JP2527227B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JP2527227B2
JP2527227B2 JP1010152A JP1015289A JP2527227B2 JP 2527227 B2 JP2527227 B2 JP 2527227B2 JP 1010152 A JP1010152 A JP 1010152A JP 1015289 A JP1015289 A JP 1015289A JP 2527227 B2 JP2527227 B2 JP 2527227B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
film
gaas
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1010152A
Other languages
Japanese (ja)
Other versions
JPH02191342A (en
Inventor
琢二 園田
巌 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1010152A priority Critical patent/JP2527227B2/en
Publication of JPH02191342A publication Critical patent/JPH02191342A/en
Application granted granted Critical
Publication of JP2527227B2 publication Critical patent/JP2527227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、基板半導体と格子定数の異なる半導体の
エピタキシ膜上に半導体素子を形成してなる半導体装置
及びその製造方法に関し、特に装置の性能向上に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a semiconductor device in which a semiconductor element is formed on an epitaxy film of a semiconductor having a lattice constant different from that of a substrate semiconductor, and a manufacturing method thereof, and particularly, the performance of the device. It is about improvement.

〔従来の技術〕[Conventional technology]

現在最も注目されているヘテロエピタキシ膜(互いに
格子定数の異なる半導体間でのエピタキシ膜)として
は、Si基板上へ成長したGaAs膜があり、Si素子とGaAs素
子とを同一基板上に形成し、Si素子よりも更に高速でか
つSiと同等の集積度をもたせたICの開発、又Si上にGaAs
太陽電池を作製し、GaAs上の太陽電池より軽量化するこ
とが活発に研究されている。
As a hetero-epitaxy film (epitaxy film between semiconductors having different lattice constants) which is currently receiving the most attention, there is a GaAs film grown on a Si substrate, and a Si element and a GaAs element are formed on the same substrate. Development of an IC that is even faster than Si devices and has the same degree of integration as Si, and GaAs on Si
Fabrication of solar cells and making them lighter than solar cells on GaAs are being actively studied.

以下、Si基板上のGaAs膜を例にとり、従来のヘテロ接
合エピを用いた半導体装置について第3図を用いて説明
する。
A conventional semiconductor device using a heterojunction epi will be described below with reference to FIG. 3 by taking a GaAs film on a Si substrate as an example.

通常、SiとGaAsとは格子定数(Siを基準として4%異
なる)、並びに熱膨張係数(SiがGaAsの約4倍大きい)
が大きく異なり、Si基板上にGaAsを成長した場合、それ
らの差により結晶欠陥がGaAs中に存在する。これらの結
晶欠陥を低減するために、通常は第3図に示す如く、Si
基板1とGaAs膜6との間に、結晶欠陥がGaAs膜6中へ侵
入するのを防ぐためのGaAs/AlGaAsもしくはGaAs/InGaAs
等により超格子層19を挿入している。現状では上記超格
子を導入し、かつ成長後高温アニールすることにより、
最も良いGaAs結晶が得られている。
Usually, Si and GaAs have lattice constants (4% different from Si) and thermal expansion coefficient (Si is about 4 times larger than GaAs).
, And when GaAs is grown on a Si substrate, crystal defects exist in GaAs due to the difference. In order to reduce these crystal defects, as shown in FIG.
GaAs / AlGaAs or GaAs / InGaAs for preventing crystal defects from penetrating into the GaAs film 6 between the substrate 1 and the GaAs film 6.
Etc., the superlattice layer 19 is inserted. At present, by introducing the above superlattice and performing high temperature annealing after growth,
The best GaAs crystals have been obtained.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、それでも従来のヘテロエピ膜で結晶欠
陥密度が106cm-2と多く、ヘテロエピ膜を用いた半導体
装置を作製する場合、例えばSi基板上にGaAs膜を成長さ
せて光学的素子を形成する場合、実使用上、このヘテロ
エピ膜の結晶欠陥密度を103cm-2以下にする必要があ
り、更に大幅な結晶欠陥の低減化を必要とするという問
題点があった。
However, the conventional heteroepitaxial film still has a high crystal defect density of 10 6 cm -2, and when manufacturing a semiconductor device using the heteroepitaxial film, for example, when growing a GaAs film on a Si substrate to form an optical element. However, in practical use, the crystal defect density of this hetero-epitaxial film needs to be 10 3 cm -2 or less, and there is a problem that it is necessary to significantly reduce the crystal defects.

本発明は上記問題点を解決するためになされたもの
で、Si基板上に成長されたGaAs膜等、基板半導体と格子
定数の異なる半導体のエピ膜の結晶欠陥を大幅に減少
し、実使用上充分な特性を有するエピ膜を用いた半導体
装置及びその製造方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and significantly reduces crystal defects in an epitaxial film of a semiconductor having a lattice constant different from that of a substrate semiconductor, such as a GaAs film grown on a Si substrate, in practical use. It is an object of the present invention to provide a semiconductor device using an epi film having sufficient characteristics and a method for manufacturing the semiconductor device.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係る半導体装置及びその製造方法は、Si等の
第1の半導体基板主面上の所定の領域にのみ第1の半導
体基板と格子定数の異なるGaAs等の第2の半導体層を選
択的に成長させ、第2の半導体層を形成した領域下の第
1の半導体基板を選択的にエッチングし、露出された第
2の半導体層の裏面へ第2の半導体層と同一あるいは第
2の半導体層と格子整合する物質である第3の半導体層
を成長させ、しかる後に第2の半導体層を除去して第3
の半導体層を露出させ、この露出面に素子を形成するよ
うにしたものである。
A semiconductor device and a method of manufacturing the same according to the present invention selectively select a second semiconductor layer such as GaAs having a lattice constant different from that of the first semiconductor substrate only in a predetermined region on the main surface of the first semiconductor substrate such as Si. And selectively etching the first semiconductor substrate below the region where the second semiconductor layer is formed, to the back surface of the exposed second semiconductor layer, which is the same as or different from the second semiconductor layer. A third semiconductor layer, which is a material lattice-matched to the layer, is grown, and then the second semiconductor layer is removed to remove the third semiconductor layer.
The semiconductor layer is exposed, and the element is formed on the exposed surface.

〔作用〕[Action]

本発明においては、下地のSi等第1の半導体基板上の
所定領域に形成されたGaAs等の第2の半導体層下の第1
の半導体基板を選択的に除去し、露出された第2の半導
体層上に第2の半導体層と同一もしくは第2の半導体層
と格子整合できる物質である第3の半導体層を形成する
ことにより、この第3の半導体層は下地の第1の半導体
基板の影響をほとんど受けることがないので格子定数の
差に起因する格子欠陥をほとんど含まないホモエピ膜と
同等の結晶性を有し、この第3の半導体層上に素子を作
成することにより、基板と格子定数の異なるエピ膜上に
高性能素子を形成することができる。
In the present invention, the first semiconductor under the second semiconductor layer such as GaAs formed in a predetermined region on the first semiconductor substrate such as the underlying Si.
By selectively removing the semiconductor substrate and forming a third semiconductor layer on the exposed second semiconductor layer, the third semiconductor layer being the same material as the second semiconductor layer or a material that can be lattice-matched with the second semiconductor layer. Since this third semiconductor layer is hardly affected by the underlying first semiconductor substrate, it has crystallinity equivalent to that of a homoepitaxial film containing almost no lattice defects due to the difference in lattice constant. By forming an element on the semiconductor layer of No. 3, a high performance element can be formed on the epi film having a lattice constant different from that of the substrate.

〔実施例〕〔Example〕

以下、本発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による半導体装置の製造フ
ローを示すものであり、図において、1はSi基板、2,3,
4はそれぞれMOSデバイスのソース,ドレイン,ゲート、
5はSiO2/SiN膜、6,9,10は単結晶GaAs膜、7は多結晶Ga
As膜、8はSi基板1が選択的にエッチングされたエッチ
ング孔、11,12,13はそれぞれGaAsFETのソース,ゲー
ト,ドレイン、14はSiN膜、15は層間絶縁膜、16は配線
金属である。
FIG. 1 shows a manufacturing flow of a semiconductor device according to an embodiment of the present invention, in which 1 is a Si substrate, 2, 3,
4 is the source, drain, gate of the MOS device,
5 is a SiO 2 / SiN film, 6, 9 and 10 are single crystal GaAs films, and 7 is polycrystalline Ga.
As film, 8 is an etching hole in which the Si substrate 1 is selectively etched, 11, 12, 13 are sources, gates and drains of GaAs FETs, 14 is a SiN film, 15 is an interlayer insulating film, and 16 is a wiring metal. .

第1図(a)に示す如く、Si基板1上に所定の領域に
選択的にMOSデバイスのソース2,ドレイン3,ポリSiゲー
ト4,及びSiO2/SiN膜5を形成する。続いて、残された領
域のSi基板1を必要最小限エッチングし、全面にGaAs膜
をMBE,MOCVD、もしくは分子線源としてガスを用いるガ
スMBEにより成長させ、写真製版とエッチングによりMOS
デバイス上のGaAs膜を取り除く。この結果、同図(a)
の如く、単結晶GaAs膜6とその周囲のSiO2/SiN膜5上の
多結晶GaAs膜7が残される。続いて、単結晶GaAs膜6下
のSi基板1を選択的にエッチングしてエッチング孔8を
形成し、単結晶GaAs膜6の裏面を露出させ、その露出し
た面にFET用GaAs膜を結晶成長させる。この2回目のGaA
s膜成長後の断面図が同図(c)であり、露出された単
結晶GaAs膜6の裏面上には格子不整合のない良質なGaAs
FET用単結晶GaAs膜9が成長し、その他のSi基板1面上
には格子不整合による格子欠陥の多いGaAs膜10が成長さ
れる。続いて、同図(d)に示す如く、1回目に成長し
た単結晶GaAs膜6及び多結晶GaAs膜7をエッチング除去
する。露出されたGaAsFET用GaAs膜9上にソース電極11,
ドレイン電極13,ゲート電極12を形成し、更にSiN膜14を
形成してGaAsFETを作製し、続いて配線用絶縁膜15を全
面にデポする(同図(e))。最後に、SiMOSデバイス
とGaAsFETとを連結するための配線16を形成して、製造
工程を完了する(同図(f))。
As shown in FIG. 1A, a source 2, a drain 3, a poly Si gate 4, and a SiO 2 / SiN film 5 of a MOS device are selectively formed on a Si substrate 1 in predetermined regions. Then, the Si substrate 1 in the remaining region is etched to the minimum required, and a GaAs film is grown on the entire surface by MBE, MOCVD or a gas MBE using a gas as a molecular beam source, and MOS is formed by photoengraving and etching.
Remove the GaAs film on the device. As a result, the figure (a)
As described above, the single crystal GaAs film 6 and the polycrystalline GaAs film 7 on the SiO 2 / SiN film 5 around it are left. Subsequently, the Si substrate 1 under the single crystal GaAs film 6 is selectively etched to form an etching hole 8 to expose the back surface of the single crystal GaAs film 6, and the GaAs film for FET is crystal-grown on the exposed surface. Let This second GaA
A cross-sectional view after the s film is grown is shown in FIG. 7C, and a good quality GaAs with no lattice mismatch is formed on the back surface of the exposed single crystal GaAs film 6.
The single crystal GaAs film 9 for FET is grown, and the GaAs film 10 having many lattice defects due to lattice mismatch is grown on the other surface of the Si substrate 1. Subsequently, as shown in FIG. 3D, the single crystal GaAs film 6 and the polycrystalline GaAs film 7 grown for the first time are removed by etching. The source electrode 11, on the exposed GaAs film 9 for GaAs FET,
The drain electrode 13 and the gate electrode 12 are formed, and the SiN film 14 is further formed to manufacture a GaAs FET, and subsequently, the wiring insulating film 15 is deposited on the entire surface (FIG. 8E). Finally, the wiring 16 for connecting the SiMOS device and the GaAs FET is formed, and the manufacturing process is completed ((f) in the same figure).

このようにして得られた半導体装置のうち、ゲート長
0.5μm,全ゲート幅200μmのGaAsFET素子は、相互コン
ダクタンスが50mSと、通常のGaAs基板上に成長したGaAs
膜上のGaAsFETと同等の性能を示した。
Of the semiconductor devices thus obtained, the gate length
The GaAsFET device with 0.5 μm and total gate width of 200 μm has a transconductance of 50 mS and GaAs grown on a normal GaAs substrate.
It showed the same performance as the GaAs FET on the film.

このように、本実施例によれば、Si基板1上に部分的
に成長されたGaAs膜6下のSi基板1を選択エッチングし
て露出されたGaAs膜6上に成長したGaAs膜9は、格子定
数及び熱膨張係数の差に起因する結晶欠陥の導入を大幅
に低減され、このGaAs膜9上にGaAs素子を形成し、その
他のSi基板1上にSiデバイスを形成することにより、実
使用に充分な特性を有するGaAs及びSiデバイスをSi基板
1に同時に形成することができ、高速演算・大容量メモ
リ機能をもつ新しい半導体装置を実現できる。又、最初
に形成したSi基板1主面側のGaAs膜6はSi素子形成時の
種々の汚染が導入される可能性が高く、本実施例ではこ
のSi基板1主面側のGaAs膜6を除去した後に露出される
清浄な表面をもつGaAs膜9表面上に素子を作製するの
で、汚染の少ない高性能素子を形成することができる。
Thus, according to this embodiment, the GaAs film 9 grown on the GaAs film 6 exposed by selective etching of the Si substrate 1 under the GaAs film 6 partially grown on the Si substrate 1 is The introduction of crystal defects due to the difference in the lattice constant and the coefficient of thermal expansion is greatly reduced, and a GaAs element is formed on this GaAs film 9 and an Si device is formed on the other Si substrate 1 for practical use. GaAs and Si devices having sufficient characteristics can be simultaneously formed on the Si substrate 1, and a new semiconductor device having a high-speed operation and large-capacity memory function can be realized. Further, the GaAs film 6 on the main surface side of the Si substrate 1 formed first has a high possibility of introducing various contaminations during the formation of Si elements. In this embodiment, the GaAs film 6 on the main surface side of the Si substrate 1 is Since the element is formed on the surface of the GaAs film 9 having a clean surface which is exposed after the removal, a high-performance element with less contamination can be formed.

尚、GaAs太陽電池とSiデバイスとを結合したい場合に
は、GaAsFET用エピ膜9の代りに太陽電池用のエピ膜を
形成することにより、容易に実現できる。
Incidentally, when it is desired to combine the GaAs solar cell and the Si device, it can be easily realized by forming an epi film for the solar cell instead of the epi film 9 for the GaAs FET.

又、共振器端面を露出させる必要のある半導体レーザ
とSiデバイスとを結合することも可能である。すなわ
ち、第1図(d)の工程迄を完了した後に、第2図に示
す如く、まずGaAs膜9領域の所定の領域のみを残すべく
SiN膜17によりパターニングする(第2図(b))。続
いて、SiN膜17及びSiO2/SiN膜5上には成長せず、GaAs
膜9上の露出された部分のみに選択成長する成長条件を
用いて、MOCVDもしくはガスMBEによりGaAs膜9と格子整
合できる半導体レーザ用エピ膜18を形成する(同図
(c))。更にSiN膜17でカバーされた領域のGaAs膜9
領域上に半導体レーザをドライブするGaAsFETを形成
し、ドライバー回路とSiデバイスを結合する。これによ
り高速大容量光ICが実現できる。
It is also possible to combine a semiconductor laser that requires exposure of the cavity end face with a Si device. That is, after completing the steps of FIG. 1 (d), first, as shown in FIG. 2, only a predetermined region of the GaAs film 9 region should be left.
Patterning is performed with the SiN film 17 (FIG. 2B). Subsequently, GaAs was not grown on the SiN film 17 and the SiO 2 / SiN film 5, and
An epi film 18 for a semiconductor laser that can be lattice-matched with the GaAs film 9 is formed by MOCVD or gas MBE under the growth condition that selectively grows only on the exposed portion on the film 9 (FIG. 7C). Further, the GaAs film 9 in the area covered by the SiN film 17
A GaAs FET that drives a semiconductor laser is formed on the area, and the driver circuit and the Si device are coupled to each other. As a result, a high-speed, large-capacity optical IC can be realized.

又、上記実施例では全てSiとGaAsを例にとり記述した
が、本発明は他の互いに格子定数の異なる材料間に適用
できることは言うまでもない。例えば、InP−GaAs,Si−
InP,Si−InXGa1-XAS,SI−InXGa1-XAsYP1-Yなどの多くの
材料が挙げられる。
In the above embodiments, Si and GaAs have been described as examples, but it goes without saying that the present invention can be applied to other materials having different lattice constants. For example, InP-GaAs, Si-
InP, Si-In X Ga 1 -X AS, many materials, such as SI-In X Ga 1-X As Y P 1-Y and the like.

〔発明の効果〕 以上のように、本発明に係る半導体装置及びその製造
方法によれば、Si等の第1の半導体基板主面上に部分的
に格子定数の異なるGaAs膜等の第2の半導体層を成長
後、この第2の半導体層下の第1の半導体基板を選択的
にエッチングして露出された第2の半導体層裏面上に第
2の半導体層と同一もしくは第2の半導体層と格子整合
できる物質である第3の半導体層を成長し、更に第2の
半導体層を除去して第3の半導体層を露出させ、露出し
た第3の半導体層上に半導体素子を形成するようにした
ので、第3の半導体層と第1の半導体基板との格子定数
及び熱膨張係数の差による格子欠陥の導入が大幅に低減
されホモエピタキシと同等の結晶性が実現されたものと
なり、ホモエピタキシによる半導体上の素子と同等の高
性能素子を基板と格子定数の異なるエピ膜を用いて実現
できるとともに、同一エウハ内での異種間材料による素
子の結合をも実現できる効果がある。
[Effects of the Invention] As described above, according to the semiconductor device and the method of manufacturing the same of the present invention, the second semiconductor such as a GaAs film having a different lattice constant is partially formed on the main surface of the first semiconductor substrate such as Si. After growing the semiconductor layer, the first semiconductor substrate under the second semiconductor layer is selectively etched to expose the back surface of the second semiconductor layer, which is the same as the second semiconductor layer or the second semiconductor layer. A third semiconductor layer, which is a substance that can be lattice-matched with the second semiconductor layer, is grown, the second semiconductor layer is removed to expose the third semiconductor layer, and a semiconductor element is formed on the exposed third semiconductor layer. Therefore, the introduction of lattice defects due to the difference in lattice constant and thermal expansion coefficient between the third semiconductor layer and the first semiconductor substrate is significantly reduced, and the crystallinity equivalent to homoepitaxy is realized. High performance device equivalent to device on semiconductor by epitaxy Can be realized by using an epitaxial film having a different lattice constant from that of the substrate, and the effect of being able to realize the coupling of elements by different kinds of materials in the same EU.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例による半導体装置の製造
工程断面図、第2図は本発明の第2の実施例による半導
体装置の製造工程断面図、第3図は従来のヘテロエピ膜
を説明するための断面図である。 図中、1はSi基板、2はソース、3はドレイン、4はポ
リSiゲート、5はSiO2/SiN膜、6は単結晶GaAs膜、7は
多結晶GaAs膜、8はエッチ孔、9は格子欠陥の少ない単
結晶GaAs膜、10は格子欠陥の多い単結晶GaAs膜、11はソ
ース、12はゲート、13はドレイン、14はSiN保護膜、15
は層間絶縁膜、16は配線金属、17は選択エピ用SiN保護
膜、18はレーザ用エピ膜、19は超格子層である。 尚、図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention in a manufacturing step, FIG. 2 is a sectional view of a semiconductor device according to a second embodiment of the present invention in a manufacturing step, and FIG. It is a sectional view for explaining. In the figure, 1 is a Si substrate, 2 is a source, 3 is a drain, 4 is a poly-Si gate, 5 is a SiO 2 / SiN film, 6 is a single crystal GaAs film, 7 is a polycrystalline GaAs film, 8 is an etch hole, 9 Is a single crystal GaAs film with few lattice defects, 10 is a single crystal GaAs film with many lattice defects, 11 is a source, 12 is a gate, 13 is a drain, 14 is a SiN protective film, 15
Is an interlayer insulating film, 16 is a wiring metal, 17 is a SiN protective film for selective epi, 18 is an epi film for laser, and 19 is a superlattice layer. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の半導体基板主面上の所定の部分に該
第1の半導体基板と格子定数の異なる第2の半導体層を
選択的に成長させ、該第2の半導体層を形成した領域下
の上記第1の半導体基板を選択的に除去して露出させた
該第2の半導体層の裏面上に、該第2の半導体層と同一
あるいは該第2の半導体層と格子整合する物質である第
3の半導体層を成長させ、しかる後に上記第2の半導体
層を除去して露出させた上記第3の半導体層上に形成さ
れた半導体素子を備えたことを特徴とする半導体装置。
1. A second semiconductor layer having a lattice constant different from that of the first semiconductor substrate is selectively grown on a predetermined portion of the main surface of the first semiconductor substrate to form the second semiconductor layer. A material that is the same as the second semiconductor layer or lattice-matched to the second semiconductor layer on the back surface of the second semiconductor layer that is exposed by selectively removing the first semiconductor substrate below the region. And a semiconductor element formed on the third semiconductor layer exposed by removing the second semiconductor layer after the third semiconductor layer is grown.
【請求項2】第1の半導体基板主面上の所定の部分に該
第1の半導体基板と格子定数の異なる第2の半導体層を
選択的に成長する工程と、 該第2の半導体層を形成した領域下の上記第1の半導体
基板を選択的に除去する工程と、 露出された該第2の半導体層の裏面上に、該第2の半導
体層と同一あるいは該第2の半導体層と格子整合する物
質である第3の半導体層を成長する工程と、 しかる後に上記第2の半導体層を除去して上記第3の半
導体層を露出させる工程と、 該露出させた第3の半導体層上に半導体素子を形成する
工程とを含むことを特徴とする半導体装置の製造方法。
2. A step of selectively growing a second semiconductor layer having a lattice constant different from that of the first semiconductor substrate at a predetermined portion on the main surface of the first semiconductor substrate, and the second semiconductor layer being formed. A step of selectively removing the first semiconductor substrate under the formed region; and a step of forming the same semiconductor layer as the second semiconductor layer or the second semiconductor layer on the exposed back surface of the second semiconductor layer. Growing a third semiconductor layer, which is a lattice-matching substance, then removing the second semiconductor layer to expose the third semiconductor layer, and exposing the exposed third semiconductor layer And a step of forming a semiconductor element thereon.
JP1010152A 1989-01-19 1989-01-19 Semiconductor device and manufacturing method thereof Expired - Fee Related JP2527227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010152A JP2527227B2 (en) 1989-01-19 1989-01-19 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010152A JP2527227B2 (en) 1989-01-19 1989-01-19 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02191342A JPH02191342A (en) 1990-07-27
JP2527227B2 true JP2527227B2 (en) 1996-08-21

Family

ID=11742303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010152A Expired - Fee Related JP2527227B2 (en) 1989-01-19 1989-01-19 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2527227B2 (en)

Also Published As

Publication number Publication date
JPH02191342A (en) 1990-07-27

Similar Documents

Publication Publication Date Title
EP0331467B1 (en) Method of forming semiconductor thin film
US4910164A (en) Method of making planarized heterostructures using selective epitaxial growth
US7888244B2 (en) Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer
CN101300663B (en) Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US20150200246A1 (en) Lattice-Mismatched Semiconductor Structures with Reduced Dislocation Defect Densities and Related Methods for Device Fabrication
JP3114809B2 (en) Semiconductor device
JPH05235312A (en) Semiconductor substrate and its manufacture
US4914053A (en) Heteroepitaxial selective-area growth through insulator windows
JP3024584B2 (en) Method for manufacturing semiconductor device
JPH06140346A (en) Manufacture of heteroepitaxial thin layer and of electronic device
US5084409A (en) Method for patterned heteroepitaxial growth
US5573960A (en) Method of manufacturing semiconductor layers by bonding without defects created by bonding
JPH0294663A (en) Semiconductor device and manufacture thereof
JP2527227B2 (en) Semiconductor device and manufacturing method thereof
US5183776A (en) Heteroepitaxy by growth of thermally strained homojunction superlattice buffer layers
JP2793837B2 (en) Semiconductor device manufacturing method and heterojunction bipolar transistor
EP0488632B1 (en) A method for growing a compound semiconductor and a method for producing a semiconductor laser
KR100359739B1 (en) Method of fusion for heteroepitaxial layers and overgrowth thereon
US6633056B2 (en) Hetero-integration of dissimilar semiconductor materials
JP2560601B2 (en) Method for manufacturing metal film / compound semiconductor laminated structure on elemental semiconductor substrate
JP3400085B2 (en) Method for forming compound semiconductor layer
JP2862018B2 (en) Semiconductor substrate
JPH0654763B2 (en) Method for growing semiconductor thin film
JPS59228715A (en) Selective epitaxial growth method
JPH0432222A (en) Method for epitaxial growth of lattice mismatching crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees