JP2531378B2 - Cylinder injection internal combustion engine - Google Patents

Cylinder injection internal combustion engine

Info

Publication number
JP2531378B2
JP2531378B2 JP5327698A JP32769893A JP2531378B2 JP 2531378 B2 JP2531378 B2 JP 2531378B2 JP 5327698 A JP5327698 A JP 5327698A JP 32769893 A JP32769893 A JP 32769893A JP 2531378 B2 JP2531378 B2 JP 2531378B2
Authority
JP
Japan
Prior art keywords
fuel
valve
intake
fuel injection
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5327698A
Other languages
Japanese (ja)
Other versions
JPH06272559A (en
Inventor
▲静▼夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5327698A priority Critical patent/JP2531378B2/en
Publication of JPH06272559A publication Critical patent/JPH06272559A/en
Application granted granted Critical
Publication of JP2531378B2 publication Critical patent/JP2531378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関に関する。FIELD OF THE INVENTION This invention relates to internal combustion engines.

【0002】[0002]

【従来の技術】吸気弁近傍のシリンダヘッド内壁面上に
燃料噴射弁を配置し、機関低負荷運転時には燃料噴射弁
から圧縮行程中に燃料を噴射すると共に機関高負荷運転
時には燃料噴射弁から吸気行程中に燃料を噴射するよう
にした筒内噴射式内燃機関が公知である(実開平1−1
73416号公報参照)。この筒内噴射式内燃機関では
機関高負荷運転時に開弁している吸気弁のかさ部背面に
向けて全燃料を噴射すると共に吸気弁のかさ部背面に衝
突した噴射燃料を吸気弁のかさ部背面に沿い周囲に飛散
させることにより噴射燃料を燃焼室内に分散させ、それ
によって空気利用率を高めるようにしている。
2. Description of the Related Art A fuel injection valve is arranged on the inner wall surface of a cylinder head near an intake valve to inject fuel during a compression stroke from the fuel injection valve during low engine load operation, and to inject fuel from the fuel injection valve during high engine load operation. A cylinder injection type internal combustion engine in which fuel is injected during a stroke is known (actual opening 1-1).
73416). In this in-cylinder injection internal combustion engine, all fuel is injected toward the back surface of the intake valve that is open during high-load operation of the engine, and the injected fuel that collides with the back surface of the intake valve is used as the injection valve. The injected fuel is dispersed in the combustion chamber by being scattered along the back surface to increase the air utilization rate.

【0003】[0003]

【発明が解決しようとする課題】しかしながら機関負荷
が比較的低いときには燃焼室内の一部の領域に噴射燃料
を集め、機関負荷が高くなるにつれて燃焼室内の一部の
領域に集められる噴射燃料量を徐々に減少させつつ吸気
弁のかさ部背面に衝突させて燃焼室内に分散される噴射
燃料量を徐々に増大させることが燃焼の上からは好まし
い。従って上述の筒内噴射式内燃機関におけるように噴
射燃料を全く吸気弁に衝突させないか、或いは全噴射燃
料を吸気弁のかさ部背面に衝突させるかのいずれか一方
を行うようにしただけでは良好な燃焼を得ることができ
ないという問題がある。
However, when the engine load is relatively low, the injected fuel is collected in a partial region of the combustion chamber, and as the engine load increases, the amount of injected fuel collected in a partial region of the combustion chamber is increased. It is preferable from the standpoint of combustion that the amount of injected fuel dispersed in the combustion chamber is gradually increased by colliding with the back surface of the bulkhead of the intake valve while gradually decreasing. Therefore, it suffices if the injected fuel does not collide with the intake valve at all as in the above-mentioned cylinder injection type internal combustion engine, or only the entire injected fuel collides with the rear surface of the bulge portion of the intake valve. There is a problem that it is not possible to obtain proper combustion.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によれば、燃焼室内に燃料噴射弁を配置する
と共に燃料噴射弁から吸気行程時に燃料を噴射し、噴射
された燃料が吸気弁のリフト量が小さいときには吸気弁
の下方を通過し、吸気弁のリフト量が大きくなると吸気
弁のかさ部背面に衝突するように燃料噴射弁の燃料噴射
方向を定め、機関負荷に応じて燃料噴射時期を制御する
ことにより全噴射燃料のうち吸気弁のかさ部背面に衝突
する燃料の割合を機関負荷が高くなるほど徐々に増大さ
せるようにしている。
In order to solve the above problems, according to the present invention, a fuel injection valve is arranged in the combustion chamber, fuel is injected from the fuel injection valve during the intake stroke, and the injected fuel is When the lift amount of the intake valve is small, the fuel injection direction of the fuel injection valve is set so that it passes below the intake valve, and when the lift amount of the intake valve becomes large, the fuel injection direction of the fuel injection valve is determined so as to collide with the back surface of the cover of the intake valve. By controlling the fuel injection timing, the proportion of the fuel that collides with the back surface of the bulge portion of the intake valve among all the injected fuel is gradually increased as the engine load increases.

【0005】[0005]

【作用】燃料噴射弁から噴射された全噴射燃料のうち吸
気弁のかさ部背面に衝突する燃料の割合が機関負荷が高
くなるほど徐々に増大する。
The ratio of the fuel that collides with the back surface of the bulge portion of the intake valve out of all the injected fuel injected from the fuel injection valve gradually increases as the engine load increases.

【0006】[0006]

【実施例】図1を参照すると機関本体1は4つの気筒1
aを具備し、これら各気筒1aの燃焼室構造が図2から
図6に示されている。図2から図6を参照すると、2は
シリンダブロック、3はシリンダブロック2内で往復動
するピストン、4はシリンダブロック2上に固締された
シリンダヘッド、5はピストン3とシリンダヘッド4間
に形成された燃焼室、6aは第1吸気弁、6bは第2吸
気弁、7aは第1吸気ポート、7bは第2吸気ポート、
8は一対の排気弁、9は一対の排気ポートを夫々示す。
図2に示されるように第1吸気弁6aと第2吸気弁6b
とはシリンダ軸線を含む平面K−Kに関して反対側に配
置されており、また第1吸気ポート7aと第2吸気ポー
ト7bはこの平面K−Kに沿う同一方向に延設されてい
る。また、図2に示されるように第1吸気ポート7aは
ヘリカル型吸気ポートからなり、第2吸気ポート7bは
ほぼまっすぐに延びるストレートポートからなる。更に
図2に示されるようにシリンダヘッド4の内壁面の中央
部には点火栓10が配置され、第1吸気弁6aおよび第
2吸気弁6b近傍のシリンダヘッド4内壁面周辺部には
第1燃料噴射弁11aが配置される。図3および図4に
示されるようにピストン3の頂面上には第1燃料噴射弁
11aの下方から点火栓10の下方まで延びるほぼ円形
の輪郭形状を有する浅皿部12が形成され、浅皿部12
の中央部にはほぼ半球形状をなす深皿部13が形成され
る。また、点火栓10下方の浅皿部12と深皿部13と
の接続部にはほぼ球形状をなす凹部14が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, an engine body 1 has four cylinders 1.
2a to 6 show the combustion chamber structure of each cylinder 1a. 2 to 6, 2 is a cylinder block, 3 is a piston that reciprocates in the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, and 5 is between the piston 3 and the cylinder head 4. The formed combustion chamber, 6a is a first intake valve, 6b is a second intake valve, 7a is a first intake port, 7b is a second intake port,
Reference numeral 8 indicates a pair of exhaust valves, and 9 indicates a pair of exhaust ports.
As shown in FIG. 2, the first intake valve 6a and the second intake valve 6b
Are arranged on the opposite side with respect to the plane KK including the cylinder axis, and the first intake port 7a and the second intake port 7b are extended in the same direction along the plane KK. Further, as shown in FIG. 2, the first intake port 7a is a helical intake port, and the second intake port 7b is a straight port that extends almost straight. Further, as shown in FIG. 2, the spark plug 10 is arranged in the center of the inner wall surface of the cylinder head 4, and the first spark plug 10 is arranged near the inner wall surface of the cylinder head 4 near the first intake valve 6a and the second intake valve 6b. The fuel injection valve 11a is arranged. As shown in FIGS. 3 and 4, on the top surface of the piston 3, a shallow dish portion 12 having a substantially circular contour shape extending from below the first fuel injection valve 11a to below the spark plug 10 is formed. Plate 12
A basin portion 13 having a substantially hemispherical shape is formed in the central portion of the. In addition, a recess 14 having a substantially spherical shape is formed at a connecting portion between the shallow dish portion 12 and the deep dish portion 13 below the spark plug 10.

【0007】図1に示されるように各気筒1aの第1吸
気ポート7aおよび第2吸気ポート7bは夫々各吸気枝
管15内に形成された第1吸気通路15aおよび第2吸
気通路15bを介してサージタンク16内に連結され、
図1、図2、図6に示されるように各第2吸気通路15
b内には夫々第2燃料噴射弁11bと吸気制御弁17が
配置される。これらの吸気制御弁17は共通のシャフト
18を介して例えばステップモータからなるアクチュエ
ータ19に連結される。このステップモータ19は電子
制御ユニット30の出力信号に基いて制御される。サー
ジタンク16は吸気ダクト20を介してエアクリーナ2
1に連結され、吸気ダクト20内にはステップモータ2
2によって駆動されるスロットル弁23が配置される。
このスロットル弁23は機関負荷が極く低いときのみ或
る程度閉弁しており、機関負荷が少し高くなると全開状
態に保持される。一方、各気筒1aの排気ポート9は排
気マニホルド24に連結される。
As shown in FIG. 1, the first intake port 7a and the second intake port 7b of each cylinder 1a respectively pass through a first intake passage 15a and a second intake passage 15b formed in each intake branch pipe 15. Connected in the surge tank 16,
As shown in FIGS. 1, 2, and 6, each second intake passage 15
A second fuel injection valve 11b and an intake control valve 17 are arranged in each b. These intake control valves 17 are connected via a common shaft 18 to an actuator 19 composed of, for example, a step motor. The step motor 19 is controlled based on the output signal of the electronic control unit 30. The surge tank 16 receives the air cleaner 2 through the intake duct 20.
1, the step motor 2 is installed in the intake duct 20.
A throttle valve 23 driven by 2 is arranged.
The throttle valve 23 is closed to some extent only when the engine load is extremely low, and is kept fully open when the engine load is slightly increased. On the other hand, the exhaust port 9 of each cylinder 1a is connected to the exhaust manifold 24.

【0008】電子制御ユニット30はディジタルコンピ
ュータからなり、双方向性バス31を介して相互に接続
されたRAM(ランダムアクセスメモリ)32、ROM
(リードオンリメモリ)33、CPU(マイクロプロセ
ッサ)34、入力ポート35および出力ポート36を具
備する。アクセルペダル25にはアクセルペダル25の
踏込み量に比例した出力電圧を発生する負荷センサ26
が接続され、負荷センサ26の出力電圧はAD変換器3
7を介して入力ポート35に入力される。上死点センサ
27は例えば1番気筒1aが吸気上死点に達したときに
出力パルスを発生し、この出力パルスが入力ポート35
に入力される。クランク角センサ28は例えばクランク
シャフトが30度回転する毎に出力パルスを発生し、こ
の出力パルスが入力ポート35に入力される。CPU3
4では上死点センサ27の出力パルスとクランク角セン
サ28の出力パルスから現在のクランク角が計算され、
クランク角センサ28の出力パルスから機関回転数が計
算される。一方、出力ポート36は対応する駆動回路3
8を介して各第1燃料噴射弁11a、各第2燃料噴射弁
11bおよび各ステップモータ19,22に接続され
る。
The electronic control unit 30 comprises a digital computer, and a RAM (random access memory) 32 and a ROM connected to each other via a bidirectional bus 31.
A (read only memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port 36 are provided. The accelerator pedal 25 includes a load sensor 26 that generates an output voltage proportional to the depression amount of the accelerator pedal 25.
Is connected, and the output voltage of the load sensor 26 is the AD converter 3
It is input to the input port 35 via 7. The top dead center sensor 27 generates an output pulse when, for example, the first cylinder 1a reaches the intake top dead center, and this output pulse is input to the input port 35.
Is input to The crank angle sensor 28 generates an output pulse each time the crankshaft rotates 30 degrees, for example, and the output pulse is input to the input port 35. CPU3
In 4, the current crank angle is calculated from the output pulse of the top dead center sensor 27 and the output pulse of the crank angle sensor 28,
The engine speed is calculated from the output pulse of the crank angle sensor 28. On the other hand, the output port 36 corresponds to the corresponding drive circuit 3
8 is connected to each first fuel injection valve 11a, each second fuel injection valve 11b, and each step motor 19,22.

【0009】本発明による実施例では図2および図3に
おいてF1 およびF2 で示されるように第1燃料噴射弁
11aからは二つの方向に向けて燃料が噴射され、第2
燃料噴射弁11bからはF3 で示されるように第2吸気
ポート7b内に向けて燃料が噴射される。図7はこれら
第1燃料噴射弁11aおよび第2燃料噴射弁11bから
の燃料噴射量と燃料噴射時期とを示している。なお、図
7においてLはアクセルペダル25の踏込み量を示して
いる。図7に示されるようにアクセルペダル25の踏込
み量LがL1 よりも小さい機関低負荷運転時には圧縮行
程末期に第1燃料噴射弁11aから燃焼室5内に噴射量
2 だけ燃料噴射が行われる。一方、アクセルペダル2
5の踏込み量LがL1 とL2 の間の機関中負荷運転時に
は吸気行程中に第1燃料噴射弁11aから燃焼室5内に
噴射量Q1 だけ燃料噴射が行われ、圧縮行程末期に第1
燃料噴射弁11aから燃焼室5内に噴射量Q2 だけ燃料
が噴射される。即ち、機関中負荷運転時には吸気行程と
圧縮行程末期の2回に分けて第1燃料噴射弁11aから
燃焼室5内に燃料噴射が行われる。また、アクセルペダ
ル25の踏込み量LがL2 よりも大きい機関高負荷運転
時には吸気行程中に第1燃料噴射弁11aから燃焼室5
内に噴射量Q1 だけ燃料が噴射され、更に吸気行程中に
第2燃料噴射弁11bから第2吸気ポート11b内に噴
射量Q3 だけ燃料が噴射される。即ち、機関高負荷運転
時には吸気行程中のほぼ同じ時期に第1燃料噴射弁11
aと第2燃料噴射弁11bの双方から燃料噴射が行われ
る。
In the embodiment according to the present invention, as indicated by F 1 and F 2 in FIGS. 2 and 3, fuel is injected from the first fuel injection valve 11a in two directions, and
Fuel is injected from the fuel injection valve 11b toward the inside of the second intake port 7b as indicated by F 3 . FIG. 7 shows the fuel injection amount and the fuel injection timing from the first fuel injection valve 11a and the second fuel injection valve 11b. In FIG. 7, L indicates the depression amount of the accelerator pedal 25. The amount of depression L is injection quantity into the combustion chamber 5 from the first fuel injection valve 11a Q 2 only fuel injection lines to the end of the compression stroke at the time of low engine low load operation than L 1 of the accelerator pedal 25 as shown in FIG. 7 Be seen. On the other hand, accelerator pedal 2
During the engine medium load operation in which the depression amount L of 5 is between L 1 and L 2 , fuel is injected from the first fuel injection valve 11a into the combustion chamber 5 by the injection amount Q 1 during the intake stroke, and at the end of the compression stroke. First
The fuel is injected from the fuel injection valve 11a into the combustion chamber 5 by the injection amount Q 2 . That is, during the engine medium load operation, the fuel injection is performed from the first fuel injection valve 11a into the combustion chamber 5 in two steps, the intake stroke and the compression stroke end. Further, during engine high load operation in which the depression amount L of the accelerator pedal 25 is larger than L 2 , the first fuel injection valve 11a to the combustion chamber 5 are operated during the intake stroke.
Fuel Only injection amount Q 1 is being injected, the fuel from the second fuel injection valve 11b by injection quantity Q 3 in the second intake port 11b is injected more during the intake stroke within. That is, during engine high load operation, the first fuel injection valve 11 is operated at almost the same time during the intake stroke.
Fuel injection is performed from both a and the second fuel injection valve 11b.

【0010】なお、図7においてθS1およびθE1は
吸気行程中に第1燃料噴射弁11aによって行われる燃
料噴射Q1 の噴射開始時期と噴射完了時期を夫々示して
おり、θS2とθE2は圧縮行程末期に第1燃料噴射弁
11aによって行われる燃料噴射Q2 の噴射開始時期と
噴射完了時期を夫々示しており、θS3とθE3は吸気
行程中に第2燃料噴射弁11bによって行われる燃料噴
射Q3 の噴射開始時期と噴射完了時期を夫々示してい
る。
In FIG. 7, θS1 and θE1 respectively indicate the injection start timing and the injection completion timing of the fuel injection Q 1 performed by the first fuel injection valve 11a during the intake stroke, and θS2 and θE2 are the end of the compression stroke. Shows the injection start timing and the injection completion timing of the fuel injection Q 2 performed by the first fuel injection valve 11a, and θS3 and θE3 are the fuel injection Q 3 performed by the second fuel injection valve 11b during the intake stroke. The injection start timing and the injection completion timing are shown respectively.

【0011】ところで本発明による実施例では図2に示
されるように第1燃料噴射弁11aからは噴射燃料F
1 ,F2 が第1吸気弁6aの下方を飛行するように燃料
が噴射され、機関高負荷運転時における吸気行程噴射時
に噴射燃料F1 ,F2 が第1吸気弁6aのかさ部背面に
衝突せしめられる。次にこのことについて図8および図
9を参照して説明する。
By the way, in the embodiment according to the present invention, as shown in FIG. 2, the injected fuel F is supplied from the first fuel injection valve 11a.
The fuel is injected so that 1 and F 2 fly below the first intake valve 6a, and the injected fuels F 1 and F 2 are injected to the back surface of the first intake valve 6a during the intake stroke injection during high engine load operation. It is made to collide. Next, this will be described with reference to FIGS. 8 and 9.

【0012】図8は第1吸気弁6aと第2吸気弁6bの
弁リフトXと、排気弁8の弁リフトYを示している。図
8からわかるように第1吸気弁6aおよび第2吸気弁6
bの弁リフトXは吸気行程の中央部において最も大きく
なる。図9は第1吸気弁6aと噴射燃料F1 との関係を
示している。図9に示されるように噴射燃料F1 は水平
面よりもわずか下向きに噴射される。図9には示してい
ないが噴射燃料F2 も噴射燃料F1 と同様に水平面より
もわずか下向きに噴射される。図9からわかるように図
9(A)に示す如く第1吸気弁6aのリフト量が小さい
ときには噴射燃料F1 が第1吸気弁6aに衝突せず、図
9(B)に示すように第1吸気弁6aのリフト量が大き
くなると噴射燃料F1 が第1吸気弁6aのかさ部背面に
衝突するように第1吸気弁6aと第1燃料噴射弁11a
との相対位置および第1燃料噴射弁11aからの燃料噴
射方向が定められている。図8のZは噴射燃料F1 が第
1吸気弁6aのかさ部背面に衝突するクランク角領域を
示している。なお、図9には示していないが噴射燃料F
2 もこのクランク角領域Zで第1吸気弁6aのかさ部背
面に衝突する。
FIG. 8 shows the valve lift X of the first intake valve 6a and the second intake valve 6b, and the valve lift Y of the exhaust valve 8. As can be seen from FIG. 8, the first intake valve 6a and the second intake valve 6
The valve lift X of b becomes the largest in the central part of the intake stroke. FIG. 9 shows the relationship between the first intake valve 6a and the injected fuel F 1 . As shown in FIG. 9, the injected fuel F 1 is injected slightly downward from the horizontal plane. Although not shown in FIG. 9, the injected fuel F 2 is also injected slightly downward from the horizontal plane like the injected fuel F 1 . As can be seen from FIG. 9, when the lift amount of the first intake valve 6a is small as shown in FIG. 9A, the injected fuel F 1 does not collide with the first intake valve 6a, and as shown in FIG. The first intake valve 6a and the first fuel injection valve 11a are arranged so that the injected fuel F 1 collides with the back surface of the bulge of the first intake valve 6a when the lift amount of the first intake valve 6a increases.
And the fuel injection direction from the first fuel injection valve 11a are determined. Z in FIG. 8 shows a crank angle region in which the injected fuel F 1 collides with the back surface of the first intake valve 6a at the bulge portion. Although not shown in FIG. 9, the injected fuel F
2 also collides with the rear surface of the bulge portion of the first intake valve 6a in this crank angle region Z.

【0013】上述したように第1燃料噴射弁11aから
図8に示すクランク角領域Zにおいて燃料を噴射すれば
図9(B)に示すように噴射燃料F1 は第1吸気弁6a
のかさ部背面に衝突する。このとき噴射燃料F1 の流速
が遅いと噴射燃料F1 は第1吸気弁6aのかさ部背面に
衝突した後第1吸気弁6aのかさ部背面に沿って燃料噴
射弁11と反対側の燃焼室5の周辺部に向かうが噴射燃
料F1 の流速が速いと図9(B)に示されるように噴射
燃料F1 は吸気弁6aのかさ部背面に衝突した後反射し
て第1吸気ポート7a内に向かう。同様に噴射燃料F2
の流速が速ければ噴射燃料F2 は第1吸気弁6aのかさ
部背面に衝突した後反射して第1吸気ポート7a内に向
かう。本発明による実施例では各噴射燃料F1 ,F2
第1吸気弁6aのかさ部背面で反射した後、第1吸気ポ
ート7a内に向かうように各噴射燃料F1 ,F2 の流速
が定められている。なお、この流速は主に燃料噴射圧に
よって定まり、本発明による実施例では第1燃料噴射弁
11aの燃料噴射圧は70Kg/cm2 以上に設定されてい
る。これに対して第2燃料噴射弁11bの燃料噴射圧は
70Kg/cm2 よりもはるかに低く設定されている。
If the fuel is injected from the first fuel injection valve 11a in the crank angle region Z shown in FIG. 8 as described above, the injected fuel F 1 will be the first intake valve 6a as shown in FIG. 9B.
It collides with the back of the umbrella. At this time, if the flow velocity of the injected fuel F 1 is slow, the injected fuel F 1 collides with the back surface of the bulge portion of the first intake valve 6a and then burns on the side opposite to the fuel injection valve 11 along the back surface of the bulge portion of the first intake valve 6a. When the flow velocity of the injected fuel F 1 is high toward the peripheral portion of the chamber 5, the injected fuel F 1 collides with the back surface of the cap portion of the intake valve 6a and then is reflected as shown in FIG. Head inside 7a. Similarly, the injected fuel F 2
If the flow velocity is high, the injected fuel F 2 collides with the back surface of the bulkhead portion of the first intake valve 6a, is reflected, and then travels into the first intake port 7a. In the embodiment according to the present invention, after the injected fuels F 1 and F 2 are reflected on the back surface of the bulk part of the first intake valve 6a, the flow speeds of the injected fuels F 1 and F 2 are directed toward the inside of the first intake port 7a. It is set. This flow velocity is mainly determined by the fuel injection pressure, and in the embodiment of the present invention, the fuel injection pressure of the first fuel injection valve 11a is set to 70 kg / cm 2 or more. On the other hand, the fuel injection pressure of the second fuel injection valve 11b is set to be much lower than 70 kg / cm 2 .

【0014】図10は吸気制御弁17の開度とアクセル
ペダル25の踏込み量Lとの関係を示している。図10
に示されるようにアクセルペダル25の踏込み量LがL
1 よりも小さい機関低負荷運転時には吸気制御弁17は
全閉状態に保持されており、アクセルペダル25の踏込
み量LがL1 よりも大きくなると吸気制御弁17はアク
セルペダル25の踏込み量Lが大きくなるにつれて開弁
せしめられる。吸気制御弁17が全閉せしめられると吸
入空気はヘリカル状をなす第1吸気ポート7aを介して
旋回しつつ燃焼室5内に流入し、斯くして燃焼室5内に
は図2において矢印Sで示すような強力な旋回流が発生
せしめられる。一方、吸気制御弁17が開弁すると第2
吸気ポート7bからも吸入空気が燃焼室5内に流入す
る。
FIG. 10 shows the relationship between the opening degree of the intake control valve 17 and the depression amount L of the accelerator pedal 25. FIG.
As shown in, the depression amount L of the accelerator pedal 25 is L
The intake control valve 17 is held in a fully closed state during engine low load operation smaller than 1, and when the depression amount L of the accelerator pedal 25 becomes larger than L 1 , the intake control valve 17 changes the depression amount L of the accelerator pedal 25. The valve opens as it grows larger. When the intake control valve 17 is fully closed, the intake air flows into the combustion chamber 5 while swirling through the first intake port 7a having a helical shape. Therefore, the intake air flows into the combustion chamber 5 in FIG. A powerful swirling flow is generated as shown in. On the other hand, when the intake control valve 17 opens, the second
Intake air also flows into the combustion chamber 5 from the intake port 7b.

【0015】再び図7に戻ると図7には図8に示すクラ
ンク角領域Zが示されている。図7に示されるように本
発明による実施例では機関高負荷運転時における第1燃
料噴射弁11aからの燃料噴射Q1 はほぼ高負荷運転領
域全体に亘ってクランク角領域Z内で行われる。従って
機関高負荷運転時には第1燃料噴射弁11aから噴射さ
れた全ての燃料は第1吸気弁6aのかさ部背面に衝突し
た後第1吸気ポート7a内に流入することになる。
Returning to FIG. 7 again, FIG. 7 shows the crank angle region Z shown in FIG. As shown in FIG. 7, in the embodiment according to the present invention, the fuel injection Q 1 from the first fuel injection valve 11a during the engine high load operation is performed within the crank angle range Z over substantially the entire high load operation range. Therefore, during engine high load operation, all the fuel injected from the first fuel injection valve 11a collides with the rear surface of the bulge portion of the first intake valve 6a and then flows into the first intake port 7a.

【0016】これに対して機関中負荷運転時における第
1燃料噴射弁11aによる第1回目の燃料噴射Q1 の噴
射時期は機関高負荷運転時に比べて早められ、ほぼ中負
荷運転領域全体に亘ってクランク角がクランク角領域Z
に達する前に第1燃料噴射弁11aによる第1回目の燃
料噴射Q1 が行われる。クランク角領域Zよりも前のク
ランク角において燃料噴射が行われると図9(A)に示
されるように噴射燃料F1 は第1吸気弁6aに衝突する
ことなく前進する。
On the other hand, the injection timing of the first fuel injection Q 1 by the first fuel injection valve 11a during the engine medium load operation is advanced as compared with the engine high load operation, and is almost over the entire medium load operation region. Crank angle is in the crank angle range Z
The first fuel injection Q 1 is performed by the first fuel injection valve 11a before reaching the temperature. When fuel injection is performed at a crank angle before the crank angle region Z, the injected fuel F 1 advances without colliding with the first intake valve 6a as shown in FIG. 9 (A).

【0017】次に図7を参照しつつ図11から図13を
参照して燃焼方法について説明する。なお、図11は機
関低負荷運転時における燃焼方法を示しており、図12
は機関中負荷運転時における燃焼方法を示しており、図
13は機関高負荷運転時における燃焼方法を示してい
る。図7に示されるようにアクセルペダル25の踏込み
量LがL1 よりも小さい機関低負荷運転時には圧縮行程
末期に第1燃料噴射弁11aから燃焼室5内に燃料が噴
射される。このとき各噴射燃料F1 ,F2 は図11
(A)および(B)に示されるように深皿部13の周壁
面に衝突する。このときの噴射量Q2 は図7に示される
ようにアクセルペダル25の踏込み量Lが大きくなるに
つれて増大する。深皿部13の周壁面に衝突した燃料は
旋回流Sによって気化せしめられつつ拡散され、それに
よって図11(C)に示されるように凹部14および深
皿部13内に混合気Gが形成される。このとき凹部14
および深皿部13以外の燃焼室5内は空気で満たされて
いる。次いで混合気Gが点火栓10によって着火せしめ
られる。
Next, the combustion method will be described with reference to FIG. 7 and FIGS. 11 to 13. Note that FIG. 11 shows a combustion method during engine low load operation.
Shows the combustion method at the time of engine medium load operation, and FIG. 13 shows the combustion method at the time of engine high load operation. As shown in FIG. 7, during the engine low load operation in which the depression amount L of the accelerator pedal 25 is smaller than L 1 , fuel is injected from the first fuel injection valve 11a into the combustion chamber 5 at the end of the compression stroke. At this time, the injected fuels F 1 and F 2 are
As shown in (A) and (B), it collides with the peripheral wall surface of the basin portion 13. The injection amount Q 2 at this time increases as the depression amount L of the accelerator pedal 25 increases as shown in FIG. 7. The fuel that has collided with the peripheral wall surface of the deep plate portion 13 is diffused while being vaporized by the swirling flow S, thereby forming the air-fuel mixture G in the concave portion 14 and the deep plate portion 13 as shown in FIG. 11 (C). It At this time, the recess 14
The combustion chamber 5 other than the basin 13 is filled with air. Next, the air-fuel mixture G is ignited by the spark plug 10.

【0018】一方、図7においてアクセルペダル25の
踏込み量LがL1 とL2 の間である機関中負荷運転時に
は吸気行程中のクランク角領域Zよりも前のクランク角
において第1燃料噴射弁11aによる第1回目の燃料噴
射Q1 が開始され、次いで圧縮行程末期に第1燃料噴射
弁11aによる第2回目の燃料噴射Q2 が行われる。即
ち、まず初めに図12(A)および(B)で示されるよ
うに吸気行程初期に第1燃料噴射弁11aから第1回目
の燃料噴射が行われるがこのとき各噴射燃料F 1 ,F2
は第1吸気弁6aと衝突することなく深皿部13の周壁
面に衝突する。深皿部13の周壁面に衝突した燃料のう
ちのかなりの部分はピストン3が下降する際にも深皿部
13内にとどまり続け、従ってピストン3が上昇して圧
縮行程末期に達したときには深皿部13内および深皿部
13の周りに混合気が集まることになる。
On the other hand, in FIG. 7, the accelerator pedal 25
Depression amount L is L1 And L2 During engine load operation
Is the crank angle before the crank angle region Z during the intake stroke
The first fuel injection by the first fuel injection valve 11a
Fire Q1 Fuel injection is started, and then the first fuel injection is performed at the end of the compression stroke.
Second fuel injection Q by valve 11a2 Is performed. Immediately
First, as shown in FIGS. 12 (A) and 12 (B).
The first time from the first fuel injection valve 11a at the beginning of the intake stroke
Fuel injection is performed, but at this time each injected fuel F 1 , F2 
Is a peripheral wall of the basin 13 without colliding with the first intake valve 6a.
Collide with the surface. Fuel pan colliding with the peripheral wall surface of the deep plate portion 13
A considerable part of this is the basin even when the piston 3 descends.
13 continues to stay inside, so piston 3 rises and pressure
When the end of the compression stroke is reached, the inside of the pan 13 and the pan
A mixture will be collected around 13.

【0019】次いで圧縮行程末期に第1燃料噴射弁11
aによる第2回目の燃料噴射が行われる。図7からわか
るように機関中負荷運転時の圧縮行程噴射Q2 の噴射時
期は機関低負荷運転時に比べて若干早められる。従って
このときには図12(C)に示されるように深皿部13
および浅皿部12の双方に向けて燃料が噴射され、図1
2(D)に示されるようにこの噴射燃料によって凹部1
4および深皿部13内には火種となる着火可能な混合気
Gが形成される。この混合気Gは点火栓10によって着
火せしめられ、この着火火炎によって第1回目の燃料噴
射Q1 により形成された混合気が着火せしめられる。第
1回目の燃料噴射Q1 により形成された混合気は前述し
たように深皿部13の周りに集まっているのでさほど稀
薄にはなっておらず、斯くして火炎がこの混合気中を急
速に伝播するのでこの混合気は良好に燃焼せしめられる
ことになる。なお、この場合、圧縮行程末期に噴射され
る燃料は火種を作れば十分であるので図7に示されるよ
うに機関中負荷運転時にはアクセルペダル25の踏込み
量Lにかかわらずに圧縮行程末期の燃料噴射量Q2は一
定に維持される。これに対して吸気行程初期の燃料噴射
量Q1 はアクセルペダル25の踏込み量Lが大きくなる
につれて増大する。
Next, at the end of the compression stroke, the first fuel injection valve 11
The second fuel injection by a is performed. As can be seen from FIG. 7, the injection timing of the compression stroke injection Q 2 during the engine medium load operation is slightly advanced as compared with the engine low load operation. Therefore, at this time, as shown in FIG.
And fuel is injected toward both the shallow plate portion 12 and
As shown in FIG. 2 (D), the injected fuel causes depression 1
An ignitable air-fuel mixture G that serves as a spark is formed in the interior of the deep plate portion 4 and the deep plate portion 13. The air-fuel mixture G is ignited by the spark plug 10, and the air-fuel mixture formed by the first fuel injection Q 1 is ignited by the ignition flame. Since the air-fuel mixture formed by the first fuel injection Q 1 is gathered around the basin portion 13 as described above, it is not diluted so much, and thus the flame rapidly flows in the air-fuel mixture. Since it is propagated to the air, this air-fuel mixture can be burned well. In this case, since it is sufficient that the fuel injected at the end of the compression stroke produces a spark, as shown in FIG. 7, the fuel at the end of the compression stroke is irrespective of the depression amount L of the accelerator pedal 25 during engine medium load operation. The injection amount Q 2 is maintained constant. On the other hand, the fuel injection amount Q 1 at the beginning of the intake stroke increases as the depression amount L of the accelerator pedal 25 increases.

【0020】図7においてアクセルペダル25の踏込み
量LがL2 よりも大きい機関高負荷運転時には吸気行程
中のクランク角領域Z内において第1燃料噴射弁11a
から燃料が噴射され、ほぼ同じ時期に第2燃料噴射弁1
1bからも燃料が噴射される。従ってこのときには図1
3(A)に示されるように第1燃料噴射弁11aからは
第1吸気弁6aのかさ部背面に向けて燃料噴射が行わ
れ、これら噴射燃料は第1吸気弁6aのかさ部背面で反
射して第1吸気ポート7a内に流入する。次いでこれら
の噴射燃料は吸入空気と共に再び燃焼室5内に流入す
る。このときの第1燃料噴射弁11aによる噴射量Q1
は図7に示されるようにアクセルペダル25の踏込み量
Lが大きくなるにつれてわずかばかり増大する。一方、
第2燃料噴射弁11bから第2吸気ポート7b内に噴射
された燃料は第2吸気弁6bを介して燃焼室5内に流入
する。このときの第2燃料噴射弁11bによる噴射量Q
3 は図7に示されるようにアクセルペダル25の踏込み
量Lが大きくなるにつれて増大する。
In FIG. 7, the first fuel injection valve 11a is located within the crank angle range Z during the intake stroke during engine high load operation in which the depression amount L of the accelerator pedal 25 is larger than L 2.
Fuel is injected from the second fuel injection valve 1 at almost the same time.
Fuel is also injected from 1b. Therefore, at this time,
As shown in FIG. 3 (A), fuel injection is performed from the first fuel injection valve 11a toward the back surface of the first intake valve 6a, and the injected fuel is reflected on the back surface of the first intake valve 6a. Then, it flows into the first intake port 7a. Then, these injected fuels flow into the combustion chamber 5 again together with the intake air. Injection amount Q 1 by the first fuel injection valve 11a at this time
As shown in FIG. 7, the value slightly increases as the depression amount L of the accelerator pedal 25 increases. on the other hand,
The fuel injected from the second fuel injection valve 11b into the second intake port 7b flows into the combustion chamber 5 via the second intake valve 6b. Injection amount Q by the second fuel injection valve 11b at this time
As shown in FIG. 7, 3 increases as the depression amount L of the accelerator pedal 25 increases.

【0021】図13(A)に示すように第1吸気弁6a
で反射した噴射燃料が第1吸気ポート7a内に送り込ま
れるとこの噴射燃料は第1吸気ポート7a内において吸
入空気と混合し、次いで十分に混合された噴射燃料と吸
入空気が燃焼室5内に供給される。即ち、第2吸気ポー
ト7bから供給される混合気と同様に第1吸気ポート7
a内で予め混合された混合気が第1吸気弁6aを介して
燃焼室5内に供給されることになる。
As shown in FIG. 13A, the first intake valve 6a
When the injected fuel reflected by is sent into the first intake port 7a, the injected fuel mixes with the intake air in the first intake port 7a, and then the sufficiently mixed injected fuel and intake air enter the combustion chamber 5. Supplied. That is, similar to the air-fuel mixture supplied from the second intake port 7b, the first intake port 7
The air-fuel mixture previously mixed in a is supplied into the combustion chamber 5 via the first intake valve 6a.

【0022】一方、図7からわかるように機関中負荷運
転から機関高負荷運転に移行する際には吸気行程初期に
第1燃料噴射弁11aから噴射される全噴射燃料Q1
うちクランク角領域Z内で噴射される燃料、即ち第1吸
気弁6aのかさ部背面に衝突する燃料の割合がアクセル
ペダル25の踏込み量Lの増大に伴ない、即ち機関負荷
の増大に伴ない徐々に増大せしめられる。このように全
噴射燃料Q1 のうち第1吸気弁6aのかさ部背面に衝突
する燃料の割合を機関負荷が高くなるにつれて増大させ
ると機関負荷が高くなって燃料噴射量が増大しても深皿
部13および浅皿部12内に形成される混合気が過濃に
なることなく最適な濃度に維持され、斯くして良好な燃
焼を得ることができる。
On the other hand, as can be seen from FIG. 7, when the engine medium load operation is changed to the engine high load operation, the crank angle region of the total injected fuel Q 1 injected from the first fuel injection valve 11a in the early stage of the intake stroke. The proportion of the fuel injected in Z, that is, the proportion of the fuel colliding with the rear surface of the first intake valve 6a at the bulge portion is gradually increased as the depression amount L of the accelerator pedal 25 increases, that is, as the engine load increases. To be Thus, if the proportion of the fuel that collides with the back surface of the bulge portion of the first intake valve 6a in the total injected fuel Q 1 is increased as the engine load increases, the engine load increases and the fuel injection amount increases even if the fuel injection amount increases. The air-fuel mixture formed in the dish portion 13 and the shallow dish portion 12 is maintained at an optimum concentration without becoming excessively rich, and thus good combustion can be obtained.

【0023】ところで前述したように機関高負荷運転時
には吸気制御弁17が全開せしめられるので第1吸気ポ
ート7aと第2吸気ポート7bの双方から吸入空気が燃
焼室5内に供給される。このときには第1吸気ポート7
aから旋回しつつ燃焼室5内に流入する吸入空気の旋回
運動が燃焼室5内において第2吸気ポート7bから流入
する吸入空気流によって阻ばまれ、斯くして燃焼室5内
には旋回流が発生しなくなる。このとき図13(B)に
示されるように平面K−Kに関して第1吸気弁6a側に
位置する燃焼室5内の領域Aは第1吸気ポート7aから
流入した吸入空気によって占められ、一方平面K−Kに
関して第2吸気弁6b側に位置する燃焼室5内の領域B
は第2吸気ポート7bから流入した吸入空気によって占
められる。云い換えると領域Aには第1燃料噴射弁11
aから噴射された燃料によって混合気が形成され、領域
Bには第2燃料噴射弁11bから噴射された燃料によっ
て混合気が形成されることになる。
As described above, the intake control valve 17 is fully opened during engine high load operation, so intake air is supplied into the combustion chamber 5 from both the first intake port 7a and the second intake port 7b. At this time, the first intake port 7
The swirling motion of the intake air flowing into the combustion chamber 5 while swirling from a is blocked by the intake air flow flowing from the second intake port 7b in the combustion chamber 5, and thus the swirling flow is generated in the combustion chamber 5. Will not occur. At this time, as shown in FIG. 13 (B), the region A in the combustion chamber 5 located on the first intake valve 6a side with respect to the plane KK is occupied by the intake air flowing from the first intake port 7a, while the plane A Region B in the combustion chamber 5 located on the second intake valve 6b side with respect to KK
Are occupied by the intake air flowing in from the second intake port 7b. In other words, in the area A, the first fuel injection valve 11
The air-fuel mixture is formed by the fuel injected from a, and the air-fuel mixture is formed in the region B by the fuel injected from the second fuel injection valve 11b.

【0024】無論、平面K−Kを堺にして第1燃料噴射
弁11aからの噴射燃料により形成された混合気と第2
燃料噴射弁11bからの噴射燃料により形成された混合
気が完全に分離するわけではないが大まかに云うと各燃
料噴射弁11a,11bからの噴射燃料によって形成さ
れた各混合気は互いに重なることなく夫々領域Aおよび
領域Bを占めることになる。その結果、燃焼室5内全体
に混合気が分散されることになり、燃焼室5内に極度に
過濃な領域および極度に稀薄な領域が形成されることな
く燃焼室5内全体の空気を燃焼のために利用できること
になる。斯くして良好な燃焼が得られると共に機関高出
力を得ることができる。なお、第1燃料噴射弁11aか
らの噴射燃料が第1吸気弁6aにおいて反射した後に第
1吸気ポート7a内に流入するように噴射燃料の流速を
速めると噴射燃料が第1吸気弁6aのかさ部背面に高速
度で衝突せしめられるので衝突時に燃料が微粒化され、
微粒化された燃料が第1吸気ポート7a内に向かって進
行する。このとき燃料の進行方向と吸入空気流の流入方
向とは逆向きになるために燃料は吸入空気によって強力
な剪断力を受け、斯くして燃料は微粒化せしめられるこ
とになる。このように噴射燃料は衝突時に微粒化せしめ
られ、次いで強力な剪断力によって微粒化せしめられる
ので噴射燃料は良好に気化せしめられることになる。従
って噴射燃料を第1吸気弁6aのかさ部背面に衝突させ
ることによってより一層良好な燃焼が得られる。
Of course, the mixture formed by the fuel injected from the first fuel injection valve 11a with the plane KK at Sakai and the second
The air-fuel mixture formed by the fuel injected from the fuel injection valve 11b is not completely separated, but roughly speaking, the air-fuel mixture formed by the fuel injected by the fuel injection valves 11a and 11b does not overlap each other. Areas A and B will be occupied respectively. As a result, the air-fuel mixture is dispersed in the entire combustion chamber 5, so that the air in the entire combustion chamber 5 is formed without forming an extremely rich region and an extremely lean region in the combustion chamber 5. Will be available for combustion. Thus, good combustion can be obtained and high engine output can be obtained. In addition, when the flow rate of the injected fuel is increased so that the injected fuel from the first fuel injection valve 11a is reflected by the first intake valve 6a and then flows into the first intake port 7a, the injected fuel is bulged to the first intake valve 6a. Since it collides with the back of the part at high speed, fuel is atomized at the time of collision,
The atomized fuel advances toward the inside of the first intake port 7a. At this time, since the advancing direction of the fuel and the inflow direction of the intake air flow are opposite to each other, the fuel is subjected to a strong shearing force by the intake air, and thus the fuel is atomized. Thus, the injected fuel is atomized at the time of collision and then atomized by a strong shearing force, so that the injected fuel is vaporized well. Therefore, even better combustion can be obtained by causing the injected fuel to collide with the back surface of the bulge portion of the first intake valve 6a.

【0025】本発明による実施例では図7において第1
燃料噴射弁11aによる吸気行程噴射Q1 の噴射開始時
期θS1、第1燃料噴射弁11aによる圧縮行程噴射Q
2 の噴射開始時期θS2、および第2燃料噴射弁11b
の噴射開始時期θS3は予め定められており、これら噴
射開始時期θS1,θS2およびθS3はアクセルペダ
ル25の踏込み量Lの関数の形で予めROM33内に記
憶されている。従って噴射完了時期θE1,θE2およ
びθE3が噴射量Q1 ,Q2 およびQ3 に基いて制御さ
れることになる。
In the embodiment according to the present invention, the first in FIG.
Injection start timing θS1 of the intake stroke injection Q 1 by the fuel injection valve 11a, compression stroke injection Q by the first fuel injection valve 11a
2, the injection start timing θS2, and the second fuel injection valve 11b
The injection start timing θS3 is predetermined and the injection start timings θS1, θS2 and θS3 are stored in advance in the ROM 33 in the form of a function of the depression amount L of the accelerator pedal 25. Therefore, the injection completion timings θE1, θE2 and θE3 are controlled based on the injection amounts Q 1 , Q 2 and Q 3 .

【0026】図14は燃料噴射を制御するためのルーチ
ンを示しており、このルーチンは繰返し実行される。図
14を参照すると、まず初めにステップ40において燃
料噴射量Qが計算される。この燃料噴射量Qは図15に
示すように機関回転数Nおよびアクセルペダル25の踏
込み量Lの関数として予めROM33内に記憶されてい
る。次いでステップ41ではアクセルペダル25の踏込
み量LがL1 よりも小さいか否か、即ち低負荷運転時で
あるか否かが判別される。L<L1 のときにはステップ
42に進んで第1燃料噴射弁11aによる圧縮行程噴射
の噴射開始時期θS2が算出される。次いでステップ4
3では噴射開始時期θS2、燃料噴射量Qおよび機関回
転数Nから噴射完了時期θE2が算出される。
FIG. 14 shows a routine for controlling fuel injection, and this routine is repeatedly executed. Referring to FIG. 14, first, at step 40, the fuel injection amount Q is calculated. This fuel injection amount Q is stored in advance in the ROM 33 as a function of the engine speed N and the depression amount L of the accelerator pedal 25, as shown in FIG. Next, at step 41, it is judged if the depression amount L of the accelerator pedal 25 is smaller than L 1 , that is, if it is during low load operation. When L <L 1, the routine proceeds to step 42, where the injection start timing θS2 of the compression stroke injection by the first fuel injection valve 11a is calculated. Then step 4
In 3, the injection completion timing θE2 is calculated from the injection start timing θS2, the fuel injection amount Q and the engine speed N.

【0027】一方、ステップ41においてL≧L1 であ
ると判別されたときにはステップ44に進んでアクセル
ペダル25の踏込み量LがL2 よりも小さいか否か、即
ち中負荷運転時であるか否かが判別される。中負荷運転
時にはステップ45に進んで第1燃料噴射弁11aによ
る吸気行程噴射量Q1 と圧縮行程噴射量Q2 が算出され
る。次いでステップ46では吸気行程噴射の噴射開始時
期θS1が算出される。次いでステップ47では噴射開
始時期θS1、吸気行程噴射量Q1 および機関回転数N
から噴射完了時期θE1が算出される。次いでステップ
48では圧縮行程噴射の噴射開始時期θS2が算出され
る。次いでステップ49では噴射開始時期θS2、圧縮
行程噴射量Q2 および機関回転数Nから噴射完了時期θ
E2が算出される。
On the other hand, if it is judged at step 41 that L ≧ L 1 , then the routine proceeds to step 44, at which it is judged whether or not the depression amount L of the accelerator pedal 25 is smaller than L 2 , that is, during the medium load operation. Is determined. During medium load operation, the routine proceeds to step 45, where the intake stroke injection amount Q 1 and the compression stroke injection amount Q 2 by the first fuel injection valve 11a are calculated. Next, at step 46, the injection start timing θS1 of the intake stroke injection is calculated. Next, at step 47, the injection start timing θS1, the intake stroke injection amount Q 1 and the engine speed N
From this, the injection completion timing θE1 is calculated. Next, at step 48, the injection start timing θS2 of the compression stroke injection is calculated. Next, at step 49, the injection completion timing θS2, the compression stroke injection amount Q 2 and the engine speed N are used to determine the injection completion timing θS.
E2 is calculated.

【0028】ステップ44においてL≧L2 であると判
別されたとき、即ち機関高負荷運転時にはステップ50
に進んで第1燃料噴射弁11aによる吸気行程噴射量Q
1 と第2燃料噴射弁11bによる噴射量Q3 が算出され
る。次いでステップ51では第1燃料噴射弁11aによ
る吸気行程噴射の噴射開始時期θS1が算出される。次
いでステップ52では噴射開始時期θS1、吸気行程噴
射量Q1 および機関回転数Nから噴射完了時期θE1が
算出される。次いでステップ53では第2燃料噴射弁1
1bの噴射開始時期θS3が算出される。次いでステッ
プ54では噴射開始時期θS3、噴射量Q3 および機関
回転数Nから噴射完了時期θE3が算出される。各燃料
噴射弁11a,11bからはこのようにして算出された
噴射開始時期θS1,θS2,θS3および噴射完了時
期θE1,θE2,θE3に基いて燃料噴射が行われ
る。
When it is determined in step 44 that L ≧ L 2, that is, when the engine is operating under high load, step 50 is performed.
To the intake stroke injection amount Q by the first fuel injection valve 11a.
The injection amount Q 3 of 1 and the second fuel injection valve 11b is calculated. Next, at step 51, the injection start timing θS1 of the intake stroke injection by the first fuel injection valve 11a is calculated. Next, at step 52, the injection completion timing θE1 is calculated from the injection start timing θS1, the intake stroke injection amount Q 1 and the engine speed N. Next, at step 53, the second fuel injection valve 1
The injection start timing θS3 of 1b is calculated. Next, at step 54, the injection completion timing θE3 is calculated from the injection start timing θS3, the injection amount Q 3 and the engine speed N. Fuel injection is performed from each of the fuel injection valves 11a and 11b based on the injection start timings θS1, θS2, θS3 and the injection completion timings θE1, θE2, θE3 thus calculated.

【0029】[0029]

【発明の効果】吸気行程時に燃料噴射弁から噴射される
全噴射燃料のうち吸気弁のかさ部背面に衝突する燃料の
割合を機関負荷が高くなるほど増大させることによって
良好な燃焼を得ることができる。
EFFECT OF THE INVENTION Good combustion can be obtained by increasing the proportion of the fuel that collides with the back surface of the bulkhead of the intake valve among the total injected fuel injected from the fuel injection valve during the intake stroke, as the engine load increases. .

【図面の簡単な説明】[Brief description of drawings]

【図1】内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine.

【図2】シリンダヘッドの平面断面図である。FIG. 2 is a plan sectional view of a cylinder head.

【図3】ピストン頂面の平面図である。FIG. 3 is a plan view of a piston top surface.

【図4】図2のIV−IV線に沿ってみた断面図である。4 is a sectional view taken along line IV-IV in FIG.

【図5】図2のV−V線に沿ってみた断面図である。5 is a sectional view taken along line VV of FIG.

【図6】図2のVI−VI線に沿ってみた断面図である。6 is a sectional view taken along line VI-VI in FIG.

【図7】燃料噴射量および燃料噴射時期を示す図であ
る。
FIG. 7 is a diagram showing a fuel injection amount and a fuel injection timing.

【図8】吸気弁および排気弁のリフト量を示す線図であ
る。
FIG. 8 is a diagram showing lift amounts of an intake valve and an exhaust valve.

【図9】図5と同じ断面に沿ってみた側面断面図であ
る。
FIG. 9 is a side sectional view taken along the same section as FIG.

【図10】吸気制御弁の開度を示す線図である。FIG. 10 is a diagram showing an opening of an intake control valve.

【図11】低負荷運転時における燃焼方法を説明するた
めの図である。
FIG. 11 is a diagram for explaining a combustion method during low load operation.

【図12】中負荷運転時における燃焼方法を説明するた
めの図である。
FIG. 12 is a diagram for explaining a combustion method during medium load operation.

【図13】高負荷運転時における燃焼方法を説明するた
めの図である。
FIG. 13 is a diagram for explaining a combustion method during high load operation.

【図14】メインルーチンを実行するためのフローチャ
ートである。
FIG. 14 is a flowchart for executing a main routine.

【図15】燃料噴射量を示す線図である。FIG. 15 is a diagram showing a fuel injection amount.

【符号の説明】[Explanation of symbols]

6a…第1吸気弁 6b…第2吸気弁 7a…第1吸気ポート 7b…第2吸気ポート 11a…第1燃料噴射弁 11b…第2燃料噴射弁 6a ... 1st intake valve 6b ... 2nd intake valve 7a ... 1st intake port 7b ... 2nd intake port 11a ... 1st fuel injection valve 11b ... 2nd fuel injection valve

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼室内に燃料噴射弁を配置すると共に
該燃料噴射弁から吸気行程時に燃料を噴射し、噴射され
た燃料が吸気弁のリフト量が小さいときには吸気弁の下
方を通過し、吸気弁のリフト量が大きくなると吸気弁の
かさ部背面に衝突するように燃料噴射弁の燃料噴射方向
を定め、機関負荷に応じて燃料噴射時期を制御すること
により全噴射燃料のうち吸気弁のかさ部背面に衝突する
燃料の割合を機関負荷が高くなるほど徐々に増大させる
ようにした筒内噴射式内燃機関。
1. A fuel injection valve is arranged in a combustion chamber, and fuel is injected from the fuel injection valve during an intake stroke, and the injected fuel passes below the intake valve when the lift amount of the intake valve is small. The fuel injection direction of the fuel injection valve is set so that it collides with the back surface of the intake valve when the valve lift increases, and the fuel injection timing is controlled according to the engine load to control the intake valve bulk of all injected fuel. An in-cylinder injection internal combustion engine in which the proportion of fuel colliding with the rear surface of the engine is gradually increased as the engine load increases.
JP5327698A 1993-12-24 1993-12-24 Cylinder injection internal combustion engine Expired - Lifetime JP2531378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5327698A JP2531378B2 (en) 1993-12-24 1993-12-24 Cylinder injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5327698A JP2531378B2 (en) 1993-12-24 1993-12-24 Cylinder injection internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3234954A Division JP2531322B2 (en) 1991-09-13 1991-09-13 Internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06272559A JPH06272559A (en) 1994-09-27
JP2531378B2 true JP2531378B2 (en) 1996-09-04

Family

ID=18201983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5327698A Expired - Lifetime JP2531378B2 (en) 1993-12-24 1993-12-24 Cylinder injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP2531378B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668680B2 (en) * 1987-03-19 1997-10-27 三菱自動車工業株式会社 In-cylinder gasoline injection engine
JPH0649851Y2 (en) * 1988-05-23 1994-12-14 トヨタ自動車株式会社 Spark ignition cylinder injection engine
JP3065868U (en) * 1999-07-19 2000-02-08 日本デコール株式会社 Repair makeup sheet

Also Published As

Publication number Publication date
JPH06272559A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
JP2531322B2 (en) Internal combustion engine
US4667636A (en) Fuel injection type internal combustion engine
JP3158443B2 (en) In-cylinder injection internal combustion engine
EP0661431B1 (en) Method for supplying air and injecting fuel into a combustion chamber of an internal combustion engine, in particular a two-cycle engine and internal combustion engine
US5271362A (en) Two-stroke engine
JPH04219445A (en) Fuel injection control device for multicylinder internal combustion engine
JPH0735726B2 (en) Internal combustion engine and operating method thereof
JP4054223B2 (en) In-cylinder injection engine and control method for in-cylinder injection engine
JP2871220B2 (en) In-cylinder internal combustion engine
JPH0579370A (en) Cylinder injection type internal combustion engine
US4185598A (en) Internal combustion engine
JP2943486B2 (en) In-cylinder injection type internal combustion engine
EP0463613A1 (en) A two-stroke engine
JP2946917B2 (en) Internal combustion engine
JP2531378B2 (en) Cylinder injection internal combustion engine
JPH02125911A (en) Cylinder direct injection internal combustion engine
JPH0579337A (en) Inter-cylinder injection type internal combustion engine
JPH0571350A (en) Inter-cylinder injection type internal combustion engine
JP2788612B2 (en) Automotive engine
JPH05321718A (en) Control device of internal combustion engine
JPH0634614Y2 (en) 2-cycle internal combustion engine
JPH07259705A (en) Device for incylinder fuel injection
JPS61164037A (en) Fuel supply device of internal-combustion engine
JPH0571343A (en) Inter-cylinder injection type internal combustion engine
JPH0571768B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14