder, and (b) use the necessary one of these raw material powders, W: 85 to 97% by weight, Ni + Fe: balance (however, Fe: Ni + Fe
20 to 50% by weight), and mixed to form a mixed powder. (C) The mixed powder is press-molded into a green compact at a pressure of 1 to 4 ton / cm 2 , (D) Liquid-phase sintering of the green compact in an atmosphere using hydrogen having a dew point of 0 to -60 ° C to form a sintered body, (e) machining and / or machining of the sintered body. Alternatively, it is formed into a flying body or a flying body material having a predetermined shape by plastic working, and (f) the above flying body or flying body material is subjected to vacuum-heating hydrogen removal treatment. From the basic steps (a) to (f) above And a method of manufacturing a W-based sintered alloy flying body having high toughness.
JP61026868A 1986-02-12 1986-02-12 Manufacturing method of W-based sintered alloy flying body having high toughness Expired - Lifetime JP2531623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61026868A JP2531623B2 (en) 1986-02-12 1986-02-12 Manufacturing method of W-based sintered alloy flying body having high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61026868A JP2531623B2 (en) 1986-02-12 1986-02-12 Manufacturing method of W-based sintered alloy flying body having high toughness

Publications (2)

Publication Number Publication Date
JPS62185805A JPS62185805A (en) 1987-08-14
JP2531623B2 true JP2531623B2 (en) 1996-09-04

Family

ID=12205267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61026868A Expired - Lifetime JP2531623B2 (en) 1986-02-12 1986-02-12 Manufacturing method of W-based sintered alloy flying body having high toughness

Country Status (1)

Country Link
JP (1) JP2531623B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622209B1 (en) * 1987-10-23 1990-01-26 Cime Bocuze HEAVY DUTIES OF TUNGSTENE-NICKEL-IRON WITH VERY HIGH MECHANICAL CHARACTERISTICS AND METHOD OF MANUFACTURING SAID ALLOYS
FR2633205B1 (en) * 1988-06-22 1992-04-30 Cime Bocuze PROCESS FOR DIRECT SHAPING AND OPTIMIZATION OF THE MECHANICAL CHARACTERISTICS OF HIGH-DENSITY TUNGSTEN ALLOY PERFORMING PROJECTILES
JPH02122029A (en) * 1988-10-31 1990-05-09 Nippon Yakin Kogyo Co Ltd Manufacture of tungsten sintered alloy
JPH02122028A (en) * 1988-10-31 1990-05-09 Nippon Yakin Kogyo Co Ltd Manufacture of tungsten sintered alloy
JPH02122048A (en) * 1988-10-31 1990-05-09 Nippon Yakin Kogyo Co Ltd Sintered tungsten alloy having high ductility at low temperature
JPH02163337A (en) * 1988-12-16 1990-06-22 Nippon Yakin Kogyo Co Ltd Manufacture of high hardness tungsten liquid phase sintered alloy
KR100390173B1 (en) * 2000-12-28 2003-07-10 주식회사 래피더스 Method for manufacturing high ductile tungsten based heavy alloy having an excellent oxidation resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979234A (en) * 1975-09-18 1976-09-07 The United States Of America As Represented By The United States Energy Research And Development Administration Process for fabricating articles of tungsten-nickel-iron alloy
JPS5913037A (en) * 1982-07-09 1984-01-23 Sumitomo Electric Ind Ltd Production of w-ni-fe sintered alloy
DE3438547C2 (en) * 1984-10-20 1986-10-02 Dornier System Gmbh, 7990 Friedrichshafen Heat treatment process for pre-alloyed, two-phase tungsten powder

Also Published As

Publication number Publication date
JPS62185805A (en) 1987-08-14

Similar Documents

Publication Publication Date Title
US10563291B2 (en) Method of forming a sintered nickel-titanium-rare earth (Ni—Ti—Re) alloy
US4702885A (en) Aluminum alloy and method for producing the same
JP7323616B2 (en) Magnesium alloy material and its manufacturing method
CN105283566A (en) Fire-resistant magnesium alloy and production method therefor
CA2969511C (en) Iron-based alloy powder for powder metallurgy, and sinter-forged member
EP3719153B1 (en) Hot-die ni-based alloy, hot-forging die employing same, and forged-product manufacturing method
JP2531623B2 (en) Manufacturing method of W-based sintered alloy flying body having high toughness
WO1989012113A1 (en) SINTERED RARE EARTH ELEMENT-B-Fe-MAGNET AND PROCESS FOR ITS PRODUCTION
JP2531624B2 (en) Method for producing cored W alloy sintered body having high toughness and high strength
JP2552264B2 (en) Method for producing W-based alloy sintered body having high toughness
US6676894B2 (en) Copper-infiltrated iron powder article and method of forming same
JP4537501B2 (en) Cemented carbide and method for producing the same
JP4281857B2 (en) Sintered tool steel and manufacturing method thereof
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JPH10501299A (en) Iron-based powder containing Mo, P, C
DE102008014355A1 (en) Composite based on transition metal diborides, process for its preparation and its use
JP2586597B2 (en) Method for producing rare earth-B-Fe sintered magnet excellent in magnetic properties and corrosion resistance
JPH04202736A (en) Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging
JPS6229481B2 (en)
JPS6330391B2 (en)
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same
JP2726140B2 (en) High toughness tungsten sintered alloy
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
JPS604898B2 (en) Molybdenum-based alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term