JP2524136Y2 - Combustion chamber of a direct injection diesel engine - Google Patents

Combustion chamber of a direct injection diesel engine

Info

Publication number
JP2524136Y2
JP2524136Y2 JP1989026610U JP2661089U JP2524136Y2 JP 2524136 Y2 JP2524136 Y2 JP 2524136Y2 JP 1989026610 U JP1989026610 U JP 1989026610U JP 2661089 U JP2661089 U JP 2661089U JP 2524136 Y2 JP2524136 Y2 JP 2524136Y2
Authority
JP
Japan
Prior art keywords
wall surface
combustion chamber
fuel
injected fuel
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989026610U
Other languages
Japanese (ja)
Other versions
JPH02118133U (en
Inventor
一郎 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1989026610U priority Critical patent/JP2524136Y2/en
Publication of JPH02118133U publication Critical patent/JPH02118133U/ja
Application granted granted Critical
Publication of JP2524136Y2 publication Critical patent/JP2524136Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、直噴式ディーゼルエンジンの燃焼室に関
し、とくに、燃料噴射ノズルの噴射燃料を、燃焼室の壁
面に衝突、反射させて反射方向に良好な混合気を形成し
燃焼させるタイプの燃焼室の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application field] The present invention relates to a combustion chamber of a direct-injection diesel engine, and in particular, collides and reflects the fuel injected from a fuel injection nozzle with a wall surface of the combustion chamber in a reflection direction. The present invention relates to an improvement in a combustion chamber of a type that forms and burns a good air-fuel mixture.

[従来の技術] 本出願人は、特願昭62−141450号において、燃料衝
突、反射タイプの直噴式ディーゼルエンジンの燃焼室を
提案した。そこでは、燃焼室は、ピストン頂部に形成さ
れた上方に向って開口するキャビティ内に郭成され、該
キャビティ開口部には、半径方向内方に突出し下面がピ
ストン軸芯を含む面内にて凹曲面に形成されたリップ部
が形成されており、この凹曲面が燃料噴射ノズルからの
噴射燃料の噴射燃料衝突壁面とされている。噴射燃料衝
突壁面が凹曲面から成るのでピストンの上下動に伴なっ
て燃料衝突位置が凹曲面に沿って上下に変わり、燃料反
射方向が燃焼室の外周縁部近傍と燃焼室中心近傍との間
にわたって走査的に変化し、反射燃料噴霧が燃焼室を広
い範囲にわたって走査し、良好な混合気形成が可能とな
る。
[Prior Art] The present applicant has proposed in Japanese Patent Application No. 62-141450 a combustion chamber of a fuel collision, reflection type direct injection diesel engine. There, the combustion chamber is defined in an upwardly open cavity formed at the top of the piston, which has a radially inwardly projecting lower surface in a plane containing the piston axis. A lip portion formed on the concave curved surface is formed, and this concave curved surface is used as a fuel injection collision wall surface of the fuel injected from the fuel injection nozzle. Since the injected fuel collision wall surface has a concave curved surface, the fuel collision position changes up and down along the concave curved surface with the vertical movement of the piston, and the fuel reflection direction is between the vicinity of the outer peripheral edge of the combustion chamber and the vicinity of the center of the combustion chamber. And the reflected fuel spray scans the combustion chamber over a wide area, allowing for good mixture formation.

[考案が解決しようとする課題] しかし、従来の燃料室構造は燃焼室軸芯に関して全周
にわたって対称であ、噴射燃料衝突壁面はエンジン低回
転時にもエンジン高回転時にも同じに作用する。
[Problem to be Solved by the Invention] However, the conventional fuel chamber structure is symmetrical over the entire circumference with respect to the combustion chamber axis, and the injected fuel collision wall surface acts the same when the engine is running at a low speed and at a high engine speed.

このため、冷間アイドル運転時に、HC排気量が増大
し、白煙、悪臭が生じるという問題が生じる。冷間アイ
ドル運転時においては、燃焼室内において着火しても、
壁面での冷却によりクエンチ状態となりやすいので、で
きるだけ燃焼室中央部で燃焼を行わせることが望まし
い。しかし、従来技術においては、凹曲面から成る燃料
衝突壁面の作用がいかなる運転時においても不変である
ため、当然、冷間アイドル運転時において燃焼室の外周
縁部の壁面近傍には反射燃料噴霧が供給されてしまい、
上記問題を生じる。
For this reason, at the time of the cold idling operation, there arises a problem that the amount of HC exhaust increases and white smoke and foul odor occur. During cold idle operation, even if ignition occurs in the combustion chamber,
Since quenching is likely to occur due to cooling on the wall surface, it is desirable to burn as much as possible in the center of the combustion chamber. However, in the prior art, since the action of the fuel collision wall composed of the concave curved surface does not change during any operation, the reflected fuel spray is naturally applied to the vicinity of the outer peripheral wall of the combustion chamber during the cold idle operation. Have been supplied,
The above problem occurs.

本考案は、燃料噴霧の燃料反射方向を燃焼室外周近傍
と燃焼室中心との間にわたって走査的に変化させるタイ
プの直噴式ディーゼルエンジンの燃焼室において、冷間
アイドリング時のHC排気量の低減、白煙、悪臭の低減を
はかることを目的とする。
The present invention reduces the amount of HC emissions during cold idling in a combustion chamber of a direct-injection diesel engine of a type in which the fuel reflection direction of fuel spray is changed scanningly between the periphery of the combustion chamber and the center of the combustion chamber. The purpose is to reduce white smoke and odor.

[課題を解決するための手段] 上記目的は、本考案によれば、次の直噴式ディーゼル
エンジンの燃焼室によって達成される。
[Means for Solving the Problems] According to the present invention, the above object is achieved by the following combustion chamber of a direct injection diesel engine.

すなわち、 吸気スワールを有する直噴式ディーゼルエンジンの燃
焼室であって、前記燃焼室はピストン頂部に形成された
上方に向って開口するキャビティ内に郭成され、該キャ
ビティの開口部近傍には半径方向内方に突出し下面がピ
ストン軸芯を含む面内にて凹曲面に形成されたリップ部
が形成されていて該凹凸曲面を燃料噴射ノズルからの噴
射燃料を衝突、反射させる噴射燃料衝突壁面としてお
り、前記キャビタィの奥部は前記噴射燃料衝突壁面より
半径方向外方にえぐられ前記噴射燃料衝突壁面と角部を
介してつなげられた外周壁面とされている直噴式ディー
ゼルエンジンの燃焼室であって、 前記キャビティ奥部の外周壁面は、噴射燃料衝突壁面
のうちエンジン高回転時に噴射燃料が衝突する部分の下
側に、燃料室中心方向になめらかに突出する突出部を有
していることを特徴とする直噴式ディーゼルエンジンの
燃焼室。
That is, a combustion chamber of a direct-injection diesel engine having an intake swirl, the combustion chamber being formed in a cavity formed at the top of the piston and opening upward, and having a radial direction near the opening of the cavity. A lip portion is formed which protrudes inward and whose lower surface is formed in a concave curved surface in a plane including the piston axis, and the concave / convex curved surface is an injection fuel collision wall surface which collides and reflects the fuel injected from the fuel injection nozzle. The interior of the cavity is a combustion chamber of a direct-injection diesel engine that is formed to extend radially outward from the injected fuel collision wall surface and to be an outer peripheral wall connected to the injected fuel collision wall via a corner. The outer peripheral wall surface of the inner part of the cavity is smooth toward the center of the fuel chamber below a portion of the injected fuel collision wall surface where the injected fuel collides during high engine rotation. A combustion chamber of a direct injection diesel engine, characterized in that it has a protrusion protruding.

[作用] 上記燃料室内に吸気スワールがあるため、吸気量が少
なく吸気スワールの弱いエンジン低回転時と吸気量が多
く吸気スワールの強いエンジン高回転時とでは、噴射燃
料の、リップ部の噴射燃料衝突壁面への衝突位置がスワ
ール方向にずれる。すなわち、エンジン低回転時に噴射
燃料が衝突する第1の婦燃料衝突壁面部とエンジン高回
時に噴射燃料が衝突する第2の噴射燃料衝突壁面部とで
は、エンジン高回転時において噴射燃料がスワールに押
されて偏向する量が大きいため、第2の噴射燃料衝突壁
面部の方がスワール方向下流側に位置する。
[Operation] Since there is an intake swirl in the fuel chamber, when the engine is running at a low engine speed where the intake amount is small and the intake swirl is weak, and when the engine is running at a high speed where the intake amount is large and the intake swirl is strong, the injected fuel of the lip portion is injected. The collision position on the collision wall is shifted in the swirl direction. That is, between the first fuel collision wall surface where the injected fuel collides at the time of low engine rotation and the second fuel collision wall surface where the injected fuel collides at the time of high engine rotation, the injected fuel is swirled at the time of high engine rotation. Since the amount of pushing and deflecting is large, the second injected fuel collision wall surface is located on the downstream side in the swirl direction.

一方、キャビティ奥部には、その外周壁面に、第2の
噴射燃料衝突壁面部の下側に突出部があるため、スワー
ルのうちキャビティ奥部の外周壁面近傍の流れには、次
の2種類の流れが存在する。すなわち、突出部のスワー
ル方向上流側から突出部の内周側端部に向って流れ突出
部内周側端部で突出部から一部剥離する、外周側から内
周側へと流れる第1の流れと、突出部の内周側端部から
突出部のスワール方向下流へと突出部壁面に沿って流れ
る、内周側から外周側へと流れる第2の流れと、であ
る。
On the other hand, since the protruding portion of the inner wall of the cavity is located below the wall surface of the second injected fuel collision, the following two types of swirl flow near the outer wall of the inner cavity. Flow exists. That is, the first flow flowing from the outer peripheral side to the inner peripheral side, flowing from the swirl direction upstream side of the protruding part toward the inner peripheral end of the protruding part, and partially separating from the protruding part at the inner peripheral side end of the protruding part. And a second flow flowing from the inner peripheral side to the outer peripheral side from the inner peripheral end of the protruding portion to the swirl direction downstream of the protruding portion along the wall surface of the protruding portion.

エンジン低回転時には、噴射燃料は第1の噴射燃料衝
突壁面部に衝突し、反射されてキャビティ奥部へと向
い、ピストン上下動によって燃焼室外周壁面近傍と燃焼
室中心近傍との間を走査する。第1の噴射燃料衝突壁面
部は第2の噴射燃料衝突壁面部よりスワール方向上流側
にあるから、第1の噴射燃料衝突壁面部で反射された反
射噴霧のうち燃焼室外周壁面近傍に向う噴霧は、キャビ
ティ奥部外周壁面のうち、突出部内周側端部よりスワー
ル方向上流側に流れ、第1の流れにのり、外周側から内
周側へと流れる。このため、過大量の反射燃料噴霧が燃
焼室外周壁面に沿って長い距離流れることはなく、ピス
トンがまだ十分暖機されていない冷間アイドル運転時に
おいても、燃焼室外周壁面でクエンチが生じることが抑
制され、燃焼室中央側に寄せられて良好に燃焼できる。
このため、HC排出量が低減され、白煙、悪臭も低減す
る。
When the engine is running at a low speed, the injected fuel collides with the first injected fuel collision wall surface, is reflected and directed toward the cavity, and scans between the vicinity of the outer peripheral wall surface of the combustion chamber and the vicinity of the center of the combustion chamber by vertical movement of the piston. . Since the first injected fuel collision wall surface portion is located on the swirl upstream side of the second injected fuel collision wall surface portion, of the reflected spray reflected on the first injected fuel collision wall surface portion, the spray directed toward the vicinity of the outer peripheral wall surface of the combustion chamber. Flows in the swirl direction upstream from the inner peripheral side end of the protruding portion of the outer peripheral wall surface of the cavity, and flows along the first flow from the outer peripheral side to the inner peripheral side. For this reason, an excessive amount of the reflected fuel spray does not flow along the outer peripheral wall surface of the combustion chamber for a long distance, and quench occurs on the outer peripheral wall surface of the combustion chamber even during a cold idle operation in which the piston is not sufficiently warmed up yet. Is suppressed, and it is brought to the center side of the combustion chamber, and good combustion can be performed.
For this reason, HC emission is reduced, and white smoke and odor are also reduced.

エンジン高回転時には、噴射燃料は第2の噴射燃料衝
突壁面部に衝突してピストン上下動に伴なって走査的に
反射され、キャビタィ奥部外周壁面近傍へと向かう反射
噴霧は突出部内周側端部近傍に供給される。この燃料反
射噴霧は第2の流れにのるので外周側に流れ、エンジン
高回転時はピストンは十分に暖機されてるので良好に燃
焼でき、かつ外周部の豊富な空気を利用して高い空気利
用率で燃焼され、出力を増大する。
At high engine speeds, the injected fuel collides with the second injected fuel collision wall surface and is reflected in a scanning manner as the piston moves up and down. Is supplied near the section. This fuel reflection spray flows on the outer peripheral side because of the second flow, and when the engine is running at a high speed, the piston is sufficiently warmed up so that good combustion can be performed. It burns at the utilization rate and increases the output.

[実施例] 以下に、本考案に係る直噴式ディーゼルエンジンの燃
焼室の望ましい実施例を、図面を参照して説明する。
Hereinafter, preferred embodiments of the combustion chamber of the direct injection diesel engine according to the present invention will be described with reference to the drawings.

第1図、第2図において、符号10はスワールを有する
直噴式ディーゼルエンジンの燃焼室を示す。燃焼室10
は、ピストン12の頂部に形成された上方に向かって開口
するキャビティ14内に郭成されている。キャビティ14の
開口部近傍には、半径方向内方に突出する環状のリップ
部16が形成され、リップ部16の下面には、ピストン軸芯
を含む面内にて凹曲面に形成された噴射燃料衝突壁面18
が形成されている。燃料噴射ノズル20は燃焼室中央部の
上方に、シリンダヘッドに固定して、設けられ、少なく
とも1個の燃料噴口を有し、それを通して噴射される噴
射燃料22は、ピストン12が上死点又は上死点近傍にある
ときに、噴射燃料衝突壁面18に衝突する。キャビティ14
の奥部24は、噴射燃料衝突壁面18から半径方向に外方に
えぐられて形成されている。キャビティ14の底面は平坦
面である。
1 and 2, reference numeral 10 denotes a combustion chamber of a direct-injection diesel engine having a swirl. Combustion chamber 10
Is defined in a cavity 14 formed at the top of the piston 12 and opening upward. An annular lip 16 is formed in the vicinity of the opening of the cavity 14 so as to protrude inward in the radial direction, and the lower surface of the lip 16 is formed into a concave curved surface within a plane including the piston axis. Collision wall 18
Are formed. The fuel injection nozzle 20 is provided above the center of the combustion chamber and fixed to the cylinder head and has at least one fuel injection port. The injection fuel 22 injected through the fuel injection nozzle 20 is such that the piston 12 has a top dead center or When it is near the top dead center, it collides with the injected fuel collision wall surface 18. Cavity 14
Is formed so as to extend radially outward from the injected fuel collision wall surface 18. The bottom surface of the cavity 14 is a flat surface.

噴射燃料衝突壁面18は凹曲面から成り、ピストン12の
上昇に伴なって噴射燃料22の反射方向が第3図において
22aから22bへと変化し、縦断面方向に、燃焼室内を、外
周側から中心側に向って広い範囲にわたって、走査する
形状に形成されている。また、噴射燃料22の飛行方向
は、第4図に示すように、横断面方向に、吸気スワール
26の存在によって吸気スワールの流れ方向に偏向する。
エンジン低回転時には吸気量が少ないため吸気スワール
26の強さは弱く、エンジン低回転時の噴射燃料22Lの偏
向量は少なくほぼ直進する。エンジン高回転時には吸気
量が多く吸気スワール26の強さが強いので、エンジン高
回転時の噴射燃料22Hの偏向量は大である。噴射燃料衝
突壁面18のうち、エンジン低回転時の噴射燃料22Lが衝
突し反射される部分を第1の噴射燃料衝突壁面部18Lと
定義し、エンジン高回転時の噴射燃料22Hが衝突し反射
される部分を第2の噴射燃料衝突壁面部18Hと定義す
る。第2の噴射燃料衝突壁面部18Hは、第1の噴射燃料
衝突壁面部18Lよりも、スワール方向下流側に位置して
いる。
The injected fuel collision wall surface 18 is formed of a concave curved surface, and the reflected direction of the injected fuel 22 in FIG.
The shape changes from 22a to 22b, and is formed in a shape that scans the combustion chamber over a wide range from the outer peripheral side to the center side in the longitudinal sectional direction. Further, the flight direction of the injected fuel 22 is, as shown in FIG.
The presence of 26 deflects in the flow direction of the intake swirl.
At low engine speed, intake swirl due to small intake volume
The strength of 26 is weak, and the amount of deflection of the injected fuel 22L at low engine speed is small and almost straight ahead. When the engine is running at high speed, the amount of intake air is large and the strength of the intake swirl 26 is strong, so that the amount of deflection of the injected fuel 22H during high engine speed is large. The portion of the injected fuel collision wall surface 18 where the injected fuel 22L at the time of low engine rotation collides and is reflected is defined as a first injected fuel collision wall surface portion 18L, and the injected fuel 22H at the time of high engine rotation collides and is reflected. Is defined as a second injected fuel collision wall surface 18H. The second injected fuel collision wall surface portion 18H is located downstream of the first injected fuel collision wall surface portion 18L in the swirl direction.

キャビティ14の奥部24の外周壁面28は、第2の噴射燃
料衝突壁面部18Hの下側に、燃焼室中心方向になめらか
に突出する突出部30を有しており、突出部30以外のキャ
ビテイ奥部外周壁面部分32は、第1図に示すように、平
面視で、燃焼室中心を中心とする円弧を描く。突出部30
とその他の外周壁面部分32とは、平面視で、なめらかに
接続する。第1の噴射燃料衝突壁面部18Lの下側は、突
出部30の***の始まり部にほぼ対応している。キャビテ
ィ奥部外周壁面28は、第2図の、ピストン軸芯を含む面
で切って見た断面視で見ると、ほぼ半円弧状となってお
り、突出部30は壁面28の半円弧状を燃焼室中心側に変位
させた断面形状となっている。突出部30の内周側端部30
aは、噴射燃料衝突壁面18より半径方向外周側に位置し
ている。キャビテイ14の奥部24の外周壁面28と噴射燃料
衝突壁面18との交わり部は第2図の断面視で角部34を形
成しており、第1図の平面視で燃焼室中心を中心とする
円をえがく。突出部30の内周側端部30aは、この角部34
よりも半径方向外周側にある。
The outer peripheral wall surface 28 of the back portion 24 of the cavity 14 has a protruding portion 30 protruding smoothly toward the center of the combustion chamber below the second injected fuel collision wall surface portion 18H. As shown in FIG. 1, the inner peripheral wall surface portion 32 forms an arc centered on the center of the combustion chamber in plan view. Projection 30
And other outer peripheral wall portions 32 are smoothly connected in plan view. The lower side of the first fuel injection collision wall surface portion 18L substantially corresponds to the start of the protrusion of the projection 30. The cavity outer peripheral wall surface 28 has a substantially semi-arc shape when viewed in a cross-sectional view taken along a plane including the piston axis in FIG. 2, and the protrusion 30 has a semi-circular shape of the wall surface 28. It has a sectional shape displaced toward the center of the combustion chamber. Inner peripheral end 30 of protrusion 30
a is located on the radially outer peripheral side of the injected fuel collision wall surface 18. The intersection of the outer peripheral wall surface 28 of the back part 24 of the cavity 14 and the injected fuel collision wall surface 18 forms a corner 34 in a cross-sectional view of FIG. 2, and is centered on the center of the combustion chamber in a plan view of FIG. Write a circle to do. The inner peripheral end 30a of the protrusion 30 is
More radially outward.

次に、上記実施例の作用について説明する。 Next, the operation of the above embodiment will be described.

第4図に示すように、燃焼室10内には吸気スワール26
が旋回している。この吸気スワール26の強さは、吸気量
の少ない、アイドル運転時を含むエンジン低回転時には
弱く、吸気量の多いエンジン高回転時には強い。燃料噴
射ノズル20はシリンダヘッドに固定されているため、そ
の燃料噴射方向は不変であるが、噴射された燃料は、リ
ップ部16に向けて飛行中に吸気スワール26の強弱によっ
て偏向量が異なる。エンジン低回転時の噴射燃料22Lは
ほぼ直進してリップ部16の第1の噴射燃料衝突壁面部18
Lに衝突し、反射される。エンジン高回転時の噴射燃料2
2Hは相当偏向されて第2の噴射燃料衝突壁面部18Hに衝
突し、反射される。反射燃料は第3図に示すように、ピ
ストン12の上下運動によって、ピストン軸芯を含む面内
において、燃焼室外周壁面近傍(ただし、角部34がある
ので反射燃料は外周壁面28に付着しにくい)から燃焼室
中心近傍までにわたって燃焼室10を走査する。第3図に
おいて、22aはピストン上死点前後の反射燃料を示して
おり、22bはビストン上死点の反射燃料を示している。
噴射燃料衝突壁面18の凹曲面形状を、第1の噴射燃料衝
突壁面部18Lでも、第2の噴射燃料衝突壁面部18Hでも同
じにした場合には、エンジン低回転時にもエンジン高回
転時にも、同じような燃料反射が生じる。ところが、こ
の反射燃料のうちキャビティ14の奥部24の外周壁面28近
傍に向かう反射燃料22aがキャビティ14の奥部24に流れ
たときに、エンジン低回転時とエンジン高回転時とで、
以下に述べる相違が生じる。
As shown in FIG. 4, an intake swirl 26 is provided in the combustion chamber 10.
Is turning. The strength of the intake swirl 26 is weak when the engine is running at a low speed including a small amount of intake air and during idling, and is strong when the engine is running at a high speed with a large amount of intake air. Since the fuel injection nozzle 20 is fixed to the cylinder head, the fuel injection direction is unchanged, but the amount of the injected fuel varies depending on the strength of the intake swirl 26 during flight toward the lip portion 16. When the engine is running at low speed, the injected fuel 22L travels substantially straight and the first injected fuel collision wall portion 18 of the lip portion 16 is moved.
It collides with L and is reflected. Injected fuel at high engine speed 2
2H is considerably deflected, collides with the second injected fuel collision wall surface 18H, and is reflected. As shown in FIG. 3, the reflected fuel adheres to the outer peripheral wall 28 by the vertical movement of the piston 12 in the vicinity of the outer peripheral wall of the combustion chamber in the plane including the axis of the piston. Scans the combustion chamber 10 over the vicinity of the center of the combustion chamber. In FIG. 3, 22a shows the reflected fuel before and after the piston top dead center, and 22b shows the reflected fuel at the piston top dead center.
When the shape of the concave curved surface of the injection fuel collision wall surface 18 is the same for the first injection fuel collision wall surface portion 18L and the second injection fuel collision wall surface portion 18H, both when the engine is running at a low speed and when the engine is running at a high speed, A similar fuel reflection occurs. However, when the reflected fuel 22a of the reflected fuel flowing toward the vicinity of the outer peripheral wall surface 28 of the deep portion 24 of the cavity 14 flows into the deep portion 24 of the cavity 14, when the engine is running at a low speed and when the engine is running at a high speed,
The following differences occur.

キャビティ14の奥部24に旋回している吸気スワール26
のうち、外周壁面28に沿って流れている吸気スワール26
は強いが、この外周壁面28に沿って流れている吸気スワ
ール26には、第4図に示すように、2種類の流れ26a、2
6bが存在する。第1の流れ26aは、突出部30のスワール
方向上流側から突出部30の内周側端部30aに向って流れ
る流れであり、この第1の流れ26aは、その一部が内周
側端部30aで突出部30から剥離する。第1の流れ26aは、
周方向に流れる成分をもつとともに、半径方向に外周側
から内周側に流れる成分をもつ。第2の流れ26bは、突
出部30の内周側端部30aから突出部30のスワール方向下
流側に向って流れる流れであり、この第2の流れ26bは
突出部30の内周側端部30aより下流側の壁面と該壁面に
続く壁面部分32に沿って流れていく。第2の流れ26b
は、周方向に流れる成分をもつとともに、半径方向に内
周側から外周側に流れる成分をもつ。
Intake swirl 26 swirling into back 24 of cavity 14
Of the intake swirl 26 flowing along the outer peripheral wall 28
However, as shown in FIG. 4, two types of flows 26a, 26a
6b exists. The first flow 26a is a flow flowing from the swirl upstream side of the protrusion 30 toward the inner peripheral end 30a of the protrusion 30, and a part of the first flow 26a is an inner peripheral end. Peel off from the protruding part 30 at the part 30a. The first flow 26a is
It has a component flowing in the circumferential direction and a component flowing in the radial direction from the outer peripheral side to the inner peripheral side. The second flow 26b is a flow that flows from the inner peripheral end 30a of the protrusion 30 to the swirl downstream of the protrusion 30. The second flow 26b is an inner peripheral end of the protrusion 30. It flows along a wall surface downstream of 30a and a wall surface portion 32 following the wall surface. Second flow 26b
Has a component flowing in the circumferential direction and a component flowing in the radial direction from the inner peripheral side to the outer peripheral side.

エンジン低回転時に第1の噴射燃料衝突壁面部18Lに
衝突する噴射燃料22Lの反射燃料22aは、突出部30の内周
側端部30aより上流側で供給されるので、上記の第1の
流れ26aにのり、突出部30の内周側端部30aに向って流
れ、(この場合、角部34の存在によって反射燃料が外周
壁面28に付着しにくいので、反射燃料は容易に第1の流
れ26aにのることができる。)外周側から内周側に流れ
て、燃焼室10の中央側に寄せられ、主に燃焼室10の中央
で、比較的濃い状態で良好に燃焼される。したがって、
エンジン低回転時に過大な利用の反射燃料がキャビティ
14奥部24の外周壁面28に付着することはなくなる。これ
は、とくに冷間アイドル運転時に意味を持ち、この燃焼
室10の中央への反射燃料の寄せによって、まだ十分に暖
機されていないピストン12のキャビティ奥部外周壁面28
で付着燃料冷が冷やされクエンチ状態を生じる結果発生
するHC排出量、白煙、悪臭の増大が、著しく低減され
る。
Since the reflected fuel 22a of the injected fuel 22L that collides with the first injected fuel collision wall surface 18L during low engine speed is supplied upstream from the inner peripheral end 30a of the protruding portion 30, the above-described first flow On the 26a, the fuel flows toward the inner peripheral end 30a of the projecting portion 30. (In this case, the reflected fuel is not easily attached to the outer peripheral wall surface 28 due to the presence of the corner portion 34, so that the reflected fuel can easily flow into the first flow. 26a.) It flows from the outer peripheral side to the inner peripheral side, is brought to the center side of the combustion chamber 10, and is favorably burned mainly in the center of the combustion chamber 10 in a relatively dense state. Therefore,
Excessive use of reflected fuel at low engine speed cavity
14 does not adhere to the outer peripheral wall surface 28 of the back portion 24. This is particularly significant during a cold idling operation, and due to the reflection of the reflected fuel toward the center of the combustion chamber 10, the outer peripheral wall surface 28 of the cavity of the piston 12 that has not been sufficiently warmed up yet.
The increase in HC emission, white smoke, and odor resulting from the cooling of the attached fuel and the occurrence of the quench state are significantly reduced.

一方、エンジン高回転時に第2の噴射燃料衝突壁面部
18Hに衝突する噴射燃料22Hの反射燃料22aは、突出部30
の内周側端部30aの直近に供給されるので、上記の第2
の流れ26bにのり(この場合、角部34の存在によって反
射燃料が外周壁面28に付着しにくいので、反射燃料は容
易に第2の流れ26bにのることができる)、突出部30の
内周側端部30aから周方向に離れる方向に、内周側から
外周側に向って流れる。キャビティ14の奥部24の外周壁
面28近傍のうち、突出部30以外の部分の壁面部分32近傍
には、多量の空気が存在するので、エンジン高回転時に
は、この空気を利用して、空気利用率の高い、したがっ
て、高出力の得られる燃焼が行なわれる。エンジン高回
転時には、既にピストン12は十分に暖機されているの
で、キャビティ14の奥部24の外周壁面28に沿って流れて
も、クエンチ状態を起すことはない。
On the other hand, when the engine is running at high speed,
The reflected fuel 22a of the injected fuel 22H colliding with the 18H
Is supplied in the vicinity of the inner peripheral end 30a of the
(In this case, the reflected fuel is not easily adhered to the outer peripheral wall 28 due to the presence of the corners 34, so that the reflected fuel can easily be carried on the second flow 26b). The fluid flows from the inner peripheral side toward the outer peripheral side in a direction away from the peripheral end 30a in the peripheral direction. A large amount of air is present in the vicinity of the wall surface portion 32 other than the protruding portion 30 in the vicinity of the outer peripheral wall surface 28 of the back portion 24 of the cavity 14, so that at the time of high engine rotation, this air is used to utilize the air. Combustion with a high rate and thus a high output is obtained. At the time of high engine rotation, the piston 12 is already sufficiently warmed up, so that even if it flows along the outer peripheral wall surface 28 of the deep portion 24 of the cavity 14, a quench state does not occur.

上記実施例においては、噴射燃料衝突壁面18の凹曲面
形状は、リップ部16の周方向に不変としたが、この凹曲
面形状をリップ部16の周方向に変化させてもよい。変化
させる場合には、第1の噴射燃料衝突壁面部18Lの傾斜
角度を第2の噴射燃料衝突壁面部18Hの傾斜角度より立
てる。この場合にも噴射燃料衝壁面18の下側には、前記
の構成を有する突出部30が設けられなければならない。
第1の噴射燃料衝突壁面部18Lの傾斜角度をより立てる
ことによって、エンジン低回転時の噴射燃料22Lの反射
燃料はより燃焼室中央側へと反射され、前記突出部30に
よる作用と合まって、エンジン低回転時におけるHC排出
量低減効果、白煙、悪臭低減効果が増大される。
In the above embodiment, the shape of the concave curved surface of the injected fuel collision wall surface 18 is not changed in the circumferential direction of the lip portion 16, but the shape of the concave curved surface may be changed in the circumferential direction of the lip portion 16. When changing, the inclination angle of the first injected fuel collision wall surface 18L is set to be higher than the inclination angle of the second injected fuel collision wall surface 18H. In this case as well, the projection 30 having the above configuration must be provided below the injection fuel impingement wall surface 18.
By raising the inclination angle of the first injected fuel collision wall surface portion 18L, the reflected fuel of the injected fuel 22L at the time of low engine rotation is reflected more toward the center of the combustion chamber, and combined with the operation of the projecting portion 30. In addition, the effect of reducing the amount of HC emission, white smoke, and odor at the time of low engine rotation is increased.

[考案の効果] 本考案によれば、噴射燃料衝突壁面とキャビティ奥部
の外周壁面28とを角部34を介してつなげキャビティ14の
奥部24の外周壁面28のうち、エンジン高回転時に噴射燃
料22Hが衝突する第2の噴射燃料衝突壁面部18Hの下側に
燃焼室中心側に向って突出する突出部30を設けたので、
エンジン低回転時の、第1の噴射燃料衝突壁面部18Lに
よる反射燃料のうち、キャビティ14の奥部24の外周壁面
28近傍に反射される反射燃料22aを、突出部30の内周側
端部30aより上流側の壁面に沿う第1の流れ26aにのせて
(この場合、角部34があることによって反射燃料は外周
壁面28に付着しにくく、第1の流れ26aにのりやす
い)、燃焼室中央側に寄せることができる。このため、
エンジン低回転時、特に冷間時アイドル運転時におい
て、反射燃料22aが燃焼室壁面でクエンチ状態を生じる
ことがなくなり、HC排出量を低減でき、白煙、悪臭も低
減することができる。
[Effects of the Invention] According to the present invention, the injection fuel collision wall surface and the outer peripheral wall surface 28 of the cavity deep portion are connected via the corner portion 34, and the outer peripheral wall surface 28 of the deep portion 24 of the cavity 14 is injected at the time of high engine rotation. Since the protruding portion 30 protruding toward the center of the combustion chamber is provided below the second injected fuel collision wall surface portion 18H where the fuel 22H collides,
Of the fuel reflected by the first injected fuel collision wall surface portion 18L when the engine is running at a low speed, the outer peripheral wall surface of the back portion 24 of the cavity 14
The reflected fuel 22a reflected near 28 is placed on the first flow 26a along the wall surface on the upstream side of the inner peripheral end 30a of the projection 30 (in this case, the reflected fuel is It hardly adheres to the outer peripheral wall surface 28 and easily gets on the first flow 26a), and can be moved toward the center of the combustion chamber. For this reason,
When the engine is running at a low speed, particularly during cold idling, the reflected fuel 22a does not quench on the combustion chamber wall surface, so that HC emission can be reduced, and white smoke and odor can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本考案の一実施例に係る直噴式ディーゼルエン
ジンの燃焼室の平面図、 第2図は第1図の燃焼室の断面図、 第3図は燃料反射の状態を示す第2図の燃焼室の半断面
図、 第4図は吸気スワールと該吸気スワールによる噴射燃料
の偏向を示す第1図の燃焼室の平面図、である。 10……燃焼室 12……ピストン 14……キャビテイ 16……リップ部 18……噴射燃料衝突壁面 18L……第1の噴射燃料衝突壁面部 18H……第2の噴射燃料衝突壁面部 20……燃料噴射ノズル 22L……エンジン低回転時の噴射燃料 22H……エンジン高回転時の噴射燃料 22a……ピストン上死点前、後の反射燃料 22b……ピストン上死点の反射燃料 24……キャビテイ14の奥部 26……吸気スワール 26a……第1の流れ 26b……第2の流れ 28……キャビティ14の奥部24の外周壁面 30……突出部 30a……突出部30の内周側端部 32……突出部30以外のキャビティ奥部外周壁面部分 34……角部
1 is a plan view of a combustion chamber of a direct injection diesel engine according to one embodiment of the present invention, FIG. 2 is a cross-sectional view of the combustion chamber of FIG. 1, and FIG. 3 is a view showing a state of fuel reflection. FIG. 4 is a plan view of the combustion chamber of FIG. 1 showing the intake swirl and the deflection of the injected fuel by the intake swirl. 10: Combustion chamber 12: Piston 14: Cavity 16: Lip portion 18: Injected fuel collision wall surface 18L: First injected fuel collision wall surface 18H: Second injection fuel collision wall surface 20: Fuel injection nozzle 22L… Injected fuel at low engine speed 22H… Injected fuel at high engine speed 22a… Reflected fuel before and after piston top dead center 22b …… Reflected fuel at piston top dead center 24… Cavity 14 inner part 26... Intake swirl 26a... First flow 26b... Second flow 28... Outer peripheral wall surface of inner part 24 of cavity 14... Protruding part 30a. End 32: Outside wall of cavity outside the protruding part 30: Corner

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】吸気スワールを有する直噴式ディーゼルエ
ンジンの燃焼室であって、前記燃焼室はピストン頂部に
形成された上方に向って開口するキャビティ内に郭成さ
れ、該キャビティの開口部近傍には半径方向内方に突出
し下面がピストン軸芯を含む面内にて凹曲面に形成され
たリップ部が形成されていて該凹曲面を燃料噴射ノズル
からの噴射燃料を衝突、反射させる噴射燃料衝突壁面と
しており、前記キャビテイの奥部は前記噴射燃料衝突壁
面より半径方向外方にえぐられ前記噴射燃料衝突壁面と
角部を介してつなげられた外周壁面とされている直噴式
ディーゼルエンジンの燃焼室であって、 前記キャビテイ奥部の外周壁面は、噴射燃料衝突壁面の
うちエンジン高回転時に噴射燃料が衝突する部分の下側
に、燃焼室中心方向になめらかに突出する突出部を有し
ていることを特徴とする直噴式ディーゼルエンジンの燃
焼室。
1. A combustion chamber of a direct-injection diesel engine having an intake swirl, wherein the combustion chamber is defined in an upwardly-opening cavity formed at a top of a piston, and is provided near an opening of the cavity. Has a lip portion that projects inward in the radial direction and whose lower surface is formed in a concave curved surface within the plane including the piston axis, and the injected fuel impinges and reflects the injected fuel from the fuel injection nozzle on the concave curved surface. A combustion chamber of a direct-injection diesel engine, wherein the combustion chamber has a wall surface, and a deep portion of the cavity is formed radially outward from the fuel injection collision wall surface and is an outer peripheral wall connected to the fuel injection collision wall surface via a corner. The outer peripheral wall surface of the inner portion of the cavity is smooth toward the center of the combustion chamber below a portion of the injected fuel collision wall surface where the injected fuel collides at the time of high engine rotation. A combustion chamber for a direct-injection diesel engine having a protruding portion.
JP1989026610U 1989-03-10 1989-03-10 Combustion chamber of a direct injection diesel engine Expired - Lifetime JP2524136Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989026610U JP2524136Y2 (en) 1989-03-10 1989-03-10 Combustion chamber of a direct injection diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989026610U JP2524136Y2 (en) 1989-03-10 1989-03-10 Combustion chamber of a direct injection diesel engine

Publications (2)

Publication Number Publication Date
JPH02118133U JPH02118133U (en) 1990-09-21
JP2524136Y2 true JP2524136Y2 (en) 1997-01-29

Family

ID=31248394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989026610U Expired - Lifetime JP2524136Y2 (en) 1989-03-10 1989-03-10 Combustion chamber of a direct injection diesel engine

Country Status (1)

Country Link
JP (1) JP2524136Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960027A (en) * 1982-09-30 1984-04-05 Hino Motors Ltd Combustion chamber of diesel engine

Also Published As

Publication number Publication date
JPH02118133U (en) 1990-09-21

Similar Documents

Publication Publication Date Title
US5813385A (en) Combustion chamber structure having piston cavity
JP2524136Y2 (en) Combustion chamber of a direct injection diesel engine
JP3220192B2 (en) Combustion chamber of internal combustion engine
JPH08270449A (en) Combustion chamber structure for diesel engine
JPH05141246A (en) Piston for direct injection diesel engine
JPH082427Y2 (en) Combustion chamber of direct injection diesel engine
JP2532390Y2 (en) Combustion chamber of a direct injection diesel engine
JP2524133Y2 (en) Combustion chamber of direct injection diesel engine
JP3538916B2 (en) Combustion chamber structure of direct injection engine
JPH0723537Y2 (en) Combustion chamber of direct injection diesel engine
JP2602529Y2 (en) Diesel engine combustion chamber structure
US4532898A (en) Fuel injection type internal combustion engine
JPH08121171A (en) Combustion chamber for direct injection type diesel engine
JPS6329016A (en) Subchamber type diesel combustion chamber
JPS603312Y2 (en) Combustion chamber of direct injection diesel engine
JPS6313386Y2 (en)
JPH036824Y2 (en)
JP2581866Y2 (en) Combustion chamber of direct injection diesel engine
JP2727808B2 (en) Combustion chamber of a direct injection internal combustion engine
JPH0518244A (en) Injection-in-cylinder type internal combustion engine
JPS6019956Y2 (en) Direct injection combustion chamber of diesel engine
JPS5838320A (en) Direct jet type diesel engine
JP2594054B2 (en) Direct injection diesel engine
JP4026406B2 (en) Direct-injection spark ignition internal combustion engine
JPH0143467Y2 (en)