JP2531215B2 - Method for producing tetrafluoroethane - Google Patents

Method for producing tetrafluoroethane

Info

Publication number
JP2531215B2
JP2531215B2 JP62327395A JP32739587A JP2531215B2 JP 2531215 B2 JP2531215 B2 JP 2531215B2 JP 62327395 A JP62327395 A JP 62327395A JP 32739587 A JP32739587 A JP 32739587A JP 2531215 B2 JP2531215 B2 JP 2531215B2
Authority
JP
Japan
Prior art keywords
group element
catalyst
tetrafluoroethane
reaction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62327395A
Other languages
Japanese (ja)
Other versions
JPH01172349A (en
Inventor
真介 森川
優 吉式
伸 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62327395A priority Critical patent/JP2531215B2/en
Publication of JPH01172349A publication Critical patent/JPH01172349A/en
Application granted granted Critical
Publication of JP2531215B2 publication Critical patent/JP2531215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1,1,1,2−テトラフルオロエタン(R−134
a)の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to 1,1,1,2-tetrafluoroethane (R-134
It relates to the manufacturing method of a).

[従来の技術及び問題点] R−134aの製造方法の一つとして、1,1−ジクロロ−1,
2,2,2−テトラフルオロエタン(R−114a)を、水素化
触媒の存在下で水素と反応させる製造方法がある。この
ための触媒として、既知の水素化触媒、すなわち、ニッ
ケルまたは周期律表の第VIIIa族の金属、それらの合
金、または、それらの酸化物、および塩のうち、特に塩
酸耐性を有するものの適用が考えられ、既に、比較的低
コストであるパラジウムを用いる方法が報告されている
(特公昭56−38131号公報を参照)。しかし、本還元反
応においては、例えば下式に示すように塩化水素が副生
するため触媒には耐酸性が必要である。
[Prior Art and Problems] As one of the methods for producing R-134a, 1,1-dichloro-1,
There is a production method in which 2,2,2-tetrafluoroethane (R-114a) is reacted with hydrogen in the presence of a hydrogenation catalyst. As a catalyst for this, the use of known hydrogenation catalysts, i.e. nickel or metals of Group VIIIa of the Periodic Table, their alloys, or their oxides and salts, especially those which are hydrochloric acid resistant, may be applied. It has been considered that a method using palladium, which is relatively low in cost, has already been reported (see Japanese Patent Publication No. 56-38131). However, in this reduction reaction, for example, hydrogen chloride is by-produced as shown in the following formula, so that the catalyst is required to have acid resistance.

CF3CCl2F+H2→CF3CHClF+HCl CF3CHClF+H2→CF3CH2F+HCl パラジウムは白金族元素の中では比較的安価である
が、ニッケルなどの他の水素化触媒に比較してかなり高
価であり、R−134aの製造費を上昇させる一因となって
いる。また、パラジウム触媒を本還元反応に用いた場
合、必ずしも寿命が長くないという問題点を有してい
る。そのため本還元反応に適用可能な安価且つ長寿命の
水素化触媒の開発が望まれている。
CF 3 CCl 2 F + H 2 → CF 3 CHClF + HCl CF 3 CHClF + H 2 → CF 3 CH 2 F + HCl Palladium is relatively inexpensive among platinum group elements, but other hydrogenated compounds such as nickel It is considerably more expensive than the catalyst, which is one of the reasons for increasing the production cost of R-134a. Further, when a palladium catalyst is used in this reduction reaction, there is a problem that the life is not always long. Therefore, development of an inexpensive and long-life hydrogenation catalyst applicable to this reduction reaction is desired.

[問題点を解決するための手段] 比較的安価な元素であるニッケルなどの鉄族元素を主
成分とする触媒は優れた水素化能を有している。しか
し、耐酸性が不足しており本還元反応に適用した場合、
短時間で触媒特性が劣化する。
[Means for Solving Problems] A catalyst containing an iron group element such as nickel, which is a relatively inexpensive element, as a main component has excellent hydrogenation ability. However, when it is applied to this reduction reaction due to lack of acid resistance,
The catalyst characteristics deteriorate in a short time.

本発明者の検討によれば、ニッケルに白金、パラジウ
ム、ロジウム、ルテニウム等の白金族元素を加えた合金
は、白金族元素の貴金属性により本還元反応雰囲気での
耐食性が向上することが見出された。また、一般的に合
金化により合金中の金属原子の移動は抑制されるが、上
記合金は、高温下での使用でも触媒粒子の成長は低下
し、シンタリングによる触媒劣化を抑制できるというこ
とも見出された。
According to the study by the present inventors, it has been found that an alloy obtained by adding a platinum group element such as platinum, palladium, rhodium and ruthenium to nickel has improved corrosion resistance in the present reduction reaction atmosphere due to the noble metal property of the platinum group element. Was done. In addition, although the movement of metal atoms in the alloy is generally suppressed by alloying, the above alloy also reduces the growth of catalyst particles even when used at high temperatures, and can suppress the catalyst deterioration due to sintering. Was found.

すなわち、上記の如き合金触媒を本還元反応の触媒と
して適用し、合金組成の最適化、調製条件の最適化を鋭
意検討した結果、従来と同様の初期性能および耐久性が
得られることを見出し、本発明を提供するに至ったもの
である。
That is, applying the alloy catalyst as described above as a catalyst of the present reduction reaction, as a result of earnestly examining the optimization of alloy composition and the optimization of the preparation conditions, it was found that the same initial performance and durability as conventional ones can be obtained, The present invention has been provided.

かくして本発明は、上記知見に基づいて完成されたも
のであり、R−114aをニッケルおよびコバルトから選ば
れる鉄族元素と白金族元素を成分とする水素化触媒の存
在下で水素と反応させることを特徴とするR−134aの製
造法である。
Thus, the present invention has been completed based on the above findings, and reacts R-114a with hydrogen in the presence of a hydrogenation catalyst containing an iron group element selected from nickel and cobalt and a platinum group element. Is a method for producing R-134a.

本発明における水素化触媒は、ニッケルおよびコバル
トから選ばれる鉄族元素(以下、単に鉄族元素という)
と白金族元素を成分とする触媒であり、好ましくは白金
族元素と鉄族元素からなる合金またはその酸化物を成分
とする触媒である。本発明において、鉄族元素のうち、
耐食性、水素化触媒能の点から、ニッケルが最も好まし
い。合金化に用いる白金族元素の中では、耐食性、水素
化触媒能、コスト等の点から、白金、パラジウム、ロジ
ウム、ルテニウムが特に好ましい。触媒としての耐久性
は白金族元素の割合を増すことにより向上する。鉄族元
素の割合は、好ましくは0.01〜90重量%、より好ましく
は0.1〜70重量%が耐食性、コストの点から好適であ
る。
The hydrogenation catalyst in the present invention is an iron group element selected from nickel and cobalt (hereinafter simply referred to as iron group element).
And a platinum group element as a component, and preferably an alloy or an oxide thereof, which is an alloy of a platinum group element and an iron group element, as a component. In the present invention, among the iron group elements,
Nickel is most preferable from the viewpoints of corrosion resistance and hydrogenation catalytic ability. Among the platinum group elements used for alloying, platinum, palladium, rhodium and ruthenium are particularly preferable from the viewpoints of corrosion resistance, hydrogenation catalytic ability, cost and the like. The durability as a catalyst is improved by increasing the proportion of platinum group element. The ratio of the iron group element is preferably 0.01 to 90% by weight, more preferably 0.1 to 70% by weight from the viewpoint of corrosion resistance and cost.

調製法としては、従来からの水素化触媒調製法が適用
可能である。例えば、触媒成分を含む塩の水溶液を担体
に含浸した後、水素等により還元する方法がある。ま
た、ホウ素水素化物(ボラン、水素化ホウ素ナトリウム
等)、次亜リン酸塩等による還元も可能である。
As a preparation method, a conventional hydrogenation catalyst preparation method can be applied. For example, there is a method of impregnating a carrier with an aqueous solution of a salt containing a catalyst component and then reducing the carrier with hydrogen. Further, reduction with borohydride (borane, sodium borohydride, etc.), hypophosphite, etc. is also possible.

本発明において、水素化触媒の担体としては、例え
ば、アルミナ、活性炭等が好適である。担持方法は、従
来の貴金属触媒の調製法が適用可能である。なお、使用
に当ってはかかる金属の化合物は少なくとも一部還元す
る。
In the present invention, as the carrier of the hydrogenation catalyst, for example, alumina, activated carbon and the like are suitable. As a supporting method, a conventional method for preparing a noble metal catalyst can be applied. In use, at least a part of the metal compound is reduced.

水素とR−114aの割合は大幅に変動させ得る。しかし
ながら、通常、化学量論量の水素を使用して塩素原子を
水素で置換する。R−114aの全モル数に対して、化学量
論量よりかなり多い量、例えば4モルまたはそれ以上の
水素を使用し得る。
The ratio of hydrogen to R-114a can vary widely. However, usually a stoichiometric amount of hydrogen is used to replace the chlorine atoms with hydrogen. Substantially more than stoichiometric amounts of hydrogen, for example 4 moles or more, may be used, based on the total moles of R-114a.

反応圧力については常圧、または常圧以上の圧力が使
用し得る。
Regarding the reaction pressure, normal pressure or a pressure higher than normal pressure can be used.

反応温度は120℃以上が望ましいが、450℃を越えない
温度において気相で行なうことが適当である。
The reaction temperature is preferably 120 ° C or higher, but it is suitable to carry out in the gas phase at a temperature not exceeding 450 ° C.

接触時間は、反応を気相で行なう場合には通常0.1〜3
00秒、特には5〜30秒である。
The contact time is usually 0.1 to 3 when the reaction is carried out in the gas phase.
00 seconds, especially 5 to 30 seconds.

[実施例] 以下に本発明の実施例を示す。なお、以下の実施例、
比較例中の重量%以外の%はすべてモル%を表す。R−
134、R−124、R−124a、R−F143aおよびR−114はそ
れぞれ1,1,2,2−テトラフルオロエタン、1−クロロ−
1,2,2,2−テトラフルオロエタン、2−クロロ−1,1,2,2
−テトラフルオロエタン、1,1,1−トリフルオロエタン
および1,2−ジクロロ−1,1,2,2−テトラフルオロエタン
を表す。
[Examples] Examples of the present invention will be shown below. The following examples,
All percentages other than weight percentages in the comparative examples represent mol percentages. R-
134, R-124, R-124a, R-F143a and R-114 are 1,1,2,2-tetrafluoroethane and 1-chloro-, respectively.
1,2,2,2-tetrafluoroethane, 2-chloro-1,1,2,2
Represents tetrafluoroethane, 1,1,1-trifluoroethane and 1,2-dichloro-1,1,2,2-tetrafluoroethane.

調製例 活性炭を純水中に浸漬し、細孔内部まで水を含浸させ
た。これに塩化パラジウムと塩化ニッケルをそれぞれの
金属成分の重量比で50:50の割合で、活性炭の重量に対
し金属成分の全重量で0.5重量%だけ溶解した水溶液を
少しずつ滴下しイオン成分を活性炭に吸着させた。純水
を用いて洗浄した後、それを150℃で5時間乾燥した。
次に窒素中550℃で4時間乾燥した後、水素を導入し、
5時間、300℃に保持して還元した。
Preparation Example Activated carbon was immersed in pure water, and water was impregnated inside the pores. To this, palladium chloride and nickel chloride were added at a ratio of 50:50 by weight of each metal component, and an aqueous solution of 0.5% by weight of the total weight of the metal components relative to the weight of activated carbon was dropped little by little to add the ionic components to the activated carbon. Adsorbed on. After washing with pure water, it was dried at 150 ° C. for 5 hours.
Then, after drying in nitrogen at 550 ° C for 4 hours, hydrogen was introduced,
Reduction was carried out at 300 ° C. for 5 hours.

実施例1 調製例のようにして調製した触媒を300cc充填した内
径2.54cm、長さ100cmのインコネル600製反応管を塩浴炉
中に浸漬した。
Example 1 An Inconel 600 reaction tube having an inner diameter of 2.54 cm and a length of 100 cm, which was filled with 300 cc of the catalyst prepared as in Preparation Example, was immersed in a salt bath furnace.

水素と出発物質(R−114aとR−114よりなる。モル
比で40:60)を2:1のモル比で反応管に導入した。水素、
出発物質の流量はそれぞれ、100cc/分、50cc/分とし
た。反応管出口のガス組成をガスクロを用いて分析し
た。その結果を第1表に示す。
Hydrogen and the starting material (consisting of R-114a and R-114, in a molar ratio of 40:60) were introduced into the reaction tube in a molar ratio of 2: 1. hydrogen,
The flow rates of the starting materials were 100 cc / min and 50 cc / min, respectively. The gas composition at the outlet of the reaction tube was analyzed using a gas chromatograph. The results are shown in Table 1.

R−114aの250℃における反応率は、反応初期におい
て97.9%、6ヶ月後では90.1%であった。
The reaction rate of R-114a at 250 ° C. was 97.9% at the beginning of the reaction and 90.1% after 6 months.

実施例2 出発物質としてR−114a(純度98.4%、残部はR−11
4)を使用する以外は、実施例1と同様の条件で還元反
応を行なった。結果を第2表に示す。
Example 2 Starting material R-114a (purity 98.4%, the balance R-11
The reduction reaction was performed under the same conditions as in Example 1 except that 4) was used. The results are shown in Table 2.

R−114aの250℃における反応率は、反応初期におい
て97.8%、6ヶ月後では90.0%であった。
The reaction rate of R-114a at 250 ° C. was 97.8% at the beginning of the reaction and 90.0% after 6 months.

実施例3 触媒調製原料として塩化白金酸と塩化ニッケルを用い
る他は調製例と同様にして重量比50:50の白金とニッケ
ルからなる触媒を調製した。この触媒を用いる他は、実
施例1と同様にして還元反応を行なった。結果を第3表
に示す R−114aの250℃における反応率は、反応初期におい
て86.5%、6ヶ月後では83.4%であった。
Example 3 A catalyst composed of platinum and nickel in a weight ratio of 50:50 was prepared in the same manner as in Preparation Example except that chloroplatinic acid and nickel chloride were used as catalyst preparation raw materials. The reduction reaction was performed in the same manner as in Example 1 except that this catalyst was used. The results are shown in Table 3. The reaction rate of R-114a at 250 ° C. was 86.5% at the initial stage of the reaction and 83.4% after 6 months.

実施例4 触媒調製原料として塩化ロジウムと塩化ニッケルを用
いる他は調製例と同様にして重量比40:60のロジウムと
ニッケルからなる触媒を調製した。この触媒を用いる他
は、実施例1と同様にして還元反応を行なった。結果を
第4表に示す。
Example 4 A catalyst composed of rhodium and nickel in a weight ratio of 40:60 was prepared in the same manner as in Preparation Example except that rhodium chloride and nickel chloride were used as catalyst preparation raw materials. The reduction reaction was performed in the same manner as in Example 1 except that this catalyst was used. The results are shown in Table 4.

R−114aの250℃における反応率は、反応初期におい
て86.3%、6ヶ月後では83.7%であった。
The reaction rate of R-114a at 250 ° C. was 86.3% at the beginning of the reaction and 83.7% after 6 months.

実施例5 触媒調製原料として酢酸パラジウムと酢酸ニッケルを
用いる他は調製例と同様にして重量比50:50のパラジウ
ムとニッケルからなる触媒を調製した。この触媒を用い
て、実施例1と同様にして還元反応を行なった。結果を
第5表に示す。
Example 5 A catalyst composed of palladium and nickel in a weight ratio of 50:50 was prepared in the same manner as in Preparation Example except that palladium acetate and nickel acetate were used as catalyst preparation raw materials. Using this catalyst, a reduction reaction was carried out in the same manner as in Example 1. The results are shown in Table 5.

R−114aの250℃における反応率は、反応初期におい
て85.2%、6ヶ月後では83.4%であった。
The reaction rate of R-114a at 250 ° C. was 85.2% at the beginning of the reaction and 83.4% after 6 months.

実施例6 触媒調製原料として酢酸パラジウムと酢酸コバルトを
用いる他は調製例と同様にして調製した重量比60:40の
パラジウムとコバルトからなる触媒を用いる他は、実施
例1と同様にして還元反応を行なった。結果を第6表に
示す。
Example 6 Reduction reaction in the same manner as in Example 1 except that a catalyst composed of palladium and cobalt in a weight ratio of 60:40 prepared in the same manner as in Preparation Example was used except that palladium acetate and cobalt acetate were used as catalyst preparation raw materials. Was done. The results are shown in Table 6.

R−114aの250℃における反応率は、反応初期におい
て84.8%、6ヶ月後では82.9%であった。
The reaction rate of R-114a at 250 ° C. was 84.8% at the beginning of the reaction and 82.9% after 6 months.

比較例1 触媒として活性炭に0.5%のパラジウムを調製例と同
様に担持したものを用いる以外は、実施例1と同様に還
元反応を行なった。結果を第7表に示す。
Comparative Example 1 A reduction reaction was carried out in the same manner as in Example 1 except that activated carbon on which 0.5% palladium was loaded was used as in the preparation example. The results are shown in Table 7.

R−114aの250℃における反応率は、反応初期におい
て98.0%、6ヶ月後で32.1%であった。
The reaction rate of R-114a at 250 ° C. was 98.0% at the beginning of the reaction and 32.1% after 6 months.

[発明の効果] 本発明は、実施例に示すように、安価で且つ高安定性
を有する触媒を用いることによりR−134aを安価に効率
良く製造し得るという優れた効果を有する。
[Effect of the invention] As shown in the examples, the present invention has an excellent effect that R-134a can be efficiently produced at low cost by using an inexpensive and highly stable catalyst.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1,1−ジクロロ−1,2,2,2−テトラフルオロ
エタンを、ニッケルおよびコバルトから選ばれる鉄族元
素と白金族元素を成分とする水素化触媒の存在下で水素
と反応させることを特徴とする1,1,1,2−テトラフルオ
ロエタンの製造法。
1. 1,1-Dichloro-1,2,2,2-tetrafluoroethane is treated with hydrogen in the presence of a hydrogenation catalyst containing an iron group element and a platinum group element selected from nickel and cobalt. A method for producing 1,1,1,2-tetrafluoroethane, which comprises reacting.
【請求項2】1,1−ジクロロ−1,2,2,2−テトラフルオロ
エタンに対して少なくとも化学量論量の水素を使用する
特許請求の範囲第1項に記載の製造法。
2. The process according to claim 1, wherein at least a stoichiometric amount of hydrogen is used with respect to 1,1-dichloro-1,2,2,2-tetrafluoroethane.
【請求項3】1,1−ジクロロ−1,2,2,2−テトラフルオロ
エタン1モル当たり4モルまでの水素を使用する特許請
求の範囲第1項または第2項に記載の製造法。
3. A process according to claim 1, wherein up to 4 mol of hydrogen are used per mol of 1,1-dichloro-1,2,2,2-tetrafluoroethane.
【請求項4】水素化触媒が、鉄族元素の割合が0.01〜90
重量%である白金族元素と鉄族元素からなる合金または
その酸化物である特許請求の範囲第1項〜第3項のいず
れか一項に記載の製造法。
4. The hydrogenation catalyst has an iron group element ratio of 0.01 to 90.
The manufacturing method according to any one of claims 1 to 3, wherein the alloy is an alloy of the platinum group element and the iron group element, which is wt%, or an oxide thereof.
【請求項5】水素化触媒が、鉄族元素の割合が0.1〜70
重量%である白金族元素と鉄族元素からなる合金または
その酸化物である特許請求の範囲第1項〜第3項のいず
れか一項に記載の製造法。
5. The hydrogenation catalyst has an iron group element ratio of 0.1 to 70.
The manufacturing method according to any one of claims 1 to 3, wherein the alloy is an alloy of the platinum group element and the iron group element, which is wt%, or an oxide thereof.
【請求項6】水素化触媒が活性炭担体またはアルミナ担
体上に担持されている特許請求の範囲第1項〜第5項の
いずれか一項に記載の製造法。
6. The production method according to any one of claims 1 to 5, wherein the hydrogenation catalyst is supported on an activated carbon carrier or an alumina carrier.
【請求項7】反応を気相中において120℃〜450℃の温度
範囲で行なう特許請求の範囲第1項〜第6項のいずれか
一項に記載の製造法。
7. The method according to any one of claims 1 to 6, wherein the reaction is carried out in the gas phase in the temperature range of 120 ° C to 450 ° C.
JP62327395A 1987-12-25 1987-12-25 Method for producing tetrafluoroethane Expired - Lifetime JP2531215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327395A JP2531215B2 (en) 1987-12-25 1987-12-25 Method for producing tetrafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327395A JP2531215B2 (en) 1987-12-25 1987-12-25 Method for producing tetrafluoroethane

Publications (2)

Publication Number Publication Date
JPH01172349A JPH01172349A (en) 1989-07-07
JP2531215B2 true JP2531215B2 (en) 1996-09-04

Family

ID=18198672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327395A Expired - Lifetime JP2531215B2 (en) 1987-12-25 1987-12-25 Method for producing tetrafluoroethane

Country Status (1)

Country Link
JP (1) JP2531215B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541256B2 (en) * 1987-12-25 1996-10-09 旭硝子株式会社 Method for producing tetrafluoroethane
JPH07119324B2 (en) * 1988-08-22 1995-12-20 日本石油化学株式会社 Flame-retardant olefin polymer resin composition with improved scratch whitening
CA2067370A1 (en) * 1989-10-10 1991-04-11 Fernando F. Kielhorn Halocarbon hydrogenolysis
GB9306334D0 (en) * 1993-03-26 1993-05-19 Univ Dundee Catalyst
US5817896A (en) * 1993-03-26 1998-10-06 The University Court Of The University Of Dundee Catalytic method of replacing halogen in halocarbons

Also Published As

Publication number Publication date
JPH01172349A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
CA1337434C (en) Process for producing 1,1,1,2-tetrafluoroethane
US5136113A (en) Catalytic hydrogenolysis
JP2531205B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2531215B2 (en) Method for producing tetrafluoroethane
JP2814606B2 (en) Method for producing pentafluoroethane
JPH08337542A (en) Production of 1,1,1,3,3-pentafluoropropane
JP2581170B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP2541256B2 (en) Method for producing tetrafluoroethane
JP2551052B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2636314B2 (en) Method for producing tetrafluoroethane
JP2551051B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2586129B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
WO1992012113A1 (en) Catalytic hydrogenolysis
JPH0733342B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2508807B2 (en) Method for producing R-134a
JP2581169B2 (en) Method for producing R-134a
JPH01319441A (en) Production of 1,1-dichloro-2,2,2-trifluoroethane
JP2581168B2 (en) Method for producing R-134a
JPH01132538A (en) Production of tetrafluoroethane
JP2580695B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP2734672B2 (en) Method for producing 1,1-difluoroethane
JP2580696B2 (en) Method for producing pentafluoroethane
GB2276332A (en) Catalytic method of replacing halogen in halocarbons
JPH05140008A (en) Production of 1,3-dichloro-1,2,2,3,3-pentafluoropropane
JPH01319443A (en) Production of tetrafluoroethane