JP2528886B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP2528886B2
JP2528886B2 JP62177521A JP17752187A JP2528886B2 JP 2528886 B2 JP2528886 B2 JP 2528886B2 JP 62177521 A JP62177521 A JP 62177521A JP 17752187 A JP17752187 A JP 17752187A JP 2528886 B2 JP2528886 B2 JP 2528886B2
Authority
JP
Japan
Prior art keywords
layer
quantum well
well structure
wavelength
multiple quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62177521A
Other languages
Japanese (ja)
Other versions
JPS6421987A (en
Inventor
石川  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62177521A priority Critical patent/JP2528886B2/en
Publication of JPS6421987A publication Critical patent/JPS6421987A/en
Application granted granted Critical
Publication of JP2528886B2 publication Critical patent/JP2528886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔概要〕 半導体発光装置、特に発振波長調整機能を備える画発
光型半導体レーザに関し、 発振波長の調整幅が従来より大幅に拡大された新しい
半導体レーザの開発を目的とし、 活性領域と、該活性領域で発生する光を周期的回折に
より選択的に帰還する多重量子井戸構造とが積層して設
けられ、該活性領域に該多重量子井戸構造より電気的に
分離したヘテロ接合を介してキャリアが注入されて、該
多重量子井戸構造の積層方向に電界を印加して該帰還光
の波長を選択し、発振波長の制御がなされる構成とす
る。
DETAILED DESCRIPTION OF THE INVENTION [Outline] A semiconductor light-emitting device, in particular, an image-emitting semiconductor laser having an oscillation wavelength adjusting function, for the purpose of developing a new semiconductor laser in which the adjustment range of the oscillation wavelength is greatly expanded, A heterojunction in which an active region and a multiple quantum well structure for selectively returning the light generated in the active region by periodic diffraction are provided in a stack, and the active region is electrically isolated from the multiple quantum well structure Carriers are injected through the structure, an electric field is applied in the stacking direction of the multiple quantum well structure to select the wavelength of the feedback light, and the oscillation wavelength is controlled.

〔産業上の利用分野〕[Industrial applications]

本発明は半導体発光装置、特に発振波長調整機能を備
える面発光型半導体レーザに関する。
The present invention relates to a semiconductor light emitting device, and more particularly to a surface emitting semiconductor laser having an oscillation wavelength adjusting function.

光を情報信号の媒体とする光通信等において、波長分
割多重通信、コヒーレント通信などの更に高度のシステ
ムを実現するために、レーザ発振波長の調整機能が要望
されている。
In optical communication using light as a medium for information signals, a laser oscillation wavelength adjusting function is demanded in order to realize more advanced systems such as wavelength division multiplexing communication and coherent communication.

〔従来の技術〕[Conventional technology]

発振波長すなわち縦モードの制御に適する半導体レー
ザとして、帰還が回折格子によって選択的に行われる分
布帰還形(DFB)又は分布反射形(DBR)レーザが注目さ
れているが、その発振波長を制御する試みとして第2図
に示すDBRレーザの従来例がある。
As a semiconductor laser suitable for controlling the oscillation wavelength, that is, the longitudinal mode, a distributed feedback (DFB) or distributed reflection (DBR) laser in which feedback is selectively performed by a diffraction grating is attracting attention. As an attempt, there is a conventional example of the DBR laser shown in FIG.

同図において、21はn型半導体基板、22は回折格子、
23はn型ガイド層、25は活性層、26はp型クラッド層で
あり、この半導体基体をエッチング等により、活性層25
を備える光電変換領域A、回折格子22を備える波長調整
領域Cと、その中間の位相調整領域Bの3領域に分割
し、各領域のp型クラッド層26上に電極31A、31B、31
C、基板21の裏面に共通の電極32を設けている。
In the figure, 21 is an n-type semiconductor substrate, 22 is a diffraction grating,
23 is an n-type guide layer, 25 is an active layer, and 26 is a p-type clad layer. The active layer 25 is formed by etching this semiconductor substrate.
Is divided into three regions, that is, a photoelectric conversion region A provided with, a wavelength adjustment region C provided with a diffraction grating 22, and a phase adjustment region B in the middle thereof, and electrodes 31A, 31B, 31 on the p-type cladding layer 26 in each region.
C, a common electrode 32 is provided on the back surface of the substrate 21.

本従来例では、光電変換領域Aの電極31A−32間の電
流で活性層25にキャリアを注入し、電極31B−32間の電
流による位相調整領域Bのガイド層23の屈折率制御で回
折格子からの反射光の位相調整を行い、電極31C−32間
の電流による波長調整領域Cのガイド層23の屈折率制御
で回折格子22による反射率が極大のブラッグ波長λ
調整を行って、発振波長を所要の波長に合致させる。
In this conventional example, carriers are injected into the active layer 25 by the current between the electrodes 31A-32 in the photoelectric conversion region A, and the diffraction grating is controlled by controlling the refractive index of the guide layer 23 in the phase adjustment region B by the current between the electrodes 31B-32. The phase of the reflected light from is adjusted, and the Bragg wavelength λ B at which the reflectance by the diffraction grating 22 is maximum is adjusted by controlling the refractive index of the guide layer 23 in the wavelength adjustment region C by the current between the electrodes 31C-32. Match the oscillation wavelength to the required wavelength.

なおDFBレーザは活性層の上又は下に回折格子が位置
し、通常この積層方向に電流を通ずるために、活性層に
キャリアを注入する電流とガイド層の屈折率を制御する
電流とを分離することが不可能で、ガイド層の屈折率に
よる発振波長の調整機能が実現できない。
Note that the DFB laser has a diffraction grating located above or below the active layer and normally passes current in this stacking direction, so that the current for injecting carriers into the active layer and the current for controlling the refractive index of the guide layer are separated. Cannot be achieved, and the function of adjusting the oscillation wavelength by the refractive index of the guide layer cannot be realized.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記従来例では、例えば活性層25はルミネセンスピー
ク波長1.55μm、厚さ0.1μm程度のInGaAsP、ガイド層
23はルミネセンスピーク波長1.3μm、厚さ0.2μm程度
のInGaAsPで構成しているが、プラズマ効果といわれる
キャリア密度の増減による屈折率の変化は、このガイド
層23ではΔn/n=10-4程度に止まり、必要とされる波長
調整幅を充足し得ない場合が多い。
In the above-mentioned conventional example, for example, the active layer 25 is an InGaAsP having a luminescence peak wavelength of 1.55 μm and a thickness of about 0.1 μm, and a guide layer.
23 is composed of InGaAsP having a luminescence peak wavelength of 1.3 μm and a thickness of about 0.2 μm. The change in the refractive index due to the increase / decrease in carrier density, which is called the plasma effect, is Δn / n = 10 −4 in this guide layer 23. In many cases, it is difficult to satisfy the required wavelength adjustment range.

更にこの従来例では、光電変換領域Aとその他の領域
B、Cとの間で光強度の分布が図示の如くずれて光の結
合損失があり、また3領域を横方向に直列配置するため
に素子長が通常の半導体レーザの3倍程度となるなどの
問題点がある。
Further, in this conventional example, the distribution of the light intensity is deviated between the photoelectric conversion region A and the other regions B and C as shown in the figure to cause a coupling loss of light, and the three regions are arranged in series in the lateral direction. There is a problem that the element length is about three times that of a normal semiconductor laser.

本発明はこの様な現状に鑑み、発振波長の調整幅が従
来より大幅に拡大された新しい半導体レーザの開発を目
的とする。
In view of the present situation as described above, the present invention aims at development of a new semiconductor laser in which the adjustment width of the oscillation wavelength is greatly expanded as compared with the conventional one.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、活性領域と、該活性領域で発生する光
を周期的回折により選択的に帰還する多重量子井戸構造
とが積層して設けられ、該活性領域に該多重量子井戸構
造より電気的に分離したヘテロ接合を介してキャリアが
注入されて、該多重量子井戸構造の積層方向に電界を印
加して該帰還光の波長を選択し、発振波長の制御がなさ
れる本発明による半導体発光装置により解決される。
The problem is that an active region and a multiple quantum well structure that selectively returns the light generated in the active region by periodic diffraction are stacked, and the active region is electrically connected to the multiple quantum well structure. A semiconductor light emitting device according to the present invention in which carriers are injected through a heterojunction separated into two, an electric field is applied in the stacking direction of the multiple quantum well structure to select the wavelength of the feedback light, and the oscillation wavelength is controlled. Will be solved by.

〔作 用〕 本発明による半導体発光装置は、例えば第1図に示す
実施例の如く活性領域3と他重量子井戸構造4とが積層
され、この多重量子井戸構造4は下記の様に、活性領域
で発生する光を選択的に帰還する回折格子として作用す
る。
[Operation] In the semiconductor light emitting device according to the present invention, the active region 3 and the other quantum well structure 4 are laminated as in the embodiment shown in FIG. 1, and the multiple quantum well structure 4 is active as follows. It acts as a diffraction grating that selectively returns the light generated in the region.

すなわち本発明による例えば波長1.3μm帯域のInP/I
nGaAsP系発光装置において、その多重量子井戸構造4の
InGaAsPウエル層4aは厚さが例えば10mm程度以下の量子
力学的寸法であるが、InPバリア層4bを厚くしてこの2
層で構成される周期を例えば240mm程度とし、積層方向
の入射光に対するこの屈折率周期の回折効果のブラッグ
波長λを、InGaAsP活性領域3で発光する所要の帯域
に置いている。
That is, according to the present invention, for example, InP / I in the wavelength band of 1.3 μm
In the nGaAsP light-emitting device, the multiple quantum well structure 4
The InGaAsP well layer 4a has a quantum mechanical dimension of, for example, about 10 mm or less.
The period composed of layers is set to, for example, about 240 mm, and the Bragg wavelength λ B of the diffraction effect of this refractive index period with respect to the incident light in the stacking direction is set in a required band for emitting light in the InGaAsP active region 3.

この多重量子井戸構造4の積層方向に電界を印加すれ
ば、量子閉じ込めスターク効果として知られる如く電界
強度に対応してΔn/n=10-2程度に達する屈折率の変化
が得られるために、ブラック波長の変化範囲が従来より
遥かに大きく、従って発振波長の制御範囲が顕著に拡大
される。
When an electric field is applied in the stacking direction of the multiple quantum well structure 4, a change in the refractive index reaching Δn / n = 10 −2 corresponding to the electric field strength is obtained as known as the quantum confinement Stark effect. The change range of the black wavelength is much larger than that of the conventional one, so that the control range of the oscillation wavelength is significantly expanded.

なお本実施例では、活性領域3へのキャリア注入は電
極14→半導体層6の経路で行われ、多重量子井戸構造4
の電界は電極13と電極14の間に電圧を加えることにより
印加される。半導体層6と多重量子井戸構造4は高抵抗
半導体分離領域8により電気的に分離されている。
In this embodiment, carrier injection into the active region 3 is performed through the path of the electrode 14 → the semiconductor layer 6, and the multiple quantum well structure 4
The electric field is applied by applying a voltage between the electrodes 13 and 14. The semiconductor layer 6 and the multiple quantum well structure 4 are electrically isolated by the high resistance semiconductor isolation region 8.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to Examples.

第1図は本発明の実施例の模式図であり、図(a)は
平面図、図(b)はそのX−X′断面図である。
FIG. 1 is a schematic view of an embodiment of the present invention, FIG. 1 (a) is a plan view, and FIG. 1 (b) is its XX 'sectional view.

本実施例は、例えば不純物濃度が2×1018cm-3程度の
n型InP半導体基板1上に、不純物濃度が基板1と同等
で厚さ2μm程度のn型InPバッファ層2と、ルミネセ
ンスピーク波長λg=1.55μm、不純物濃度1×1017cm
-3、厚さ1〜2μm程度のp型InGaAsP活性層3と、下
記の多重量子井戸構造4とを、例えばMO−CVD法によっ
て積層成長している。
In this embodiment, for example, an n-type InP buffer layer 2 having an impurity concentration equivalent to that of the substrate 1 and a thickness of about 2 μm, and a luminescence are formed on the n-type InP semiconductor substrate 1 having an impurity concentration of about 2 × 10 18 cm −3. Peak wavelength λg = 1.55 μm, impurity concentration 1 × 10 17 cm
-3 , a p-type InGaAsP active layer 3 having a thickness of about 1 to 2 μm, and a multiple quantum well structure 4 described below are laminated and grown by, for example, the MO-CVD method.

多重量子井戸構造4は、例えばλg=1.53μm、厚さ
10nm程度以下のノンドープのInGaAsPウエル層4aと、不
純物濃度1×1017cm-3、厚さ約230nmのn型InPバリア層
4bとを10〜50層程度積層成長したもので、その周期、す
なわちウエル層4aとバリア層4bの厚さの合計値を例えば
240nmとしている。
The multiple quantum well structure 4 has, for example, λg = 1.53 μm and thickness
Non-doped InGaAsP well layer 4a of about 10 nm or less, and n-type InP barrier layer with an impurity concentration of 1 × 10 17 cm -3 and a thickness of about 230 nm.
4b and 10 to 50 layers are stacked and grown, the period, that is, the total value of the thickness of the well layer 4a and the barrier layer 4b is, for example,
It is 240 nm.

このエピタキシャル成長層をn型InPバッファ層2に
達するまでメサ・エッチングして、例えば鉄(Fe)をド
ープした半絶縁性InP層5と、不純物濃度1×1018cm-3
程度のp型InP層6と、不純物濃度1×1019cm-3程度の
p型InGaAsP層7とを埋め込み成長し、次いで例えば酸
素イオン(0+)を注入して、多重量子井戸構造4とp型
InP層6とを分離する高抵抗分離領域8を形成する。
This epitaxial growth layer is mesa-etched until it reaches the n-type InP buffer layer 2, and, for example, a semi-insulating InP layer 5 doped with iron (Fe) and an impurity concentration of 1 × 10 18 cm −3.
P-type InP layer 6 and the p-type InGaAsP layer 7 having an impurity concentration of about 1 × 10 19 cm −3 are buried and grown, and then, for example, oxygen ions (0 + ) are implanted to form a multiple quantum well structure 4. p type
A high resistance isolation region 8 for isolating the InP layer 6 is formed.

この半導体基体面上に反射防止膜11と保護絶縁膜12と
を被着し、例えば直径約5μmの円形窓を備えてコンタ
クトパッドに到る電極13を多重量子井戸構造4上に、p
型InGaAsP層7にオーミックコンタクトする電極14を環
状に配設し、基板1の裏面にオーミックコンタクトする
電極15を設けて本実施例の半導体レーザ素子が完成す
る。
An antireflection film 11 and a protective insulating film 12 are deposited on the surface of the semiconductor substrate, and an electrode 13 reaching a contact pad is provided on the multiple quantum well structure 4 with a circular window having a diameter of about 5 μm.
The electrode 14 which makes ohmic contact with the type InGaAsP layer 7 is arranged annularly, and the electrode 15 which makes ohmic contact is provided on the back surface of the substrate 1 to complete the semiconductor laser device of this embodiment.

本実施例は電極14、15間に電極14を正側とする電流を
通じて1.55μm帯域のレーザ発振を行わせ、電極13、14
間に電極13を正側とする例えば0〜5V程度の範囲の電圧
を印加して、多重量子井戸構造4のこの帯域の光に対す
る比屈折率Δn/nを0〜10-2の範囲で制御し、例えば1.5
5±0.02μmの帯域内で発振波長を制御、同調すること
が可能である。この同調可能範囲は、前記従来例が例え
ば0.005μm程度に止まるのに比較して大幅に拡大され
ている。
In this embodiment, a laser current of 1.55 μm band is generated by passing a current between the electrodes 14 and 15 with the electrode 14 on the positive side.
A voltage in the range of, for example, 0 to 5 V with the electrode 13 on the positive side is applied between them to control the relative refractive index Δn / n of the multiple quantum well structure 4 with respect to light in this band in the range of 0 to 10 -2. , For example 1.5
It is possible to control and tune the oscillation wavelength within the band of 5 ± 0.02 μm. This tunable range is greatly expanded as compared with the case where the above-mentioned conventional example stops at about 0.005 μm, for example.

以上説明した実施例はInP/InGaAsP系半導体材料で構
成しているが、例えばその一部にアルミニウムインジウ
ム砒素(AlInAs)等を用いることができ、更に例えばガ
リウム砒素/アルミニウムガリウム砒素(GaAs/AlGaA
s)系などの半導体発光装置についても同様の効果を得
ることができる。
Although the above-described embodiments are composed of InP / InGaAsP-based semiconductor materials, for example, aluminum indium arsenide (AlInAs) or the like can be used for a part thereof.
Similar effects can be obtained for semiconductor light emitting devices such as s) type.

〔発明の効果〕〔The invention's effect〕

以上説明した如く本発明によれば、発光波長の制御範
囲が従来より大幅に拡大され、しかも素子サイズが小さ
い半導体発光装置が実現して、波長多重通信など光応用
システムの高度化に大きく貢献することができる。
As described above, according to the present invention, the control range of the emission wavelength is significantly expanded and the semiconductor light emitting device having a smaller element size is realized, which greatly contributes to the sophistication of optical application systems such as wavelength division multiplexing communication. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の模式図、 第2図は従来例の模式断面図である。 図において、 1はn型InP半導体基板、 2はn型InPバッファ層、 3はp型InGaAsP活性層、 4は多重量子井戸構造、 4aはInGaAsPウエル層、 4bはn型InPバリア層、 5は半絶縁性InP層、6はp型InP層、 7はp型InGaAsP層、8は高抵抗分離領域、 11は反射防止膜、12は保護絶縁膜、 13、14、15は電極を示す。 FIG. 1 is a schematic view of an embodiment of the present invention, and FIG. 2 is a schematic sectional view of a conventional example. In the figure, 1 is an n-type InP semiconductor substrate, 2 is an n-type InP buffer layer, 3 is a p-type InGaAsP active layer, 4 is a multiple quantum well structure, 4a is an InGaAsP well layer, 4b is an n-type InP barrier layer, and 5 is Semi-insulating InP layer, 6 is a p-type InP layer, 7 is a p-type InGaAsP layer, 8 is a high resistance isolation region, 11 is an antireflection film, 12 is a protective insulating film, and 13, 14 and 15 are electrodes.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】活性領域と、該活性領域で発生する光を周
期的回折により選択的に帰還する多重量子井戸構造とが
積層して設けられ、該活性領域の側面に、高抵抗分離領
域により該多重量子井戸構造とは電気的に独立したヘテ
ロ接合が設けられ、該ヘテロ接合を介してキャリアが該
活性領域に注入され、かつ、該多重量子井戸構造の積層
方向に印加された電界により、該帰還光の波長を選択
し、発振波長の制御がなされることを特徴とする半導体
発光装置。
1. An active region and a multi-quantum well structure for selectively returning the light generated in the active region by periodic diffraction are provided in a stack, and a high resistance isolation region is provided on a side surface of the active region. A heterojunction electrically independent of the multiple quantum well structure is provided, carriers are injected into the active region through the heterojunction, and an electric field is applied in the stacking direction of the multiple quantum well structure, A semiconductor light emitting device characterized in that the oscillation wavelength is controlled by selecting the wavelength of the feedback light.
JP62177521A 1987-07-16 1987-07-16 Semiconductor light emitting device Expired - Fee Related JP2528886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62177521A JP2528886B2 (en) 1987-07-16 1987-07-16 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62177521A JP2528886B2 (en) 1987-07-16 1987-07-16 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS6421987A JPS6421987A (en) 1989-01-25
JP2528886B2 true JP2528886B2 (en) 1996-08-28

Family

ID=16032369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62177521A Expired - Fee Related JP2528886B2 (en) 1987-07-16 1987-07-16 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2528886B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301201A (en) * 1993-03-01 1994-04-05 At&T Bell Laboratories Article comprising a tunable semiconductor laser
CA2121405C (en) * 1993-04-30 1999-03-16 David Andrew Barclay Miller Tunable lasers based on absorbers in standing waves

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936988A (en) * 1982-08-26 1984-02-29 Agency Of Ind Science & Technol Vertical oscillation type semiconductor laser
JPS6032381A (en) * 1983-08-01 1985-02-19 Matsushita Electric Ind Co Ltd Surface light emitting semiconductor laser device

Also Published As

Publication number Publication date
JPS6421987A (en) 1989-01-25

Similar Documents

Publication Publication Date Title
US5680411A (en) Integrated monolithic laser-modulator component with multiple quantum well structure
US4873691A (en) Wavelength-tunable semiconductor laser
US5212706A (en) Laser diode assembly with tunnel junctions and providing multiple beams
EP1368870B1 (en) Asymmetric waveguide electroabsorption-modulated laser
US5953479A (en) Tilted valance-band quantum well double heterostructures for single step active and passive optical waveguide device monolithic integration
US4815087A (en) High speed stable light emitting semiconductor device with low threshold current
US6570905B1 (en) Vertical cavity surface emitting laser with reduced parasitic capacitance
JPH0636457B2 (en) Method for manufacturing monolithic integrated optical device incorporating semiconductor laser and device obtained by this method
US4961198A (en) Semiconductor device
EP0390167B1 (en) Semiconductor laser device having plurality of layers for emitting lights of different wavelengths and method of driving the same
US5042049A (en) Semiconductor optical device
JPH07202327A (en) Optical semiconductor element
JP2587628B2 (en) Semiconductor integrated light emitting device
KR20190072355A (en) Tunable laser device and method for manufacturing the same
JP2536714B2 (en) Optical modulator integrated multiple quantum well semiconductor laser device
JPH0732279B2 (en) Semiconductor light emitting element
JPH069280B2 (en) Semiconductor laser device
JP2528886B2 (en) Semiconductor light emitting device
JPH08274404A (en) Multi-quantum well laser diode
JP2003142773A (en) Semiconductor light emitting device
US5841151A (en) Quasi type II semiconductor quantum well device
JPH1022579A (en) Light waveguide path structure, and semiconductor laser, modulator, and integrated semiconductor laser device using this light waveguide structure
JPH0951142A (en) Semiconductor light emitting element
JPH0716079B2 (en) Semiconductor laser device
JPH0563301A (en) Semiconductor optical element and optical communication system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees