JP2527643B2 - A method of controlling the amount of water change in a water heat source air conditioning system - Google Patents

A method of controlling the amount of water change in a water heat source air conditioning system

Info

Publication number
JP2527643B2
JP2527643B2 JP2288587A JP28858790A JP2527643B2 JP 2527643 B2 JP2527643 B2 JP 2527643B2 JP 2288587 A JP2288587 A JP 2288587A JP 28858790 A JP28858790 A JP 28858790A JP 2527643 B2 JP2527643 B2 JP 2527643B2
Authority
JP
Japan
Prior art keywords
water
heat exchanger
temperature
way valve
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2288587A
Other languages
Japanese (ja)
Other versions
JPH04165242A (en
Inventor
惇 高橋
克彦 柴田
浩一 西村
雄偉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2288587A priority Critical patent/JP2527643B2/en
Publication of JPH04165242A publication Critical patent/JPH04165242A/en
Application granted granted Critical
Publication of JP2527643B2 publication Critical patent/JP2527643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,冷温水を冷暖房用の熱源とする水熱源空調
設備における変水量制御方法に関する。
Description: TECHNICAL FIELD The present invention relates to a variable water amount control method in a water heat source air conditioning facility using cold / hot water as a heat source for cooling / heating.

〔従来の技術〕[Conventional technology]

第1図に従来の代表的な水熱源空調設備を示した。1
は蓄熱槽であり,この蓄熱槽1には冷房時には冷水が,
暖房時には温水が蓄えられる。この冷温水は熱源機器に
よって製造されるが,冷水の場合を例とすると,高温槽
2内の温水を冷凍機3に一次側ポンプ4によって送水
し,得られた冷水を低温槽5に戻すことによって行われ
る。そのさい,冷凍機3には一定水量の冷水を供給し
(ポンプ送水量を一定とし),出側水温を温度センサ6
によって検出し,この検出値が設定値になるように冷凍
機3の容量制御を行う。
Fig. 1 shows a conventional typical water heat source air conditioning system. 1
Is a heat storage tank, and cold water is stored in the heat storage tank 1 during cooling.
Hot water is stored during heating. This cold / hot water is produced by a heat source device. Taking the case of cold water as an example, the hot water in the high temperature tank 2 is sent to the refrigerator 3 by the primary side pump 4, and the cold water obtained is returned to the low temperature tank 5. Done by At that time, a constant amount of cold water is supplied to the refrigerator 3 (the pump water amount is constant), and the outlet water temperature is controlled by the temperature sensor 6.
The capacity of the refrigerator 3 is controlled so that the detected value becomes a set value.

二次側では,建物内に多数配設された空調器の熱交換
器7に二次側ポンプ8によって蓄熱槽1内の冷温水が循
環通水される。これらの熱交換器7は,空調器がヒート
ポンプユニットの場合には水側熱交換器,またフアンコ
イルユニットの場合には空気対水熱交換器である。冷房
運転を例とすれば,低温槽5内の冷水が往管9を経て汲
み上げられ,各熱交換器7を経たあと還管10によって高
温槽2に戻される。そのさい,各空調器では所要の室温
に空調するために,空調器に戻るレタン空気の温度を温
度センサ12で検出し,この検出温度が設定値となるよう
に熱交換器7への通水量を制御することが行われてい
る。この通水量の制御は,各熱交換器7への送水管路に
取付けた二方弁13の開度調節によって行う方法と,熱交
換器7を迂回するバイパス管路14を三方弁15を介して設
置し,この三方弁15を操作する方法が一般的である。
On the secondary side, cold / hot water in the heat storage tank 1 is circulated through the heat exchanger 7 of the air conditioner arranged in the building by the secondary side pump 8. These heat exchangers 7 are water-side heat exchangers when the air conditioner is a heat pump unit, and air-to-water heat exchangers when the air conditioner is a fan coil unit. Taking the cooling operation as an example, the cold water in the low temperature tank 5 is pumped up through the forward pipe 9, passes through each heat exchanger 7, and then is returned to the high temperature tank 2 by the return pipe 10. At that time, in order to perform air conditioning at a required room temperature in each air conditioner, the temperature of the retan air returning to the air conditioner is detected by the temperature sensor 12, and the water flow rate to the heat exchanger 7 is adjusted so that the detected temperature becomes a set value. Is being controlled. This flow rate is controlled by adjusting the opening of the two-way valve 13 attached to the water supply pipe to each heat exchanger 7, and the bypass pipe 14 bypassing the heat exchanger 7 via the three-way valve 15. Is generally installed and the three-way valve 15 is operated.

暖房の場合においても,レタン空気の温度が所定温度
になるように各熱交換器への温水の通水量を制御する点
では変わりはない。
Even in the case of heating, there is no difference in that the flow rate of hot water to each heat exchanger is controlled so that the temperature of the ethane air becomes a predetermined temperature.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記のように,レタン空気の温度が所定温度になるよ
うに各熱交換器7への通水量を制御することは直接的で
且つ簡明な方式であるが,中間期等の空調負荷の低い時
期或いは建物の使用状態によって空調負荷が小さいとき
は,空調のための消費熱量が少なくなるので熱交換器7
の入口と出口の水温差が小さくなる。この結果,冷凍機
では設定された水温まで冷却するのに冷却しようとする
水温が低いので部分負荷で運転することになる。したが
って冷凍機の成績係数(COP)が低下し,単位生産熱量
当りの電力量が増加するという問題があった。
As described above, it is a direct and simple method to control the amount of water passing to each heat exchanger 7 so that the temperature of the retan air becomes a predetermined temperature, but it is a time when the air conditioning load is low, such as in the middle period. Alternatively, when the air conditioning load is small depending on the usage condition of the building, the heat consumption for air conditioning decreases, so the heat exchanger 7
The water temperature difference between the inlet and the outlet of is small. As a result, the refrigerator is operated at a partial load because the water temperature to be cooled is low to cool it to the set water temperature. Therefore, there was a problem that the coefficient of performance (COP) of the refrigerator decreased and the amount of electricity per unit of heat produced increased.

熱交換器7の入口と出口の温度差が大きくなるように
二方弁13を制御することもできる(例えば低負荷時に熱
交換器7への水量を低下する)が,この場合には二方弁
13が絞り抵抗となり,ポンプ動力をいたずらに消費する
ことになる。また三方弁15を操作する場合にはバイパス
管14と熱交換器7を通る全体の水量は一定であるからポ
ンプの搬送動力の低減は望めず,また熱源水の高温度差
の利用も望めない。
It is possible to control the two-way valve 13 so that the temperature difference between the inlet and the outlet of the heat exchanger 7 becomes large (for example, when the load is low, the amount of water to the heat exchanger 7 is reduced). valve
13 becomes throttle resistance, and pump power is consumed unnecessarily. Further, when the three-way valve 15 is operated, the total amount of water passing through the bypass pipe 14 and the heat exchanger 7 is constant, so that it is not possible to expect a reduction in the pumping power, and it is not possible to expect the use of the high temperature difference of the heat source water. .

本発明はこのような問題を解決を目的としたものであ
る。
The present invention aims to solve such a problem.

〔問題点を解決する手段〕[Means for solving problems]

本発明は,蓄熱槽内の熱源水を建物内に多数配設した
空調器の熱交換器にポンプによって循環通水する水熱源
空調設備において,各熱交換器への送水管路に二方弁を
取付けると共に各熱交換器への入口水温を検出する入口
水温センサおよび出口水温を検出する出口水温センサを
設けたうえ,両温度センサの検出値から各々の熱交換器
の入口水温と出口水温の温度差を演算し,この演算値が
予め定めた設定温度差となるように前記の二方弁の開度
を各々個別に制御し,そして各二方弁の開度情報から前
記ポンプで送水すべき系全体の送水量を計算によって求
め,この送水量となるようにポンプの回転数を制御する
ことを特徴とする水熱源空調設備における変水量制御方
法を提供するものである。
The present invention relates to a water heat source air conditioning system in which a heat source water in a heat storage tank is circulated through a heat exchanger of an air conditioner arranged in a building by a pump, and a two-way valve is provided in a water supply pipe line to each heat exchanger. In addition to installing an inlet water temperature sensor that detects the inlet water temperature to each heat exchanger and an outlet water temperature sensor that detects the outlet water temperature, install the inlet water temperature and outlet water temperature of each heat exchanger from the detected values of both temperature sensors. The temperature difference is calculated, the opening of each of the two-way valves is individually controlled so that the calculated value becomes a predetermined set temperature difference, and water is sent by the pump based on the opening information of each two-way valve. The present invention provides a method for controlling the amount of water change in a water heat source air conditioning system, which is characterized in that the amount of water supplied to the entire power system is calculated and the rotation speed of the pump is controlled so as to achieve this amount of water supplied.

〔発明の詳述〕[Detailed Description of the Invention]

以下に本発明の内容と作用効果を図面を参照しつつ具
体的に説明する。
The contents and effects of the present invention will be specifically described below with reference to the drawings.

第2図は本発明に従う空調設備の例を示したものであ
る。一次側においては,一次側ポンプ4で定水量を冷凍
機3に送水し,冷凍機3の出口水温が設定値となるよう
に冷凍機3の容量制御を行う点は第1図の従来と同様で
ある。本発明ではこの冷凍機3のCOPを向上させる制御
であるので,熱源側機器としては冷凍機だけを示してい
るが,実際には暖房運転も行なえるようにボイラー等の
加熱機器も存在する。冷房運転では,低温槽5の冷水
を,建物内に多数配設された空調器の熱交換器7に循環
させ,昇温した水を高温槽2に戻すことも第1図の従来
の同様である。そのさい,往管9に介装される冷水汲み
上げポンプとしては,送水容量可変ポンプ17を用いる。
図示の例ではインバータ18によってその回転数制御を実
施する。
FIG. 2 shows an example of the air conditioning equipment according to the present invention. On the primary side, the primary side pump 4 sends a constant amount of water to the refrigerator 3 and the capacity of the refrigerator 3 is controlled so that the outlet water temperature of the refrigerator 3 becomes a set value, as in the conventional case of FIG. 1. Is. In the present invention, since the COP of the refrigerator 3 is controlled to be improved, only the refrigerator is shown as the heat source side device, but in reality, there is a heating device such as a boiler so that the heating operation can be performed. In the cooling operation, the cold water in the low temperature tank 5 is circulated through the heat exchangers 7 of the air conditioners arranged in the building, and the heated water is returned to the high temperature tank 2 as in the conventional case of FIG. is there. At that time, a variable water capacity pump 17 is used as the cold water pumping pump installed in the outward pipe 9.
In the illustrated example, the rotation speed control is performed by the inverter 18.

空調器の熱交換器7は,空調器がヒートポンプユニッ
トの場合には水側熱交換器,フアンコイルユニットの場
合には空気対水熱交換器であり,これらは,図示の例で
は往管9と還管10との間に並列的に接続されている。す
なわち,低温槽5内の冷水がそのまま各熱交換器7に入
り,各熱交換器7を出た水は他の熱交換器7を経ること
なく直接高温槽2に戻るような配管としてある。
The heat exchanger 7 of the air conditioner is a water side heat exchanger when the air conditioner is a heat pump unit, and an air-to-water heat exchanger when the air conditioner is a fan coil unit. And the return pipe 10 are connected in parallel. That is, the cold water in the low temperature tank 5 enters each heat exchanger 7 as it is, and the water leaving each heat exchanger 7 directly returns to the high temperature tank 2 without passing through the other heat exchangers 7.

各空調器では,レタン空気の温度を温度センサ12で検
出する点は第1図と同様であるが,第1図ではこのレタ
ン空気温度が設定温度となるように二方弁を制御したの
に対し,第2図では空調器の送風量制御を行う。すなわ
ち温度センサ12の検出値が一定となるように給気フアン
19の回転数をインバータ20によって制御する。
In each air conditioner, the temperature of the retinal air is detected by the temperature sensor 12 as in the case of FIG. 1. However, in FIG. 1, the two-way valve is controlled so that the retane air temperature becomes the set temperature. On the other hand, in Fig. 2, the air flow rate of the air conditioner is controlled. That is, the air supply fan should be set so that the detected value of the temperature sensor 12 becomes constant.
The rotation speed of 19 is controlled by the inverter 20.

第2図の設備でも各熱交換器7への入口管路に二方弁
13を設けるが,この二方弁13の制御は第1図とは異な
り,熱交換器7の出口と入口との水温差が所定の大きさ
となるように制御する。すなわち,各熱交換器7の出口
管路に出口温度センサ21を設けると共に,各熱交換器7
に入る水温を検出する入口温度センサ22を設置し,両セ
ンサ21と22との検出値が所定の大きさとなるように二方
弁13を制御する。なお,入口温度センサ22は各熱交換器
7に共通の冷水温度を検出するために往管9のポンプ17
の吐出側に設けてある。
Even in the equipment shown in FIG. 2, a two-way valve is provided in the inlet pipe to each heat exchanger 7.
Although 13 is provided, the control of the two-way valve 13 is different from that of FIG. 1 so that the water temperature difference between the outlet and the inlet of the heat exchanger 7 is controlled to a predetermined value. That is, the outlet temperature sensor 21 is provided in the outlet pipe of each heat exchanger 7, and each heat exchanger 7
An inlet temperature sensor 22 for detecting the incoming water temperature is installed, and the two-way valve 13 is controlled so that the detection values of both sensors 21 and 22 have a predetermined magnitude. The inlet temperature sensor 22 is used to detect the cold water temperature common to the heat exchangers 7 in order to detect the cold water temperature in the pump 17 of the forward pipe 9.
It is provided on the discharge side of.

23は制御用コンピューターを示しており,各二方弁13
の開度からポンプ17が必要とする系全体の全体の水量を
演算し,各二方弁13に制御開度を指令すると共に,ポン
プ17のインバータ18に必要な回転数指令を行う。
Reference numeral 23 indicates a control computer, and each two-way valve 13
The total amount of water required by the pump 17 for the entire system is calculated from the opening of the pump, and the control opening is commanded to each two-way valve 13, and the rotation speed command is required for the inverter 18 of the pump 17.

以下に,この制御動作について説明する。 The control operation will be described below.

本発明の制御は,二方弁13の制御ルーチンとポンプ17
の制御ルーチンで構成され,ポンプ側の制御ルーチンは
二方弁の制御ルーチンで演算され,制御されている二方
弁の開度を監視して所定の時間間隔で行われる割り込み
で処理される。第3図にその制御手順を示した。
The control of the present invention is performed by the control routine of the two-way valve 13 and the pump 17
The control routine on the pump side is calculated by the control routine of the two-way valve, and the opening degree of the controlled two-way valve is monitored and processed by interruption performed at predetermined time intervals. The control procedure is shown in FIG.

二方弁の制御ルーチンにおいては,入口温度センサ22
と出口温度センサ21と各々の計測値から各々の熱交換器
7の出入口の水の温度差を演算し,この演算値を設定し
た温度差(可能範囲の大きな値)とそれぞれ比較する。
この計測値と設定値の比較から求まる偏差値を用いてPI
D(比例積分微分)動作による制御量を演算し,それぞ
れの二方弁の開度を決定し,その開度に調整する。この
ルーチンの繰返しによって,各熱交換器7の出入口の水
温の差は設定値に近い高い範囲に維持される(熱交換器
7を通ずる水量は変動する)。
In the two-way valve control routine, the inlet temperature sensor 22
Then, the temperature difference between the water at the inlet and outlet of each heat exchanger 7 is calculated from the measured value of the outlet temperature sensor 21, and the calculated value is compared with the set temperature difference (a large possible value).
Using the deviation value obtained by comparing this measured value with the set value, PI
The control amount by D (proportional, integral, and derivative) operation is calculated, the opening of each two-way valve is determined, and the opening is adjusted. By repeating this routine, the water temperature difference between the inlet and outlet of each heat exchanger 7 is maintained in a high range close to the set value (the amount of water passing through the heat exchanger 7 varies).

また各々の二方弁の開度の平均値と,開度の変化率の
平均値から,二方弁の絞りによる管路内の圧力損失を低
減すべく次に示すファジイ(FUZZY)理論から導かれた
メンバーシップ関数を用いて,可能な限り二方弁の開度
を開放する制御と,ポンプの回転数を制御する。
From the average value of the opening of each two-way valve and the average value of the rate of change of the opening, the following fuzzy (FUZZY) theory is used to reduce the pressure loss in the pipeline due to the throttle of the two-way valve. Using the calculated membership function, control to open the opening of the two-way valve as much as possible and control the rotation speed of the pump.

ファジイ制御では制御入力から得らえる情報,本例で
は二方弁の開度e1および二方弁の開度変化率e2と,制御
出力(操作量)uとの関係を以下のように既述する。
In fuzzy control, the information obtained from the control input, in this example, the relationship between the two-way valve opening e 1 and the two-way valve opening change rate e 2 and the control output (manipulated variable) u is as follows. As mentioned above.

If e1 is P1,e2 is P2 then u1 is P0 ……(1) If e1 is N1,e2 is N2 then u2 is N0 ……(2) 但し Pは入力のファジイ集合を表すラベル(正で大) Nは入力のファジイ集合を表すラベル(負で大) 前提条件が2つあるので,その合成としてMax演算,Mi
n演算等が考えられるが,本例では相加平均による合成
を採用する。すなわち, W1={P1(e1)+P2(e2)}/2 ……(3) W2={N1(e1)+N2(e2)}/2 ……(4) 式(1),(2)のように,2個のルールを基に推論を
行うので,総合した推論結果を次のようにして求める。
If e 1 is P 1 ,, e 2 is P 2 then u 1 is P 0 …… (1) If e 1 is N 1 , e 2 is N 2 then u 2 is N 0 …… (2) However, P is input Label that represents the fuzzy set of N (positive and large) N is the label that represents the fuzzy set of the input (Negative and large) Since there are two preconditions, Max operation, Mi
Although n calculations and the like are possible, in this example, synthesis by arithmetic mean is adopted. That is, W 1 = {P 1 (e 1 ) + P 2 (e 2 )} / 2 (3) W 2 = {N 1 (e 1 ) + N 2 (e 2 )} / 2 (4) Since the inference is performed based on the two rules as in the expressions (1) and (2), the comprehensive inference result is obtained as follows.

各々の二方弁での出力結果は,前提条件の合成した値
を基にして, ui0=(W1・u1+W2・u2)/(W1+W2) ……(5) 但し,iは各二方弁のNo. となり,総合推論結果(すなわちインバータ18の周波数
出力結果)は,各二方弁の出力結果から, 但し,aiは前提条件の二方弁開度でのP1の値となる。
The output result of each two-way valve is u i0 = (W 1 · u 1 + W 2 · u 2 ) / (W 1 + W 2 ) ... (5) , i is the No. of each two-way valve, and the total inference result (that is, the frequency output result of the inverter 18) is However, a i is the value of P 1 at the precondition of the two-way valve opening.

ファジイ集合である二方弁の開度e1,二方弁の開度変
化率e2はメンバーシップ関数として定義され,図で示す
と第4図の形となる。図においてN(negative)は負の
ラベルで,弁を絞る方向にあり,P(positve)は正のラ
ベルで,弁を開ける方向にある。2つのラベルの中間が
Z0であり,ちょうどよいラベルを示す。本例の制御では
弁開度は80%でZ0と定義している。このファジイ推論の
方法を第5図に図解して示した。
The two-way valve opening e 1 and the two-way valve opening change rate e 2 which are fuzzy sets are defined as a membership function, which is shown in FIG. In the figure, N (negative) is a negative label in the direction of squeezing the valve, and P (positve) is a positive label in the direction of opening the valve. The middle of the two labels
It is Z 0 , and shows a proper label. In the control of this example, the valve opening is 80% and is defined as Z 0 . The method of this fuzzy inference is illustrated in FIG.

このようにして,各二方弁の開度情報(開度と開度変
化の平均値)からポンプ17のインバータ18の周波数出力
が演算によって推論され,これに基づいてポンプ17の回
転数が制御されると同時に,各二方弁の開度を可能な限
り開放する調整が行われ,各空調器が受け持つ熱負荷が
それぞれ個別に変化しても,それぞれの熱交換器7を通
過する前後の水温差は高い設定値に維持されながら,各
二方弁での絞り抵抗の増減に応じて適正なポンプ回転数
に制御される。
In this way, the frequency output of the inverter 18 of the pump 17 is inferred by calculation from the opening information (average value of opening and opening change) of each two-way valve, and the rotation speed of the pump 17 is controlled based on this. At the same time, the opening degree of each two-way valve is adjusted to be opened as much as possible, and even when the heat load of each air conditioner changes individually, The water temperature difference is maintained at a high set value, while the pump speed is controlled to an appropriate value according to the increase / decrease in the throttling resistance of each two-way valve.

その結果,冷凍機3では入口水温と出口水温の温度差
が高い値に維持され,その成績係数が向上すると共に,
二次側ポンプ17の搬送動力も軽減されるので高い省エネ
ルギー運転が実現できる。特に大きな温度差が利用でき
るシステム(例えば氷蓄熱システム等)では冷凍機の成
績係数の向上は極めて大きなものとなり,ポンプの搬送
動力の低減以上の動力回収を図ることができる。
As a result, in the refrigerator 3, the temperature difference between the inlet water temperature and the outlet water temperature is maintained at a high value, and the coefficient of performance is improved, and
Since the conveyance power of the secondary side pump 17 is also reduced, high energy saving operation can be realized. Especially in a system where a large temperature difference can be used (for example, an ice heat storage system), the coefficient of performance of the refrigerator can be greatly improved, and power can be recovered more than the reduction of pumping power.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の水熱源空調設備の制御例を示す機器配置
系統図,第2図は本発明に従う水熱源空調設備の制御例
を示す機器配置系統図,第3図は本発明に従うファジイ
論理による変水量制御フローを示す図,第4図はファジ
イ集合のメンバーシップ関係を示す図,第5図はファジ
イ推論の方法を示す図である。 1……蓄熱槽,2……高温槽, 3……冷凍機,4……一次側ポンプ, 5……低温槽,6……温度センサ, 7……空調器(二次側)の熱交換器, 9……往管,10……還管, 12……レタン空気の温度センサ, 13……二方弁,17……送水量可変ポンプ, 18……ポンプ17に付設のインバータ, 19……空調器の給気フアン, 20……フアン20に付設のインバータ, 21……熱交換器の出口温度センサ, 22……熱交換器の入口温度センサ, 23……制御用コンピューター。
FIG. 1 is an equipment layout system diagram showing a control example of a conventional water heat source air conditioning equipment, FIG. 2 is an equipment layout system diagram showing a control example of a water heat source air conditioning equipment according to the present invention, and FIG. 3 is a fuzzy logic according to the present invention. FIG. 4 is a diagram showing a variable water flow control flow, FIG. 4 is a diagram showing a membership relationship of a fuzzy set, and FIG. 5 is a diagram showing a fuzzy inference method. 1 ... Heat storage tank, 2 ... High temperature tank, 3 ... Refrigerator, 4 ... Primary side pump, 5 ... Low temperature tank, 6 ... Temperature sensor, 7 ... Air conditioner (secondary side) heat exchange Reactor, 9 ... Forward, 10 ... Return, 12 ... Retan Air temperature sensor, 13 ... Two-way valve, 17 ... Variable water pump, 18 ... Inverter attached to pump 17, 19 ... … Air conditioner air supply fan, 20 …… Inverter attached to fan 20, 21 …… Heat exchanger outlet temperature sensor, 22 …… Heat exchanger inlet temperature sensor, 23 …… Control computer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蓄熱槽内の熱源水を建物内に多数配設した
空調器の熱交換器にポンプによって循環通水する水熱源
空調設備において,各熱交換器への送水管路に二方弁を
取付けると共に各熱交換器への入口水温を検出する入口
水温センサおよび出口水温を検出する出口水温センサを
設けたうえ,両温度センサの検出値から各々の熱交換器
の入口水温と出口水温の温度差を演算し,この演算値が
予め定めた設定温度差となるように前記の二方弁の開度
を各々個別に制御し,そして各二方弁の開度情報から前
記ポンプで送水すべき系全体の送水量を計算によって求
め,この送水量となるようにポンプの回転数を制御する
ことを特徴とする水熱源空調設備における変水量制御方
法。
1. A water heat source air conditioning system in which heat source water in a heat storage tank is circulated through a heat exchanger of an air conditioner arranged in a building by a pump, and two sides are provided in a water supply pipe line to each heat exchanger. In addition to installing a valve, an inlet water temperature sensor that detects the inlet water temperature to each heat exchanger and an outlet water temperature sensor that detects the outlet water temperature should be provided, and the inlet water temperature and outlet water temperature of each heat exchanger should be determined from the detected values of both temperature sensors. The temperature difference of the two-way valve is individually controlled so that the calculated value becomes a predetermined set temperature difference, and the water is pumped by the pump from the information of the opening degree of each two-way valve. A variable water flow rate control method for a water heat source air conditioning system, characterized in that the water flow rate of the entire system to be obtained is calculated and the pump speed is controlled so as to achieve this water flow rate.
JP2288587A 1990-10-29 1990-10-29 A method of controlling the amount of water change in a water heat source air conditioning system Expired - Fee Related JP2527643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288587A JP2527643B2 (en) 1990-10-29 1990-10-29 A method of controlling the amount of water change in a water heat source air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288587A JP2527643B2 (en) 1990-10-29 1990-10-29 A method of controlling the amount of water change in a water heat source air conditioning system

Publications (2)

Publication Number Publication Date
JPH04165242A JPH04165242A (en) 1992-06-11
JP2527643B2 true JP2527643B2 (en) 1996-08-28

Family

ID=17732196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288587A Expired - Fee Related JP2527643B2 (en) 1990-10-29 1990-10-29 A method of controlling the amount of water change in a water heat source air conditioning system

Country Status (1)

Country Link
JP (1) JP2527643B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193615A1 (en) * 2017-04-21 2018-10-25 三菱電機株式会社 Fan coil system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311081B2 (en) * 1993-04-22 2002-08-05 株式会社竹中工務店 Ice-containing fluid supply system
JP3270272B2 (en) * 1994-11-21 2002-04-02 高砂熱学工業株式会社 Control system for heat source system for air conditioning
JP3373081B2 (en) * 1995-05-23 2003-02-04 須賀工業株式会社 Thermal energy management method of thermal storage tank by linear valve opening
JP3859359B2 (en) * 1998-06-16 2006-12-20 株式会社大気社 Heat source system using heat storage tank
JP3516883B2 (en) * 1999-06-08 2004-04-05 株式会社山武 Fan coil air conditioning control system
JP4795709B2 (en) * 2005-03-31 2011-10-19 エスペック株式会社 Constant temperature and humidity device
JP5209244B2 (en) * 2007-07-24 2013-06-12 アズビル株式会社 Air conditioning control system and air conditioning control method
JP4748175B2 (en) * 2008-04-16 2011-08-17 日立電線株式会社 Cold water circulation system
JP4333818B2 (en) * 2008-12-23 2009-09-16 日立電線株式会社 Cold water circulation system
JP5261170B2 (en) * 2008-12-26 2013-08-14 株式会社大気社 Thermal load processing system and heat source system
JP5062197B2 (en) * 2009-02-17 2012-10-31 日立電線株式会社 Cold water circulation system
EP2495502B1 (en) * 2009-10-27 2019-06-12 Mitsubishi Electric Corporation Air conditioning device
JP5537253B2 (en) * 2010-05-14 2014-07-02 東京瓦斯株式会社 Water supply control system and control method thereof
JP2011247548A (en) * 2010-05-28 2011-12-08 Taisei Oncho Kk Snow air conditioning system
JP5216813B2 (en) * 2010-06-29 2013-06-19 リョービ株式会社 Control method for air conditioning system
CN109668272B (en) * 2018-12-11 2021-02-19 上海慧鎏科技有限公司 Running control method for freezing pump of central air-conditioning system and freezing pump controller
JP6848114B1 (en) * 2020-08-17 2021-03-24 東京瓦斯株式会社 Heat supply control system
CN114413360A (en) * 2021-12-31 2022-04-29 威乐(中国)水泵***有限公司 Hydraulic module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193615A1 (en) * 2017-04-21 2018-10-25 三菱電機株式会社 Fan coil system

Also Published As

Publication number Publication date
JPH04165242A (en) 1992-06-11

Similar Documents

Publication Publication Date Title
JP2527643B2 (en) A method of controlling the amount of water change in a water heat source air conditioning system
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
EP2837898B1 (en) Air-conditioning system
US4429541A (en) Apparatus for controlling operation of refrigerator
US6449969B1 (en) Method for controlling coolant circulation system
CN107560207B (en) Screw type water chilling unit and control method thereof
JPH1163631A (en) Equipment for controlling temperature of supply water
JP2001182971A (en) Air conditioning system and its control method
JP2899437B2 (en) Air conditioning system
JPH0131877Y2 (en)
JP2577668B2 (en) Water temperature control device for heat source water for air conditioning
JP4477914B2 (en) Air conditioning system
JPH04198647A (en) Control system for air conditioning heat source equipment
JPS6256427B2 (en)
JP2003207190A (en) Air conditioning system
JPH038453B2 (en)
CN112078773A (en) Series-parallel integrated marine cooling system and control method thereof
JPH07174436A (en) River water utilizing heat recovery system
JPH0145005Y2 (en)
JPH0133741B2 (en)
JP7451066B2 (en) Air conditioning heat source control system and air conditioning heat source control method
CN218787637U (en) Four-pipe system, control device and air conditioner
JPS6138060Y2 (en)
CN216767767U (en) Dry-type does not have oily screw compressor machine heat recovery management system
JPH0127347B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees