JP2530670B2 - Cooling ventilation structure for the housing that houses electronic devices - Google Patents

Cooling ventilation structure for the housing that houses electronic devices

Info

Publication number
JP2530670B2
JP2530670B2 JP62295974A JP29597487A JP2530670B2 JP 2530670 B2 JP2530670 B2 JP 2530670B2 JP 62295974 A JP62295974 A JP 62295974A JP 29597487 A JP29597487 A JP 29597487A JP 2530670 B2 JP2530670 B2 JP 2530670B2
Authority
JP
Japan
Prior art keywords
housing
cooling air
electronic device
air flow
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62295974A
Other languages
Japanese (ja)
Other versions
JPH01138796A (en
Inventor
渡辺  弘
義明 高橋
昌行 坂田
寿之 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Control Systems Inc
Original Assignee
Hitachi Ltd
Hitachi Process Computer Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Process Computer Engineering Inc filed Critical Hitachi Ltd
Priority to JP62295974A priority Critical patent/JP2530670B2/en
Publication of JPH01138796A publication Critical patent/JPH01138796A/en
Application granted granted Critical
Publication of JP2530670B2 publication Critical patent/JP2530670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空冷電子機器の冷却風吸気技術に係り、特に
大形筐体(高さ1m以上)で、大吸気量を必要とする場合
に好適なように耐塵埃性を強化した電子機器筐体に関す
るものである。
The present invention relates to a cooling air intake technology for air-cooled electronic devices, and particularly when a large housing (height 1 m or more) requires a large intake air amount. The present invention relates to an electronic device housing having enhanced dust resistance as appropriate.

〔従来の技術〕[Conventional technology]

従来の電子機器筐体には第3図に示す様に設置環境自
体の改善を図る方式がある。電子機器筐体1は専用室13
内に設置され、空調装置14により吸気温度を一定値以下
に抑えられる。更にこの空調装置14には空気浄化装置15
(一般にはエアフイルタ)が取付けられており、このエ
アフイルタにより電子機器筐体1への吸入埃図量を少な
くすることができる。
As a conventional electronic device housing, there is a system for improving the installation environment itself as shown in FIG. The electronic device housing 1 is a dedicated room 13
Installed inside, the air conditioner 14 can keep the intake air temperature below a certain value. Further, this air conditioner 14 has an air purifier 15
(Generally, an air filter) is attached, and the amount of dust drawn into the electronic device housing 1 can be reduced by the air filter.

次に、第5図にもう1つの従来例を示す。本従来例
は、本来、排気風の側面排気によるオペレータへの不快
感をなくす為に考案された方式である。つまり冷却技術
の観点からみれば、筐体16を冷却する為には開口部17か
ら吸気し、開口部18から排気するのが望ましい。しかし
ながら開口部18から排気した場合、その排気風がオペレ
ータに吹き付けられるという問題があり吸気口を18の開
口部とし、排気口を17の開口部にするという構造になつ
たものである。本方式(第5図)は比較的低発熱量の電
子機器用の筐体に採用されている。本方式は耐塵埃性の
強化という観点からみれば、目的に符合した形となつて
いる。
Next, FIG. 5 shows another conventional example. The conventional example is a system originally designed to eliminate discomfort to the operator due to side exhaust of exhaust air. In other words, from the viewpoint of the cooling technology, it is desirable to intake air through the opening 17 and exhaust air through the opening 18 in order to cool the housing 16. However, when exhausted from the opening 18, there is a problem that the exhaust air is blown to the operator, and the structure is such that the intake port is the opening part 18 and the exhaust port is the opening part 17. This method (Fig. 5) is used in a housing for electronic devices that generate a relatively low amount of heat. This method is suitable for the purpose from the viewpoint of strengthening dust resistance.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

電子装置の高速化は、使用素子をTTLからECLにするこ
とで5〜6倍高速化することができる。ところがECLを
採用した場合発熱量も5〜6倍になる。一方、使用素子
は温度を一定値以下に押さえなければならず、そこで第
4図に示す様な関係が必要となる。本図は素子表面の空
気温度上昇を10℃以下に押さえる為に必要な風量と素子
を実装した基板の発熱量とを表わした図表である。従来
のTTL素子の場合は基板面積が0.1m2レベルの基板の場合
でも75W(ワツト)程度であつたが、これをECL素子に変
えた場合は約400Wとなり、それに伴い必要風量も0.38m3
/分から2.0m3/分へと増加する。
The speed of electronic devices can be increased 5 to 6 times by changing the element used from TTL to ECL. However, when ECL is used, the amount of heat generated will be 5 to 6 times higher. On the other hand, the element to be used must keep the temperature below a certain value, which requires the relationship shown in FIG. This figure is a table showing the air flow required to keep the air temperature rise on the device surface below 10 ° C and the amount of heat generated by the substrate on which the device is mounted. In the case of the conventional TTL element, the board area was about 75W (Watt) even for the board of 0.1m 2 level, but when it was changed to the ECL element, it became about 400W, and the required air volume was 0.38m 3
/ Min to 2.0m 3 / min.

一方、素子の実装技術の進歩は目ざましく、100ピン
以上のLSTの場合、ピン間隙が、0.2〜0.3mmとなり、異
物によつてピン間絶縁が低下し易くなつた。異物とは一
般に塵埃であり、かつ、この塵埃に湿気が含まれた場合
が問題となる。従つて吸気流量が従来の4〜5倍、か
つ、ピン間隔が従来の4〜5分の1になる様な超高速コ
ンピユータの様な電気機器の場合、吸気塵埃量を出来る
だけ小さくすることが重要なポイントとなる。更に、こ
の吸気塵埃低減の為に、第3図に示す様な空調機に期待
することは、計算機自体のオフイス環境設置という要求
からは困難になつてきており、安価で、かつ電気機器自
体に耐塵埃性強化の機能をもたせる必要がある。
On the other hand, the progress of the device mounting technology is remarkable, and in the case of LST of 100 pins or more, the pin gap is 0.2 to 0.3 mm, and the foreign matter easily deteriorates the insulation between the pins. The foreign matter is generally dust, and there is a problem when the dust contains moisture. Therefore, in the case of an electric device such as an ultra-high speed computer in which the intake flow rate is 4 to 5 times that of the conventional one, and the pin spacing is 4 to 1/5 of the conventional one, it is possible to reduce the intake dust amount as much as possible. This is an important point. Furthermore, in order to reduce the intake dust, it is becoming difficult to expect an air conditioner as shown in FIG. 3 due to the requirement that the computer itself be installed in an office environment. It is necessary to have a function of enhancing dust resistance.

〔問題点を解決するための手段〕[Means for solving problems]

空気中の浮遊塵埃のうち粒子径が1μ以上のものは沈
降性塵埃である。これらの塵埃は第2図に示す如く、床
面上30〜40cm以内の空間に浮遊している。またオフイス
等の環境では、この沈降性塵埃が全体の塵埃の大半を占
める。従つてこの沈降性塵埃の電子機器筐体への取込み
を押さえれば、耐塵埃性の大幅な改善につながることは
明らかである。
Among suspended dust in the air, particles having a particle size of 1 μm or more are settling dust. As shown in FIG. 2, these dusts are floating in the space within 30 to 40 cm above the floor surface. In environments such as offices, the sedimentary dust occupies most of the whole dust. Therefore, it is obvious that if the sedimentation dust is prevented from being taken into the electronic device casing, the dust resistance is significantly improved.

その実現手段としては、本発明の実施例を模式的に描
いた第1図に示す構造が最も有効かつ安価である。第1
図は本発明の原理的説明図である。
As a means for realizing this, the structure shown in FIG. 1 schematically illustrating the embodiment of the present invention is the most effective and inexpensive. First
The figure is a principle explanatory view of the present invention.

1は電子機器筐体で、図の左右方向について中央部に
上段吸気口5と下段吸気口4とが設けられている。この
ため、電子機器筐体1内に機器収納用の空間は図面参照
番号2で示した部分と図面参照番号3で示した部分とに
区分されている。
Reference numeral 1 denotes an electronic device housing, which is provided with an upper intake port 5 and a lower intake port 4 in the center in the left-right direction of the drawing. For this reason, the space for housing the device in the electronic device housing 1 is divided into a portion indicated by reference numeral 2 and a portion indicated by reference numeral 3.

上記2の部分には高発熱素子を収納し、3の部分には
低発熱素子を収納する。下段吸気口4から吸入された冷
却風は低発熱素子実装部3内を上昇して排気10される。
A high heat generating element is accommodated in the portion 2 and a low heat generating element is accommodated in the portion 3. The cooling air sucked from the lower intake port 4 rises inside the low heat-generating element mounting portion 3 and is exhausted 10.

一方、上段吸気口5から吸入された冷却風は高発熱素
子実装部2内を上昇して排気9される。
On the other hand, the cooling air sucked from the upper intake port 5 rises in the high heat generating element mounting portion 2 and is exhausted 9.

この場合、下段吸気流の風量に比して上段吸気流8の
風量を数倍に大きく設定しておくことが望ましい。
In this case, it is desirable to set the air volume of the upper stage intake flow 8 to be several times larger than the air volume of the lower stage intake flow.

〔作用〕[Action]

前記の構成(第1図)によれば、下段吸気流7は床面
に近い空気を吸入するので塵埃を吸いこむ虞れが比較的
多いが、低発熱素子の冷却用に使われるので塵埃の影響
に対して敏感でないから、実用上の障害を招かない。こ
の冷却通風は、低い所から吸入し、冷却によつて暖めら
れた空気が上方に抜けるので、自然対流に抗わないとい
う意味で合理的である。
According to the above-mentioned configuration (Fig. 1), since the lower intake air flow 7 draws in air close to the floor surface, there is a relatively high possibility of inhaling dust, but since it is used for cooling the low heat-generating element, Since it is not sensitive to the effects, it does not cause any practical problems. This cooling draft is rational in that it does not resist natural convection, because the air that is sucked in from a low place and warmed by cooling escapes upward.

塵埃の影響に敏感な高発熱高密度素子の冷却は、上段
吸気流が充当されるので、塵埃の含有が少ない空気が吸
入される。この通風径路は、矢印Aの如く吸入された
後、矢印Bの如く下降し、矢印Cの如く方向を変えて矢
印Dの如く上昇流となる。このように、自然対流に抗ら
う形の流路をとるという意味では好ましくない面もある
ので、この上段吸気流8は、塵埃に敏感な高発熱素子の
冷却のみに充当するものである。
Since the upper intake air flow is applied to the cooling of the high-heat-generation high-density element that is sensitive to the influence of dust, the air containing a small amount of dust is sucked. This ventilation path is sucked in as indicated by arrow A, then descends as indicated by arrow B, changes its direction as indicated by arrow C, and becomes an upward flow as indicated by arrow D. As described above, there is also a surface unfavorable in the sense of taking a flow path that resists natural convection, so the upper intake air flow 8 is used only for cooling the high heat-generating element that is sensitive to dust.

〔実施例〕〔Example〕

第6図は本発明に係る通風構造を適用した電子計算機
の1例を示す。電子計算機筐体19は、左右に大きく分類
される。図の右半分は中央処理装置(CPU)の部分であ
りECL素子を多用した基板24が複数枚実装される。これ
らの基板は約400W(ワツト)発熱する為に基板1枚当た
り約2m3/分の冷却風を要する。従つて最大静圧で400mmH
2Oクラスのブロワフアン23により送風する必要がある。
次に左半分に入出力系の基板25,28が実装される。これ
らの基板は速度の一段遅いTTL素子が基本となる為に発
熱量はCPU基板に比して1/5から1/10であり、従つて一般
のプロペラフアン26,27(最大静圧で6〜10mmH2O)で充
分冷却可能である。これら左右の基板への冷却風はそれ
ぞれ吸気口20,21から吸気される。これら下段吸気口20
と上段吸気口21とは仕切板22によつて区分されている。
FIG. 6 shows an example of an electronic computer to which the ventilation structure according to the present invention is applied. The computer housing 19 is roughly classified into left and right. The right half of the figure is a central processing unit (CPU) part, and a plurality of boards 24 that heavily use ECL elements are mounted. Since these substrates generate heat of about 400 W (Watt), cooling air of about 2 m 3 / min is required for each substrate. Therefore, the maximum static pressure is 400 mmH.
It is necessary to blow air by Blois Juan 23 of 2 O class.
Next, the I / O boards 25 and 28 are mounted on the left half. Since these boards are based on TTL elements, which are one step slower in speed, the heat generation is 1/5 to 1/10 that of CPU boards. Therefore, general propeller fan 26, 27 (6 at maximum static pressure) ~ 10mmH 2 O) can be sufficiently cooled. The cooling air to the left and right substrates is sucked from the suction ports 20 and 21, respectively. These lower intake 20
The upper intake port 21 and the upper intake port 21 are separated by a partition plate 22.

上段吸気口21からの吸入空気流はCPUを構成している
高発熱高密度の基板24を冷却する。
The intake airflow from the upper intake port 21 cools the substrate 24 having high heat generation and high density, which constitutes the CPU.

一方、下段吸気口20からの吸入空気流は低発熱量の基
板25,28を冷却する。
On the other hand, the intake air flow from the lower intake port 20 cools the substrates 25 and 28 having a low heat generation amount.

〔発明の効果〕〔The invention's effect〕

本発明の冷却通風構造によれば、一つの筐体内に収納
されている高発熱量電子機器グループ、及び、低発熱量
電子機器グループのそれぞれに対して合理的に通風,冷
却することが出来、特に、塵埃の影響に敏感な高発熱量
高密度電子機器にたいして塵埃の含有の少ない清浄な空
気を流通せしめることが出来る。
According to the cooling ventilation structure of the present invention, it is possible to rationally ventilate and cool each of the high heat value electronic device group and the low heat value electronic device group housed in one housing, In particular, it is possible to circulate clean air with a small amount of dust to a high-heat-density high-density electronic device that is sensitive to the influence of dust.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の原理を説明するための模式図である。
第2図は室内に浮遊する塵埃の説明図である。第3図は
従来例の電子機器筐体の説明図である。第4図は電子機
器の冷却に必要な通風量を示す図表である。第5図は従
来技術の説明図である。第6図は本発明の1実施例の概
要的な斜視図である。 1……電子機器筐体、2……高発熱素子実装部、3……
低発熱素子実装部、4……下段吸気口、5……上段吸気
口、6……支切板。
FIG. 1 is a schematic diagram for explaining the principle of the present invention.
FIG. 2 is an illustration of dust floating in the room. FIG. 3 is an explanatory diagram of a conventional electronic device housing. FIG. 4 is a table showing the ventilation amount necessary for cooling the electronic device. FIG. 5 is an explanatory diagram of a conventional technique. FIG. 6 is a schematic perspective view of an embodiment of the present invention. 1 ... Electronic device housing, 2 ... High heat element mounting part, 3 ...
Low heat-generating element mounting part, 4 ... Lower intake port, 5 ... Upper intake port, 6 ... Partition plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂田 昌行 茨城県日立市大みか町5丁目2番1号 日立プロセスコンピユータエンジニアリ ング株式会社内 (72)発明者 井手 寿之 茨城県日立市大みか町5丁目2番1号 株式会社日立製作所大みか工場内 (56)参考文献 実開 昭60−48288(JP,U) 実公 昭63−45764(JP,Y2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masayuki Sakata 52-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Process Computer Engineering Co., Ltd. (72) Toshiyuki Ide 5-chome Omika-cho, Hitachi-shi, Ibaraki 2-1 No. 1 in the Omika Plant of Hitachi, Ltd. (56) References: Actual Opening Sho 60-48288 (JP, U) Actual Opening Sho 63-45764 (JP, Y2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子機器を収納した筐体に冷却風を流通せ
しめる為の構造において、 (a)該筐体の側面の中央部に互いに高さを異にする少
なくとも2個の吸気口を上下方向に配設し、 (b)上記2個の吸気口に流通する2系統の冷却風流通
経路を構成し、 (c)上記2系統の冷却風流通経路のうち、低い位置に
設けられた吸気口に連通する冷却風流通経路は、前記筐
体内に収納されている第1の電子機器グループを経由し
て排気口に連通し、 (d)前記2系統の冷却風流通経路のうち、高い位置に
設けられた吸気口に連通する冷却風流通経路は、前記筐
体内に収納されかつ前記第1の電子機器グループより発
熱量の大きい第2の電子機器グループを経由して排気口
に連通し、 (e)前記2系統の冷却風流通経路が筐体内で分離され
たことを特徴とする電子機器を収納した筐体の冷却通風
構造。
1. A structure for circulating cooling air in a housing accommodating an electronic device, comprising: (a) at least two intake ports having different heights at the center of a side surface of the housing. Direction, and (b) forms two cooling air flow passages flowing through the two intake ports, and (c) intake air provided at a lower position in the two cooling air flow passages. The cooling air flow path communicating with the mouth communicates with the exhaust port via the first electronic device group housed in the housing, and (d) the higher position of the cooling air flow paths of the two systems. A cooling air flow path communicating with the intake port provided in the communication port is communicated with the exhaust port via a second electronic device group housed in the housing and having a larger heat generation amount than the first electronic device group, (E) The cooling air flow paths of the two systems are separated in the housing Cooling ventilation structure of a housing accommodating an electronic apparatus characterized.
JP62295974A 1987-11-26 1987-11-26 Cooling ventilation structure for the housing that houses electronic devices Expired - Lifetime JP2530670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62295974A JP2530670B2 (en) 1987-11-26 1987-11-26 Cooling ventilation structure for the housing that houses electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295974A JP2530670B2 (en) 1987-11-26 1987-11-26 Cooling ventilation structure for the housing that houses electronic devices

Publications (2)

Publication Number Publication Date
JPH01138796A JPH01138796A (en) 1989-05-31
JP2530670B2 true JP2530670B2 (en) 1996-09-04

Family

ID=17827502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295974A Expired - Lifetime JP2530670B2 (en) 1987-11-26 1987-11-26 Cooling ventilation structure for the housing that houses electronic devices

Country Status (1)

Country Link
JP (1) JP2530670B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2578950Y2 (en) * 1992-10-20 1998-08-20 株式会社ピーエフユー Electronic equipment cooling structure

Also Published As

Publication number Publication date
JPH01138796A (en) 1989-05-31

Similar Documents

Publication Publication Date Title
EP1133906B1 (en) Parallel cooling of high power devices in a serially cooled environment
JP5043037B2 (en) Airflow management system for electronic equipment chassis
US10271460B2 (en) Server system
US7218517B2 (en) Cooling apparatus for vertically stacked printed circuit boards
US7535707B2 (en) Power supply cooling system
JPH0667754A (en) Personal computer
JPH088425B2 (en) Fluid-cooled circuit package assembly structure
JP2000049482A (en) Cooling structure of electronic equipment
JP2005149684A (en) Disk array device
JPH0385797A (en) Cooling device for electric equipment
CN1493952A (en) Computer host machine cooling system
JPH11112177A (en) Cooling device for electronic equipment
JP2530670B2 (en) Cooling ventilation structure for the housing that houses electronic devices
JP2002366258A (en) Electronic equipment system and vertical rack
JP2008251100A (en) Magnetic disk module and aggregate disk device
JP2002237178A (en) Disk array device
JP3533909B2 (en) Electronic equipment cooling device
JP2806373B2 (en) Electronic equipment cooling structure
JPH0829035A (en) Forced air cooling device
JP3058713B2 (en) Cooling structure for small electronic device housing
JP7186507B2 (en) Server cooling system and server cooling method
JP4281641B2 (en) Rack cooling device, rack, and computer system
JPH05206668A (en) Forced-air cooling apparatus for electronic equipment
JPH0385796A (en) Cooling device for electronic equipment
JP2001332078A (en) Disk array device