JP2524455B2 - Installation method and device for underwater installation - Google Patents

Installation method and device for underwater installation

Info

Publication number
JP2524455B2
JP2524455B2 JP4199448A JP19944892A JP2524455B2 JP 2524455 B2 JP2524455 B2 JP 2524455B2 JP 4199448 A JP4199448 A JP 4199448A JP 19944892 A JP19944892 A JP 19944892A JP 2524455 B2 JP2524455 B2 JP 2524455B2
Authority
JP
Japan
Prior art keywords
installation
azimuth
signal
compass
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4199448A
Other languages
Japanese (ja)
Other versions
JPH0642969A (en
Inventor
哲樹 菊地
正之 三浦
知則 佐藤
悟 三浦
俊二郎 高瀬
久夫 今藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP4199448A priority Critical patent/JP2524455B2/en
Publication of JPH0642969A publication Critical patent/JPH0642969A/en
Application granted granted Critical
Publication of JP2524455B2 publication Critical patent/JP2524455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水中に設置する設置物の
設置方法及び装置に関し、特にアンカーや鉄製のアンカ
ーであるシンカーなどの水中設置物を所定方位に制御し
て設置する水中設置物の設置方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
Regarding the installation method and device, especially underwater installation objects such as anchors and sinkers, which are iron anchors, are controlled in a predetermined direction.
The present invention relates to an installation method and device for an underwater installation to be installed .

【0002】[0002]

【従来の技術】水中工事特に海洋工事においては、工事
船を係留するためのおもりとしてアンカーやシンカーな
どの設置物を海中に設置する。図7(A)を参照するに
設置物は例えば大きさが9m×7m×3m、重さが11
50tで、一側面に係留用金物を設けた構造物である。
設置物を海中に設置するに際しては、図8(A)に示す
ように作業船を係留する方向が決められているためその
方向を把握することが必要となる。また設置場所の海底
が急な傾斜面である場合には、図8(B)に示すように
設置した設置物が所定の位置から移動してしまうため目
的位置での工事船の係留計画ができなくなる。シンカー
の設置に関する許容方位及び係留索方向許容傾斜角の許
容値は大きいため、監視精度としては方位誤差として±
2゜以下、傾斜誤差として±1゜以下の計測が要求され
る。
2. Description of the Related Art Underwater construction, especially offshore construction, installs anchors, sinkers, and other installations under the sea as weights for mooring a construction ship. Referring to FIG. 7A, the installation object has, for example, a size of 9 m × 7 m × 3 m and a weight of 11 m.
It is a structure with mooring hardware on one side at 50t.
When installing the installation object in the sea, it is necessary to grasp the direction in which the mooring direction of the work boat is determined as shown in FIG. 8 (A). If the seabed at the installation site is a steep slope, the installed object will move from the specified position as shown in Fig. 8 (B), so it is possible to plan the mooring of the construction ship at the target position. Disappear. Since the allowable values for the allowable azimuth and the allowable tilt angle for mooring ropes regarding the installation of sinkers are large, the monitoring accuracy is ±
Measurements of 2 ° or less and inclination error of ± 1 ° or less are required.

【0003】従来はクレーン船などの作業船により設置
する設置物を吊り下げて設置場所に移動し、陸岸からの
測量や船搭載のジャイロコンパスを参考に設置物の姿勢
を把握して水中に設置していた。
Conventionally, an installation object to be installed by a work ship such as a crane ship is hung and moved to the installation location, and the attitude of the installation object is grasped by submersion in the water by referring to the survey from the landshore and the gyro compass installed on the ship. It was installed.

【0004】[0004]

【発明が解決しようとする課題】しかし従来の方法で
は、次のような問題点があった。 (1)海洋工事の場合必ずしも設置物設置場所が陸岸か
ら近いとは限らず、陸岸からの測量ができないことがあ
る。 (2)陸岸からの測量では、工事船側に測量データを無
線などで送る必要があり作業の迅速性に欠ける。 (3)クレーン船などの作業船のコンパス、例えばジャ
イロコンパスを使用する場合でも、船の方位しか把握で
きないため、吊り下げている設置物と船との相対姿勢を
常時計測しなければ設置物本体の姿勢は分からない。 (4)空中に出ている設置物の方位や傾斜は人が見て判
断しているが、水中に吊り降ろした場合には目視でき
ず、潮流や海底の凸凹による設置物の姿勢変化を把握で
きない。
However, the conventional method has the following problems. (1) In the case of offshore construction, the installation site is not always close to the landshore, and it may not be possible to survey from the landshore. (2) In the case of surveying from the landshore, it is necessary to send survey data to the construction ship side by radio, etc., and the work is not quick. (3) Even when using a compass of a work ship such as a crane ship, for example, a gyro compass, only the bearing of the ship can be grasped. Therefore, the installation body itself must be measured unless the relative posture between the hanging installation and the ship is constantly measured. I don't know his attitude. (4) Although the orientation and inclination of the installation object in the air is judged by people, it cannot be visually observed when it is suspended in water, and the posture change of the installation object due to tidal currents and unevenness of the seabed can be grasped. Can not.

【0005】発明者は、方位を検出して方位信号を出力
する方位計と所定方向における傾斜を検出して傾斜信号
を出力する傾斜計により、設置物の方位及び傾斜が含ま
れる姿勢を計測できることに注目した。
The inventor can measure the orientation including the azimuth and inclination of an installed object by using an azimuth meter that detects an azimuth and outputs an azimuth signal and an inclinometer that detects an inclination in a predetermined direction and outputs an inclination signal. I paid attention to.

【0006】ここで地球磁場方向を計測する方位計は、
付近に磁性体があると正しい方位信号を出力しない。例
えば設置物としてのシンカーは鉄の塊であり、この上に
磁気方位計を固定する場合にはシンカーによる磁場への
影響によって方位計の方位信号には自差と呼ばれる誤差
が生じる。また、地磁気の傾きによって生じるその地点
に固有の偏差と呼ばれる誤差を生じる。図3を参照する
に、方位信号が磁性体の影響を受けない場合には方位信
号と現実の方位とは偏差を含むのみで点線で表わされた
直線関係を持つが、実際には方位信号が自差を含むため
実線で表わされるように直線性が失なわれる。設置物の
方位を計測するためには前記方位信号の自差を較正する
ことが不可欠となる。
Here, the compass that measures the direction of the earth's magnetic field is
If there is a magnetic material in the vicinity, the correct direction signal will not be output. For example, a sinker as an installation object is an iron lump, and when a magnetic azimuth meter is fixed on this, an error called azimuth occurs in the azimuth signal of the azimuth meter due to the influence of the sinker on the magnetic field. In addition, an error called a deviation peculiar to that point is generated due to the inclination of the geomagnetism. Referring to FIG. 3, when the azimuth signal is not affected by the magnetic substance, the azimuth signal and the actual azimuth have a linear relationship represented by a dotted line only with a deviation. Since it includes the difference, the linearity is lost as shown by the solid line. In order to measure the azimuth of the installation, it is essential to calibrate the difference of the azimuth signal.

【0007】本発明の目的は、設置場所で自差を較正し
ながら水中設置物を精確に設置する設置方法及び装置
提供するにある。
The purpose of the present invention is to calibrate for the differences at the installation site.
However, it is an object of the present invention to provide an installation method and device for accurately installing an underwater installation object .

【0008】[0008]

【課題を解決するための手段】図1の図式的説明図及び
図2のブロック図を参照するに、本発明の水中設置物の
設置方法によれば、作業船1からの吊下げ操作により水
中に所定方位で設置物3を設置する方法において、設置
物3上に方位検出と方位信号出力とをする姿勢検出ユニ
ット30(図7及び図9参照)を遠隔操作で離脱可能に取
付ける。ここで姿勢検出ユニット30は方位計10を含み、
方位計10からの方位信号は方位計10付近の磁性体が磁場
に与える影響によって正しい方位とならず、自差と呼ば
れる誤差を含む。設置位置に移動した作業船1からほぼ
前記所定方位で設置物3を吊下げ、設置物3の作業船1
に対する相対角度θを固定したまま作業船1のコンパス
20で作業船1の方位を測定しながら作業船1の方位を変
化させる。姿勢検出ユニット30の方位信号とコンパス20
の測定値とを比較することにより、前記方位信号に含ま
れる自差を較正する。
With reference to the schematic explanatory view of FIG. 1 and the block diagram of FIG. 2, an underwater installation of the present invention will be described.
According to the installation method, the water is
In a method of installing the installation object 3 in a predetermined orientation, a posture detection unit for detecting an orientation and outputting an orientation signal on the installation object 3.
The remote control unit 30 (see Figs. 7 and 9) can be detached by remote control.
wear. Here, the attitude detection unit 30 includes the compass 10,
The azimuth signal from the azimuth meter 10 does not have a correct azimuth due to the influence of the magnetic substance near the azimuth meter 10 on the magnetic field, and includes an error called an error. Almost from the work boat 1 that has moved to the installation position
The installation vessel 3 is hung in the predetermined direction, and the work boat 1 for the installation article 3 is suspended.
Compass of work boat 1 with a relative angle θ fixed to
Change the bearing of work boat 1 while measuring the bearing of work boat 1 at 20
Turn into Heading signal of attitude detection unit 30 and compass 20
Included in the azimuth signal by comparing with the measured value of
To calibrate the difference.

【0009】較正後に、設置物3の作業船1に対する相
対角度θの固定を解除したうえで、較正後の方位信号に
より設置物3の方位を制御しながら設置物3を水中に所
定方位で設置し、設置後に姿勢検出ユニット30を離脱回
収する。なお前記較正後の方位信号による設置物3の方
位の計測は、設置物3の吊下げ操作中及び水中への設置
終了後でも行うことができる。
After calibration, the installation 3 is
After releasing the fixed angle θ, the azimuth signal after calibration is
Place the installation object 3 in the water while controlling the orientation of the installation object 3.
Install in a fixed orientation, and then remove the attitude detection unit 30 after installation.
To collect. It should be noted that the installation object 3 according to the direction signal after the calibration
Position measurement is performed during hanging operation of installation object 3 and installation in water
It can be done after the end.

【0010】好ましくは、姿勢検出ユニット10に傾斜を
検出して傾斜信号を出力する機能を含め、前記較正後の
方位信号と前記傾斜信号とによって設置物3の方位及び
傾斜を制御しながら設置物3を設置する。
It is preferable that the posture detection unit 10 includes a function of detecting a tilt and outputting a tilt signal, and the installed object while controlling the azimuth and the tilt of the installed object 3 by the calibrated azimuth signal and the tilt signal . Install 3.

【0011】本発明の水中設置物の設置装置は、コンパ
ス20を有する作業船1から吊下げ操作により水中に所定
方位で設置物3を設置する装置であって、設置物3上に
遠隔操作で離脱可能に取付けられ且つ方位検出と方位信
号出力とをする姿勢検出ユニット30(図7及び図9参
照)設置物3と作業船1との相対角度θを固定可能に
しつつ設置物3を吊下げる吊下げ手段姿勢検出ユニッ
ト30の方位信号とコンパス20の測定値とを比較すること
により前記方位信号を較正する較正手段22、及び前記吊
下げた設置物3の方位を前記方位信号により制御する制
御手段を備えてなる。
[0011] The installation apparatus of the underwater installation of the present invention, the comparator
Suspended from the work boat 1 with the boat 20 by submersion
A device for installing the installation object 3 in an azimuth direction, which is on the installation object 3
Attitude detection unit 30 that is detachably attached by remote control and that detects orientation and outputs an orientation signal (see FIGS. 7 and 9).
)) , The relative angle θ between the installation 3 and the work boat 1 can be fixed
Hanging hanging down means installed object 3 while the posture detection unit
Calibration means 22 for calibrating the azimuth signal by comparing the azimuth signal of the compass 20 with the measurement value of the compass 20 , and the suspension means.
A control for controlling the azimuth of the lowered installation object 3 by the azimuth signal.
Be equipped with means .

【0012】姿勢検出ユニット30には、例えば図7に示
すように、設置物3上の取付台ベース34との係合により
設置物3に取付けられ且つ遠隔指令信号により開放する
開閉フック37付きの水中切離装置33を設けることができ
る。
The attitude detection unit 30 is shown in FIG. 7, for example.
As a result of the engagement with the mounting base 34 on the installation object 3,
It is attached to the installation 3 and opened by a remote command signal.
Underwater disconnection device 33 with open / close hook 37 can be provided
It

【0013】好ましくは本発明の水中設置物の設置装置
の姿勢検出ユニット30に、設置物3上に固定すべき傾斜
計11を含め、その傾斜計11によって設置物3の傾斜を検
出して傾斜信号を出力させ、前記較正後の方位信号と前
記傾斜信号とにより設置物3の方位及び傾斜を前記制御
手段で制御する。
Preferably, the apparatus for installing an underwater installation according to the present invention
The attitude detection unit 30 includes an inclinometer 11 to be fixed on the installation object 3. The inclinometer 11 detects the inclination of the installation object 3 and outputs an inclination signal, and the azimuth signal after the calibration and the front
The orientation and inclination of the installation object 3 are controlled by the inclination signal.
Control by means.

【0014】[0014]

【作用】図2のブロック図を参照するに、水中に設置す
る設置物3の上に固定された方位計10は、任意基準線D
1の方位を検出し方位信号として出力する。任意基準線
D1は設置物3上で任意に定めることができ、例えば係
留用金物を設けた一側面の方向とすることができる。図
示例の方位計は、地球磁場に追随する磁石を4面のホー
ル素子板で取り囲み前記ホール素子に発生する前記磁石
の磁場の強さに比例した電圧から方位を求めるホール素
子コンパス形のものである。但し本発明の方位計10は上
記ホール素子コンパス形に限定されるものではなく、任
意基準線D1の方位を検出し方位信号を出力するもので
あれば足りる。
Operation Referring to the block diagram of FIG. 2, the azimuth meter 10 fixed on the installation object 3 installed in the water is an arbitrary reference line D.
The azimuth of 1 is detected and output as an azimuth signal. The arbitrary reference line D1 can be arbitrarily set on the installation object 3, and can be, for example, the direction of one side surface provided with the mooring hardware. The azimuth meter in the illustrated example is a Hall element compass type in which a magnet that follows the earth's magnetic field is surrounded by four Hall element plates and the azimuth is obtained from a voltage proportional to the magnetic field strength of the magnet generated in the Hall element. is there. However, the azimuth meter 10 of the present invention is not limited to the above-mentioned Hall element compass type, and any device that detects the azimuth of the arbitrary reference line D1 and outputs an azimuth signal is sufficient.

【0015】自差は設置物3の形状によって固有のもの
であるため、設置物3個々に自差を較正するデータ収録
が必要となる。作業船コンパス20を使う場合の自差較正
データの作成を、図4のフローチャートによって説明す
る。先ずステップ401で設置物3を所定方位、例えば
設置物3を設置する目標方位若しくはそれに近い方位で
吊下げる。前記コンパス20を使う場合は、吊下げた設置
物3の方位と作業船1の方位との間の相対角度θを固定
する。ステップ402で設置物3の方位を所定方位から
測定可能な所定角度例えば±数十度変化させる。前記コ
ンパス20を使う場合は、コンパス20で作業船1の方位を
測定しながら作業船1の方位を±数十度変化させる。但
し変化させる角度はこの角度に限定されるものではな
く、変化させる所定角度が測定可能であれば足りる。ス
テップ403で、方位計10の方位信号の変化と前記所定
方位からの前記所定角度変化とを対応させて、自差較正
データとする。前記コンパス20を使う場合は、前記±数
十度の方位変化中の(コンパスの方位値−θ)を前記所
定方位からの前記所定角度変化とすることができる。即
ち、自差較正データは、方位計10の方位信号とそれに対
応するコンパス方位値などの自差補正方位との対応表で
ある。ステップ404で、その自差較正データをファイ
ルとして記録する。
Since the difference between the installations 3 is unique to the shape of the installation 3, it is necessary to record data for calibrating the installation 3 individually. Creation of the calibration data for the case of using the work boat compass 20 will be described with reference to the flowchart of FIG. First, in step 401, the installation object 3 is hung in a predetermined orientation, for example, a target orientation for installing the installation object 3 or an orientation close to the target orientation. When the compass 20 is used, the relative angle θ between the orientation of the suspended installation 3 and the orientation of the work boat 1 is fixed. In step 402, the azimuth of the installation object 3 is changed by a predetermined angle that can be measured from the predetermined azimuth, for example, ± several tens of degrees. When the compass 20 is used, the orientation of the work boat 1 is changed by ± 10 degrees while measuring the orientation of the work boat 1 with the compass 20. However, the angle to be changed is not limited to this angle, and it is sufficient if the predetermined angle to be changed can be measured. In step 403, the change in the azimuth signal of the azimuth meter 10 and the change in the predetermined angle from the predetermined azimuth are made to correspond to each other, and the difference calibration data is obtained. When the compass 20 is used, the (compass azimuth value −θ) during the azimuth change of ± several tens of degrees can be set as the predetermined angle change from the predetermined azimuth. That is, the own-calibration data is a correspondence table between the azimuth signal of the azimuth meter 10 and the corresponding azimuth correction azimuth such as the compass azimuth value. In step 404, the difference calibration data is recorded as a file.

【0016】好ましくは設置物3の方位を360゜回転
させ、全方位の前記方位信号に対する自差較正データを
記憶装置23に記憶する。
Preferably, the azimuth of the installation 3 is rotated by 360 °, and the calibration data for the azimuths of all the azimuths is stored in the storage device 23.

【0017】また、磁気コンパスは地磁気の傾きを表わ
す偏差で別途補正する必要があり、好ましくはコンパス
20をジャイロコンパスとする。更に、前記固定された相
対角度θを記憶しておくならば、方位計10からの方位信
号とコンパスの方位値との対応を自差較正データとして
もよい。
Further, the magnetic compass needs to be separately corrected by a deviation representing the inclination of the earth's magnetism, and preferably the compass is used.
Let 20 be a gyro compass. Further, if the fixed relative angle θ is stored, the correspondence between the azimuth signal from the azimuth meter 10 and the compass azimuth value may be used as the self-calibration data.

【0018】方位計10の方位信号に対する自差較正デー
タによる自差較正を図5のフローチャートにより説明す
る。ステップ501で、自差較正データを記憶装置23か
ら読出す。ステップ502において入力された方位計10
の方位信号と読出された自差較正データとを比較する。
即ち、方位計10の方位信号から自差較正データの直読に
より又は内挿法により自差補正方位を求めることによ
り、方位信号に対する較正を行う。ステップ503で、
前記較正された自差補正方位を計測手段24に与える。
The calibration of the azimuth signal of the azimuth meter 10 using the calibrated calibration data will be described with reference to the flowchart of FIG. In step 501, the self-calibration data is read from the storage device 23. Compass 10 entered in step 502
Of the azimuth signal and the read calibration data are compared.
That is, the azimuth signal is calibrated by directly reading the azimuth difference calibration data from the azimuth signal of the azimuth meter 10 or by obtaining the azimuth difference correction azimuth by the interpolation method. In step 503,
The calibrated error correction azimuth is given to the measuring means 24.

【0019】計測手段24は、設置物3の方位を含む姿勢
の計測をする。上記姿勢の計測は、自差較正データを記
憶した後であれば何時でも行うことができる。
The measuring means 24 measures the posture of the installation 3 including the azimuth. The measurement of the posture can be performed at any time after the self-calibration data is stored.

【0020】好ましくは、設置物3上に傾斜基準線I
x、Iyでの傾斜を検出し傾斜信号を出力する傾斜計11
を固定する。図示例の傾斜計は、一方向の傾斜角θxを
抵抗値Rxの変化として与える形のものである。但し本
発明の傾斜計11は上記形の傾斜計に限定されるものでは
なく、傾斜基準線Ix、Iyでの傾斜を検出し傾斜信号
を出力するものであれば足りる。また、傾斜基準線は2
本に限定されるものでもない。前記傾斜信号は前記較正
された方位信号と共に計測手段24に入力され、設置物3
の方位及び傾斜を含む姿勢が計測される。
Preferably, the inclination reference line I is placed on the installation 3.
Inclinometer 11 that detects the inclination at x and Iy and outputs the inclination signal
Is fixed. The inclinometer in the illustrated example is of a type that gives a tilt angle θx in one direction as a change in the resistance value Rx. However, the inclinometer 11 of the present invention is not limited to the inclinometer of the above-mentioned type, and it is sufficient as long as it detects the inclinations on the inclination reference lines Ix and Iy and outputs an inclination signal. The slope reference line is 2
It is not limited to books. The tilt signal is input to the measuring means 24 together with the calibrated azimuth signal, and the installation object 3
The posture including the azimuth and the inclination of is measured.

【0021】こうして本発明の目的である、「設置場所
で自差を較正しながら水中設置物を精確に設置する設置
方法及び装置の提供」が達成される。
Thus, the " installation place " which is the object of the present invention.
Installation to accurately install underwater objects while calibrating the error
" Providing method and apparatus " is achieved.

【0022】[0022]

【実施例】図1及び図7を参照して本発明の実施例を説
明する。任意基準線D1の方位を検出しその方位信号を
出力する方位計10及び傾斜基準線Ix、Iyでの傾斜を
検出し傾斜信号を出力する傾斜計11を収納した耐水性容
器31を設置物3上に固定し、容器31から作業船1上の作
業室2までケーブル12を配線する。設置物3を吊下げワ
イヤ39で吊下げたとき、方位計10からの方位信号と傾斜
計11からの傾斜信号とが作業室2へ送られる。作業船1
搭載のジャイロコンパスなどのコンパス20を起動させ静
定時間を経た後姿勢計測を開始する。
Embodiments of the present invention will be described with reference to FIGS. A water resistant container 31 containing an azimuth meter 10 that detects the azimuth of the arbitrary reference line D1 and outputs the azimuth signal and an inclinometer 11 that detects the tilt on the tilt reference lines Ix and Iy and outputs the tilt signal is installed 3 It is fixed on the top and the cable 12 is routed from the container 31 to the work room 2 on the work boat 1. When the installation object 3 is hung by the hanging wire 39, the azimuth signal from the azimuth meter 10 and the tilt signal from the inclinometer 11 are sent to the working room 2. Work boat 1
Start the compass 20 such as the gyro compass that is installed and start posture measurement after a quiescent time.

【0023】ここで設置物3の方位である任意基準線D
1とコンパス20が検出する作業船1の方位D2、例えば
船首方向が平行でない場合には、島かげや陸岸近くにお
いてD1、D2間の相対角度θを予め測量しておく。測
量に当たっては、調整ロープなどを用いて設置物3を作
業船1に固定し両者の方向の相対角度θがズレないよう
にする。
Here, an arbitrary reference line D which is the orientation of the installation object 3
If the direction D2 of the work vessel 1 detected by the compass 20 and the compass 20, for example, the bow direction is not parallel, the relative angle θ between D1 and D2 is measured in advance near the island shade or the land shore. In surveying, the installation object 3 is fixed to the work boat 1 using an adjustment rope or the like so that the relative angle θ between the two directions does not deviate.

【0024】自差較正データは、相対角度θを固定させ
たまま、作業船1を押し船などを用いて所定方位から回
転させ、その時の方位計10の前記方位信号とコンパス20
の方位値とを対応させることにより記録する。前記相対
角度θが0゜でない場合には、コンパス20の方位値を相
対角度θで修正した方位角度を記録しておく。
The self-calibration data includes the compass 20 and the compass signal of the compass 10 at the time when the work boat 1 is pushed and rotated from a predetermined bearing with the relative angle θ fixed.
It is recorded by associating with the azimuth value of. If the relative angle θ is not 0 °, the azimuth angle obtained by correcting the azimuth value of the compass 20 with the relative angle θ is recorded.

【0025】図3に前記方位信号が電流値として出力さ
れる場合の自差較正データ及びグラフ表示の一例を示
す。図3では電流値を1mA間隔で記録しているが、当然
より細かく連続的に記録することが可能である。較正手
段22は、方位計10からの入力方位信号に最も近い自差較
正データ上の方位信号を選び出し、対応する方位角度を
内挿法などにより求めることによって前記入力方位信号
を較正する。例えば図3の自差較正データの場合、入力
方位信号が11.2mAのときの較正方位角度は、11mAと12mA
との方位角度から内相法により133.6゜(=127+{160-127}
×0.2)と求められる。
FIG. 3 shows an example of the self-calibration data and a graph display when the azimuth signal is output as a current value. In FIG. 3, the current value is recorded at 1 mA intervals, but it is naturally possible to record it more finely and continuously. The calibrating means 22 calibrates the input azimuth signal by selecting the azimuth signal on the self-calibration data closest to the input azimuth signal from the azimuth meter 10 and finding the corresponding azimuth angle by interpolation or the like. For example, in the case of the calibration data shown in Fig. 3, the calibration azimuth angle when the input azimuth signal is 11.2mA is 11mA and 12mA.
133.6 ° (= 127 + {160-127}) from the azimuth angle with
× 0.2) is required.

【0026】計測手段24に姿勢計測モニタ25を設け、設
置物3の姿勢の連続的観察による設置作業の効率化を図
ることができる。図6に姿勢計測モニタ25の一例を示
す。設置物3の姿勢計測は設置途中でも終了直後でも任
意に行うことができ、計測手段24に設けたプリンタ26に
出力することもできる。また記憶装置23に設置物3の姿
勢計測データを記録しておくこともできる。
An attitude measurement monitor 25 is provided in the measuring means 24, and the efficiency of the installation work can be improved by continuously observing the attitude of the installation object 3. FIG. 6 shows an example of the posture measurement monitor 25. The posture of the installation object 3 can be arbitrarily measured during the installation or immediately after the installation, and can be output to the printer 26 provided in the measuring means 24. It is also possible to record the posture measurement data of the installation object 3 in the storage device 23.

【0027】図7及び図9は、設置物3上に着脱自在に
方位計10及び/又は傾斜計11を固定する姿勢検出ユニッ
ト30の一例を示す。設置物3上に取付台ベース34を点溶
接等で固定し、取付台ベース34には取付台32台脚部の受
座35を設ける。取付台32に、方位計10及び/又は傾斜計
11を収納した耐水性容器31、及び水中切離装置33を取付
ける。取付台32は、水中切離装置33の開閉フック37によ
り取付台ベース34に一定の強度で固定される。設置物3
の姿勢計測終了後、作業船1の舷側から水中切離装置制
御部38を水中に吊下げ、例えば超音波信号のような指令
信号40を水中切離装置33の送受波器(図示せず)に伝送
して開閉フック37を開き、姿勢検出ユニット30を吊下げ
ケーブル39により回収することができる。回収した姿勢
検出ユニット30は次回の設置時に使用する。
FIG. 7 and FIG. 9 show an example of the attitude detection unit 30 for detachably fixing the azimuth meter 10 and / or the inclinometer 11 on the installation 3. The mounting base 34 is fixed on the installation 3 by spot welding or the like, and the mounting base 34 is provided with a seat 35 for the legs of the mounting 32. On the mount 32, the compass 10 and / or inclinometer
A water resistant container 31 containing 11 and an underwater separating device 33 are attached. The mounting base 32 is fixed to the mounting base 34 with a certain strength by an opening / closing hook 37 of the underwater separating device 33. Installation 3
After the measurement of the posture of the underwater separation device 33 is suspended in the water from the port side of the work boat 1, and a command signal 40 such as an ultrasonic signal is transmitted / received by the underwater separation device 33 (not shown). Then, the attitude detection unit 30 can be recovered by the hanging cable 39 by opening the open / close hook 37. The collected attitude detection unit 30 will be used at the next installation.

【0028】[0028]

【発明の効果】以上説明したように本発明による水中設
置物の設置方法及び装置は、設置物本体に遠隔操作で離
脱可能に取付けられる姿勢検出ユニットと船のコンパス
とを用いるので、次の顕著な効果を奏する。(イ)海洋上の設置位置で船の方位変化により姿勢検出
ユニットの自差を較正しながら設置作業を行なうことが
できるので、設置物ごとに自差の較正が必要なアンカー
等をも短時間に且つ精確に設置することができる。 (ロ)アンカー設置後に姿勢検出ユニットを簡単に回収
し、繰返し利用することができる。 (ハ) 陸岸からの測量が不要となり、設置物を吊りなが
らの航行中、水中に吊り降ろす設置途中、及び海底に着
床した後の方位及び傾斜を、瞬時に計測し記録すること
ができる。(ニ) 設置物の方位及び傾斜を記録しておくことができ
るため、任意の設置物の姿勢計測の履歴を再現表示する
ことができる。(ホ) 方位計の自差及び偏差を同時に較正できるため、
高精度計測を行える。
As described above, the method and apparatus for installing an underwater installation according to the present invention can remotely control the installation body.
Detachable attitude detection unit and ship compass
Since and are used, the following remarkable effects are obtained. (A) Attitude is detected by changing the bearing of the ship at the installation position on the ocean.
It is possible to perform installation work while calibrating the unit difference.
Because it is possible, the anchor that requires calibration of each installation
And the like can be installed accurately in a short time. (B) Easily collect the attitude detection unit after installing the anchor
And can be used repeatedly. (C) It is not necessary to take surveys from the shore, and it is possible to instantaneously measure and record the bearing and inclination while sailing while suspending the installation object, during installation while hanging in the water, and after landing on the sea floor. . (D) Since the azimuth and inclination of the installed object can be recorded, it is possible to reproduce and display the posture measurement history of the arbitrary installed object. (E) Since the compass and deviation of the compass can be calibrated at the same time,
Highly accurate measurement is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】本発明の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of the present invention.

【図3】自差較正データの説明図である。FIG. 3 is an explanatory diagram of self-calibration data.

【図4】自差較正データ作成のフローチャートである。FIG. 4 is a flow chart of creating a self-calibration data.

【図5】方位信号の自差較正フローチャートである。FIG. 5 is a azimuth signal self-calibration flowchart.

【図6】姿勢表示モニタの一実施例である。FIG. 6 is an example of an attitude display monitor.

【図7】水中設置物及び姿勢検出ユニットの説明図であ
る。
FIG. 7 is an explanatory diagram of an underwater installation object and a posture detection unit.

【図8】水中設置物の設置例の説明図である。FIG. 8 is an explanatory diagram of an installation example of an underwater installation object.

【図9】本発明の姿勢検出ユニットの回収方法の説明図
である。
FIG. 9 is an explanatory diagram of a posture detection unit recovery method of the present invention.

【符号の説明】[Explanation of symbols]

1 作業船 2 操作室 3 設置物 4 係留用金物 10 方位計 11 傾斜計 12 ケーブル 20 ジャイロコンパス 22 較正手段 23 自差較正データ 24 計測手段 25 姿勢計測モニタ 25a 係留索方向 26 プリンタ 30 姿勢検出ユニット 31 耐水性容器 32 取付台 33 水中切離装置 34 取付台ベース 35 受座 37 開閉フック 38 水中切離装置制御部 39 吊下げワイヤ 40 指令信号 1 Work Vessel 2 Control Room 3 Installed Items 4 Mooring Hardware 10 Direction Meter 11 Inclinometer 12 Cable 20 Gyro Compass 22 Calibration Means 23 Calibrator Calibration Data 24 Measuring Means 25 Attitude Measurement Monitor 25a Mooring Line Direction 26 Printer 30 Attitude Detection Unit 31 Water resistant container 32 Mounting base 33 Underwater disconnecting device 34 Mounting base 35 Catch 37 Opening / closing hook 38 Underwater disconnecting device control unit 39 Suspension wire 40 Command signal

フロントページの続き (72)発明者 三浦 悟 東京都調布市飛田給2丁目19番1号 鹿 島建設株式会社 技術研究所内 (72)発明者 高瀬 俊二郎 香川県高松市亀井町1番地3 鹿島建設 株式会社 四国支店内 (72)発明者 今藤 久夫 香川県高松市亀井町1番地3 鹿島建設 株式会社 四国支店内 (56)参考文献 特開 昭50−156960(JP,A) 特開 昭56−26213(JP,A) 特開 昭61−193016(JP,A) 特開 昭63−150622(JP,A) 特開 平3−63516(JP,A) 特開 平3−154816(JP,A) 特開 昭55−82908(JP,A) 特公 平4−5095(JP,B2)Front page continuation (72) Inventor Satoru Miura 2-191-1 Tobita, Chofu-shi, Tokyo Kashima Construction Co., Ltd. (72) Inventor Shunjiro Takase 1 Kameicho, Takamatsu-shi, Kagawa 3 Kashima Construction Co., Ltd. In Shikoku Branch (72) Inventor Hisao Imato 1 Kamei-cho, Takamatsu-shi, Kagawa 3 Kashima Construction Co., Ltd. In Shikoku Branch (56) References JP-A-50-156960 (JP, A) JP-A-56-26213 (JP) , A) JP 61-193016 (JP, A) JP 63-150622 (JP, A) JP 3-63516 (JP, A) JP 3-154816 (JP, A) JP 55-82908 (JP, A) Japanese Patent Publication 4-5095 (JP, B2)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 船からの吊下げ操作により水中に所定方
位で設置物を設置する方法において前記設置物上に
位検出と方位信号出力とをする姿勢検出ユニットを遠隔
操作で離脱可能に取付け設置位置に移動した船からほ
ぼ前記所定方位で前記設置物を吊下げ、前記設置物の船
に対する相対角度を固定したまま船のコンパスで船の方
位を測定しながら船の方位を変化させ、前記姿勢検出ユ
ニットの方位信号と前記コンパスの測定値とを比較する
ことにより前記方位信号を較正し、前記較正後に前記固
定を解除したうえで較正後の方位信号により前記設置物
の方位を制御しながら前記設置物を設置し、設置後に前
記姿勢検出ユニットを離脱回収してなる水中設置物の
方法。
1. A predetermined person in water by suspending operation from a ship
In a method of installing an installation object at a position , a posture detection unit for detecting a direction and outputting an azimuth signal is remotely installed on the installation object.
Mounted so that it can be detached by operation, and moved from the ship moved to the installation position.
(B) Suspend the installation in the predetermined direction, and ship the installation.
With a compass of the ship with a fixed relative angle to
While measuring the position to change the orientation of the ship, the posture detection Yu
The azimuth signal is calibrated by comparing the azimuth signal of the knit with the measured value of the compass, and the fixed signal is calibrated after the calibration.
After the setting is released, the installation object is installed while controlling the orientation of the installation object by the azimuth signal after calibration.
Set of underwater installation composed of disengaged recovered the serial attitude detection unit
Location method.
【請求項2】 請求項1の設置方法において、前記姿勢
検出ユニットに傾斜検出と傾斜信号出力とをする機能を
含め、前記較正後の方位信号と前記傾斜信号とにより前
記設置物の方位及び傾斜を制御してなる水中設置物の
方法。
2. The installation method according to claim 1, wherein the posture
A function to detect tilt and output tilt signal to the detection unit
Including , the setting of the underwater installation object that controls the orientation and tilt of the installation object by the azimuth signal after the calibration and the tilt signal.
Location method.
【請求項3】 コンパスを有する船から吊下げ操作によ
り水中に所定方位で設置物を設置する装置において、前
記設置物上に遠隔操作で離脱可能に取付けられ且つ方位
検出と方位信号出力とをする姿勢検出ユニット前記設
置物と船との相対角度を固定可能にしつつ前記設置物を
吊下げる吊下げ手段前記姿勢検出ユニットの方位信号
と前記コンパスの測定値とを比較することにより前記方
位信号を較正する較正手段、及び前記吊下げた設置物の
方位を前記方位信号により制御する制御手段を備えてな
る水中設置物の設置装置。
3. A suspending operation from a ship having a compass.
In a device that installs an
Serial attached detachably remotely on the installed object and azimuth detection and the attitude detection unit for the direction signal output, the setting
While allowing the relative angle between the figurine and the ship to be fixed,
Hanging means for hanging , orientation signal of the attitude detection unit
And a calibration means for calibrating the azimuth signal by comparing the measured value of the compass with the compass , and the suspended installation.
An underwater installation object installation device comprising control means for controlling an azimuth by the azimuth signal .
【請求項4】 請求項設置装置において、前記姿勢
検出ユニットに傾斜検出と傾斜信号出力とをする傾斜計
設け、前記較正後の方位信号と前記傾斜信号とにより
前記設置物の方位及び傾斜を前記制御手段で制御してな
る水中設置物の設置装置。
4. The installation device according to claim 3 , wherein the posture
An inclinometer for the tilt detection and tilt signal output to the detection unit is provided, the orientation signal after the calibration and by said ramp signal
An installation device for an underwater installation , wherein the orientation and inclination of the installation are controlled by the control means .
JP4199448A 1992-07-27 1992-07-27 Installation method and device for underwater installation Expired - Fee Related JP2524455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4199448A JP2524455B2 (en) 1992-07-27 1992-07-27 Installation method and device for underwater installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4199448A JP2524455B2 (en) 1992-07-27 1992-07-27 Installation method and device for underwater installation

Publications (2)

Publication Number Publication Date
JPH0642969A JPH0642969A (en) 1994-02-18
JP2524455B2 true JP2524455B2 (en) 1996-08-14

Family

ID=16407988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4199448A Expired - Fee Related JP2524455B2 (en) 1992-07-27 1992-07-27 Installation method and device for underwater installation

Country Status (1)

Country Link
JP (1) JP2524455B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004021964D1 (en) 2004-03-08 2009-08-20 Pascal Eng Corp LOCKING DEVICE
KR101529654B1 (en) 2013-11-15 2015-06-19 한국지질자원연구원 Coring system considering tilting of coring part and Method of compensating depth of coring part using the same
JP6526395B2 (en) * 2014-07-31 2019-06-05 あおみ建設株式会社 Underwater working apparatus and underwater working method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50156960A (en) * 1974-06-10 1975-12-18
JPS5626213A (en) * 1979-08-10 1981-03-13 Nippon Telegr & Teleph Corp <Ntt> Magnetic declinometer with compensator
JPS61193016A (en) * 1985-02-22 1986-08-27 Automob Antipollut & Saf Res Center Azimuth detecting device
JPS63150622A (en) * 1986-12-15 1988-06-23 Tokyo Keiki Co Ltd Attitude detector
JPH0363516A (en) * 1989-07-31 1991-03-19 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Azimuth detecting device for field working vehicle
JPH03154816A (en) * 1989-11-13 1991-07-02 Alpine Electron Inc Vehicle azimuth arithmetic method
JPH045095A (en) * 1990-04-23 1992-01-09 Canon Inc Bookbinding apparatus

Also Published As

Publication number Publication date
JPH0642969A (en) 1994-02-18

Similar Documents

Publication Publication Date Title
US6842006B2 (en) Marine electromagnetic measurement system
CA1194111A (en) Borehole azimuth determination using magnetic field sensor
KR100732127B1 (en) A buried objects management system by using polar of magnetic markers
US6700835B1 (en) System for subsea diverless metrology and hard-pipe connection of pipelines
EP2690468B1 (en) A streamer for seismic prospection comprising tilt compensation of directional sensors
BRPI0621225A2 (en) A method for determining whether an offshore geological structure of which the approximate geometry and location are known has a resistivity contrast with the surrounding rocks, a vertical component sensing apparatus, and a method for temporarily stabilizing a moving element within of a glove
JP2524455B2 (en) Installation method and device for underwater installation
KR101859569B1 (en) Data Collection System for Submarine Landform and Geographic Information
US4808923A (en) System for calculating the path of a naval vessel
EA010755B1 (en) Wureline subsea metering head and method of use
CN104865955B (en) Marine oil and gas underwater installation adjustment method
KR100376313B1 (en) Inertial and magnetic sensors systems designed for measuring the heading angle with respect to the north terrestrial pole
GB2314419A (en) Determining rotational rate
US4858137A (en) Determination of the stability of floating structures
CN207764252U (en) Floated flow rate of water flow measuring device
KR102356470B1 (en) An underwater drone set capable of tracking the location of the drone body and a method of tracking the location of the drone body using the same
US4580926A (en) Foundation level and orientation tool
CN209640490U (en) A kind of underwater sailing body acoustic-magnatic joint measuring system
NL9102114A (en) METHOD FOR CORRECTING MAGNETIC INTERFERENCE IN EXAMINING BOREHOLES.
JPH11107278A (en) Method and device for pressing in and drawing out pile
KR102220157B1 (en) Information acquisition apparatus for magnetic materials laying underground or underwater installed on a moving vehicle and information obtaining method thereof
CN218297171U (en) Geographic information engineering surveying instrument
JP2019196624A (en) Underwater work support method and underwater work support system
JPH0237826Y2 (en)
JPH0521483B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees