JP2520299B2 - Control method for air-fueled turbo generator - Google Patents

Control method for air-fueled turbo generator

Info

Publication number
JP2520299B2
JP2520299B2 JP1064458A JP6445889A JP2520299B2 JP 2520299 B2 JP2520299 B2 JP 2520299B2 JP 1064458 A JP1064458 A JP 1064458A JP 6445889 A JP6445889 A JP 6445889A JP 2520299 B2 JP2520299 B2 JP 2520299B2
Authority
JP
Japan
Prior art keywords
air
valve
fuel mixture
governor
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1064458A
Other languages
Japanese (ja)
Other versions
JPH02241907A (en
Inventor
澄雄 浜平
俊一郎 福田
明 大井
善宏 山瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP1064458A priority Critical patent/JP2520299B2/en
Publication of JPH02241907A publication Critical patent/JPH02241907A/en
Application granted granted Critical
Publication of JP2520299B2 publication Critical patent/JP2520299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、船舶用の混気式ターボ発電機(混気式タ
ービン発電機ともいう)の制御方法に関するもので、更
に詳しくは混気式タービンの混気弁を制御する方法に関
するものである。
Description: TECHNICAL FIELD The present invention relates to a control method for a mixed-air turbo generator (also referred to as a mixed-turbine generator) for ships, and more specifically, a mixed-air type The present invention relates to a method of controlling a mixture valve of a turbine.

[従来の技術] 混気式ターボ発電機は、単一の高圧蒸気を導入する単
圧タービンと違って、高圧の主蒸気とともにこれよりや
や圧力の低い蒸気(以下、低圧蒸気という)を少なくと
も一段導入して駆動される混気タービンを備えた発電機
である。前記混気タービン、単圧タービンと同様に、船
舶の推進用主機の排ガスエネルギーをエコノマイザで回
収し、その回収熱で蒸気化した蒸気を用いて駆動され
る。しかし、高圧蒸気のほかに低圧蒸気を利用すること
ができるので、単圧タービンに比べて熱回収効率に優
れ、省エネルギー化が図れるという利点がある。なお、
混気タービンにおいては、タービンの回転速度を一定に
制御する調速ガバナ(調速機ともいう)により操作さ
れ、高圧蒸気の導入量を調節するガバナ弁のほかに、低
圧蒸気の導入量を調節する混気弁を備えている。
[Prior Art] Unlike a single-pressure turbine that introduces a single high-pressure steam, a mixed-air turbogenerator generates at least one stage of high-pressure main steam and slightly lower pressure steam (hereinafter referred to as low-pressure steam). It is a generator equipped with an air-fuel mixture turbine that is introduced and driven. Similar to the air-fuel mixture turbine and the single-pressure turbine, the exhaust gas energy of the main propulsion unit of a ship is recovered by an economizer, and driven by using the steam vaporized by the recovered heat. However, since low-pressure steam can be used in addition to high-pressure steam, there are advantages that the heat recovery efficiency is superior and energy saving can be achieved as compared with a single-pressure turbine. In addition,
In an air-fuel mixture turbine, it is operated by a speed governor (also called a speed governor) that controls the turbine rotation speed to a constant level, and in addition to a governor valve that controls the amount of high pressure steam introduced, it also controls the amount of low pressure steam introduced. It is equipped with an air-mixing valve.

前記した主機の排ガスエネルギーによるターボ発電機
だけでは船舶の航海に必要な電力供給が不足する場合も
あるため、通常は、ターボ発電機とともにディーゼル発
電機などの他の発電機を搭載しておき、両方の発電機を
並列運転して電力を供給するというのが一般的である。
The turbo generator using the exhaust gas energy of the main engine described above may not be enough to supply the electric power required for navigation of the ship, so normally, together with the turbo generator, other generators such as a diesel generator are installed. It is common to operate both generators in parallel to supply power.

ところで、混気ターボ発電機では、ガバナ弁とともに
混気弁の開度も制御して低圧蒸気のタービン内への導入
量を調整する必要があるが、混気弁の制御は、従来、前
記ガバナ弁があらかじめ設定された開度(例えば、60
%)まで開放されたときに、ピストン式の混気弁を断続
的に完全開放又は完全閉鎖するいわゆるON−OFF制御し
たり、或はあらかじめ設定された開度でガバナ弁が一定
になるように(第4図参照)、リフト式の混気弁を制御
するという方法が一般的であった。後者の制御方法につ
いて詳しく説明すると、混気弁6(第1図参照)のリフ
ト量(開度)をMとし、ガバナ弁4(第1図参照)のリ
フト量をGとすると、ターボ発電機1(第1図参照)の
出力(負荷)が第4図に示すように一定の値A2になるま
でガバナ弁4のリフト量Gを徐々に増大させた後、ター
ボ発電機1の出力がB2になるまで混気弁6をリフトさせ
て、ガバナ弁4のリフト量Gを一定に保持する。そして
混気弁6のリフト量Mが最大(100%)になったとき
に、ガバナ弁4のリフト量Gを再び増大させるという方
法であった。
By the way, in the air-fuel mixture turbo generator, it is necessary to control the opening amount of the air-fuel mixture valve together with the governor valve to adjust the amount of low-pressure steam introduced into the turbine. The valve has a preset opening (for example, 60
%), The piston type air-fuel mixture valve is intermittently fully opened or closed, so-called ON-OFF control, or the governor valve is kept constant at a preset opening. (See FIG. 4) A general method is to control a lift type air-fuel mixture valve. The latter control method will be described in detail. If the lift amount (opening degree) of the air-fuel mixture valve 6 (see FIG. 1) is M and the lift amount of the governor valve 4 (see FIG. 1) is G, the turbo generator will be described. After gradually increasing the lift amount G of the governor valve 4 until the output (load) of 1 (see FIG. 1) becomes a constant value A2 as shown in FIG. 4, the output of the turbo generator 1 becomes B2. The air-fuel mixture valve 6 is lifted until it becomes, and the lift amount G of the governor valve 4 is kept constant. Then, when the lift amount M of the air-fuel mixture valve 6 becomes maximum (100%), the lift amount G of the governor valve 4 is increased again.

その他の先行技術として、ガバナ弁(蒸気加減弁)の
開度を制御するために、調速ガバナと調圧ガバナとを備
えたターボ発電機に関する発明(特開昭58−186339号)
があるが、これは単圧式タービン発電機に関するもので
ある。
As another prior art, an invention relating to a turbo generator equipped with a speed governor and a pressure governor for controlling the opening of a governor valve (steam control valve) (Japanese Patent Laid-Open No. 58-186339).
There is a single pressure turbine generator.

[発明が解決しようとする課題] しかしながら、上記した従来の制御方法では次のよう
な不都合があった。すなわち、前記混気ターボ発電機と
例えばディーゼル発電機と並列運転する場合に、ディー
ゼル発電機の方は負荷変動(負荷増大)時にある程度回
転数が落ちるようにドループを持たせてあるので、負荷
が増大すると、ディーゼル発電機の出力が僅かに低下す
る。これに対してターボ発電機の方は、前者の場合に
は、負荷が増大した際にピストン式混気弁が開放される
と、タービンの回転数が急激に上がってディーゼル発電
機の負荷がターボ発電機に移り、両者の負荷にアンバラ
ンスを生じる。また後者の場合には、ガバナ弁のリフト
量(開度)が一定に保持されているので、負荷が増大し
てもタービンの回転数がほとんど低下せず、前者と同様
にディーゼル発電機の出力よりも高くなる。このため、
ディーゼル発電機とターボ発電機との負荷分担が不均衡
になるうえに、一旦不均衡が生じると負荷分担の大きい
方(この場合はターボ発電機)に負荷が移って負荷分担
の不均衡が一層増大したり、負荷分担の不均衡に伴って
混気弁が頻繁にハッチングを起したりするという問題点
があった。
[Problems to be Solved by the Invention] However, the conventional control method described above has the following disadvantages. That is, when the air-fuel mixture turbo generator and the diesel generator are operated in parallel, the diesel generator has a droop so that the rotation speed drops to some extent when the load changes (load increases). When increased, the output of the diesel generator will decrease slightly. On the other hand, in the case of the turbo generator, in the former case, when the piston-type air-fuel mixture valve is opened when the load increases, the turbine speed increases rapidly and the load of the diesel generator is turbocharged. Transferred to a generator, causing an imbalance in both loads. Also, in the latter case, the lift amount (opening degree) of the governor valve is kept constant, so even if the load increases, the turbine speed hardly decreases, and the output of the diesel generator is the same as in the former case. Will be higher than. For this reason,
In addition to the unbalanced load sharing between the diesel generator and the turbo generator, once the unbalance occurs, the load is transferred to the one with the larger load sharing (in this case, the turbo generator), and the unbalanced load sharing becomes even greater. There has been a problem that the air-fuel mixture valve increases in number and hatches frequently due to imbalance in load sharing.

この発明は上記の問題点を解消するためになされたも
ので、混気式ターボ発電機を他の発電機と並列運転する
場合に、両発電機の分担電力をあらかじめ設定した分担
割合で安定させることができる、混気式ターボ発電機の
制御方法を提供することを主な目的としている。
The present invention has been made to solve the above problems, and when the air-fuel type turbo generator is operated in parallel with another generator, the shared power of both generators is stabilized at a preset share ratio. The main object of the present invention is to provide a control method for a mixed-air turbogenerator that is capable of controlling.

[課題点を解決するための手段] 上記した目的を達成するためにこの発明の制御方法
は、調速ガバナにより操作されるガバナ弁を介して高圧
蒸気を導入すると共に、混気弁を介して低圧蒸気を導入
することにより駆動される混気タービンを備え、ディー
ゼル発電機などの他の発電機と並列運転させる混気式タ
ーボ発電機の制御方法であって、前記混気弁を、前記混
気タービンがその全出力域で前記他方の発電機のドルー
プに相応するドループ特性をもつように前記ガバナ弁の
開度に対応して開閉させるものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the control method of the present invention introduces high-pressure steam through a governor valve operated by a speed governor, and at the same time, through a mixture valve. A method for controlling a mixed-turbo generator, which comprises a mixed-turbine driven by introducing low-pressure steam, and is operated in parallel with another generator such as a diesel generator, wherein the mixture valve is set to The air turbine is opened and closed according to the opening degree of the governor valve so that the air turbine has a droop characteristic corresponding to the droop of the other generator in the entire output range.

また、前記混気弁を、前記ガバナ弁の開度変化に対し
一次遅れで開閉させることが好ましい。
Further, it is preferable that the air-fuel mixture valve be opened and closed with a primary delay with respect to a change in the opening degree of the governor valve.

さらに、前記混気弁の最大開度を制限することが好ま
しい。
Further, it is preferable to limit the maximum opening of the air-mixing valve.

[作用] 上記した本発明の制御方法によれば、混気タービンの
ガバナ弁の開度に対応して混気タービンがその全出力域
で前記他方の発電機のドループに相応するドループ特性
をもつように(所定の比率で)混気弁の開度が調整され
る。したがって、例えば電力供給量が増えて、他の発電
機とともに混気式ターボ発電機の出力を増大させる必要
があるときには、ガバナ弁の開度が増大し、これに伴っ
て混気弁の開度も増大する。このため、混気式ターボ発
電機(混気タービン)にもこれと並列運転される他の発
電機(駆動装置)と同様に、その全出力域でドループを
もたせることができ、出力増加直後は両発電機ともに一
旦回転数が低下するので、両者の負荷分担に不均衡が生
じず、常に安定する。より具体的に説明すると、例えば
第3図に示すように、混気タービン(第1図)の出力が
ある一定値A1になるまではガバナ弁だけがリフトする
が、その後は混気弁が、ガバナ弁のリフト量(開度)に
対応して一定関数で線図Mのようにリフトし、そして混
気弁の開度があらかじめ設定された開度に達して混気タ
ービンの出力がB1になると、再びガバナ弁だけをリフト
し始め、ガバナ弁が完全開放されると出力がC1になり、
この結果、混気タービンが、これと並列運転される他の
発電機、例えばディーゼル発電機のディーゼル機関(図
示せず)のドループに相応するドループをその全出力域
でもつことができるようになり、例えば供給電力が上が
って出力負荷が増大したときは、その直後にそれらのド
ループ特性により両者ともに一旦回転数が低下すること
になる。
[Operation] According to the control method of the present invention described above, the air-fuel mixture turbine has a droop characteristic corresponding to the droop of the other generator in the entire output region thereof in accordance with the opening degree of the governor valve of the air-fuel mixture turbine. Thus, the opening degree of the mixture valve is adjusted (at a predetermined ratio). Therefore, for example, when the power supply amount increases and it is necessary to increase the output of the air-fuel mixture turbo generator together with other generators, the opening degree of the governor valve increases, and the opening degree of the air-fuel mixture valve increases accordingly. Also increases. For this reason, the mixed-air turbo generator (mixed-turbine) can have droop in its entire output range as well as other generators (driving devices) that are operated in parallel with it, and immediately after the increase in output. Since both generators have their rotational speeds once reduced, there is no imbalance in the load sharing between them and they are always stable. More specifically, for example, as shown in FIG. 3, only the governor valve lifts until the output of the air-fuel mixture turbine (FIG. 1) reaches a certain value A1, but after that, the air-fuel mixture valve It lifts with a constant function as shown in diagram M according to the lift amount (opening) of the governor valve, and the opening of the mixture valve reaches the preset opening, and the output of the mixture turbine becomes B1. Then, again only the governor valve starts to lift, and when the governor valve is fully opened, the output becomes C1,
As a result, the air-fuel mixture turbine can have a droop corresponding to the droop of a diesel engine (not shown) of another generator operated in parallel with it, for example, in its full power range. For example, when the supplied power increases and the output load increases, immediately after that, the rotational speeds of both both temporarily decrease due to their droop characteristics.

また、請求項2記載の制御方法によれば、混気弁はガ
バナ弁の開閉度の変化に即応せず、ガバナ弁の開閉度が
ほぼ安定した状態で開閉度が制御されるため、混気弁及
びガバナ弁の開閉度の変化が小さく抑えられ、それらの
制御が安定する。
Further, according to the control method of the second aspect, the air-fuel mixture valve does not immediately respond to changes in the opening / closing degree of the governor valve, and the opening / closing degree is controlled in a state in which the opening / closing degree of the governor valve is substantially stable. The change in the degree of opening and closing of the valve and governor valve is suppressed to a small level, and their control is stabilized.

さらに、請求項3記載の制御方法によれば、混気弁の
最大開度が制限されているので、低圧蒸気の圧力が比較
的高い場合にも、高圧蒸気の導入量を制御するガバナ弁
により、混気タービンの回転数を正確に制御できる。こ
のようにガバナ弁のリフト量が一定値に達した時点で、
混気弁6のリフト量(開度)が制限され、例えば蒸気圧
が14kg/cm2の場合は最大リフト量(最大開度)を45%
に、蒸気圧が1.85kg/cm2の場合は最大リフト量(最大開
度)を70%にそれぞれ制限される。一方、混気弁の最大
開度を制限しない場合には、混気用の低圧蒸気圧が比較
的高い場合に、混気弁を開度100%まで完全開放する
と、タービンの主駆動源である高圧(主)蒸気の導入量
が逆に制限されることがあり、調速ガバナで操作される
ガバナ弁により高圧蒸気の導入量を制御しても、タービ
ンの回転数を正確に制御できないおそれがあるが、そう
したおそれは解消される。
Further, according to the control method of claim 3, since the maximum opening of the air-fuel mixture valve is limited, even if the pressure of the low-pressure steam is relatively high, the governor valve that controls the introduction amount of the high-pressure steam is used. , It is possible to accurately control the rotation speed of the air-fuel mixture turbine. In this way, when the lift amount of the governor valve reaches a certain value,
The lift amount (opening degree) of the air-fuel mixture valve 6 is limited. For example, when the vapor pressure is 14 kg / cm 2 , the maximum lift amount (maximum opening degree) is 45%.
When the vapor pressure is 1.85 kg / cm 2 , the maximum lift amount (maximum opening) is limited to 70%. On the other hand, when the maximum opening of the air-fuel mixture valve is not limited, when the low-pressure steam pressure for air-fuel mixture is relatively high, the air-fuel mixture valve is fully opened to 100% opening, which is the main drive source of the turbine. Inversely, the amount of high-pressure (main) steam introduced may be limited, and even if the amount of high-pressure steam introduced is controlled by a governor valve operated by a governor governor, the rotational speed of the turbine may not be accurately controlled. Yes, but that fear is gone.

[実施例] 以下、この発明の制御方法の実施例を図面に基づいて
説明する。
[Embodiment] An embodiment of the control method of the present invention will be described below with reference to the drawings.

第1図は本発明の制御方法を実施するための混気式タ
ーボ発電機を備えた制御系統図、第2図は本発明の制御
方法に基づいた制御装置の制御回路を示すブロック図、
第3図は本発明の制御方法によるガバナ弁と混気弁の開
度の相対関係を示す線図である。
FIG. 1 is a control system diagram including a mixed-air turbo generator for implementing the control method of the present invention, and FIG. 2 is a block diagram showing a control circuit of a control device based on the control method of the present invention.
FIG. 3 is a diagram showing a relative relationship between the opening degrees of the governor valve and the air-fuel mixture valve according to the control method of the present invention.

第1図において、混気式ターボ発電機の混気タービン
1は、高圧ドラム(補助ボイラ)2からの高圧蒸気およ
び低圧ドラム3からの低圧蒸気(混気)の導入によって
駆動される。タービン1の一端の高圧蒸気供給口には、
ガバナ弁4が配設されており、このガバナ弁4は、ター
ビン1の回転数を一定に制御する調速ガバナ5によって
操作されその開度が調整される。また、タービン1の中
段の低圧蒸気供給口には、前記低圧蒸気の導入量を調節
するための混気弁6と、緊急時に低圧蒸気の導入を遮断
するための遮断弁6bとが順に配設されている。なお、遮
断弁6bの開閉操作は安全装置11によって行われる。
In FIG. 1, the air-fuel mixture turbine 1 of the air-fuel mixture turbo generator is driven by the introduction of high-pressure steam from a high-pressure drum (auxiliary boiler) 2 and low-pressure steam (air-fuel mixture) from a low-pressure drum 3. At the high pressure steam supply port at one end of the turbine 1,
A governor valve 4 is provided, and the governor valve 4 is operated by a speed governor 5 that controls the rotation speed of the turbine 1 to be constant and the opening thereof is adjusted. Further, a mixture valve 6 for adjusting the introduction amount of the low pressure steam and a shutoff valve 6b for shutting off the introduction of the low pressure steam in an emergency are sequentially arranged at the low pressure steam supply port in the middle stage of the turbine 1. Has been done. The opening / closing operation of the shutoff valve 6b is performed by the safety device 11.

推進用主機(図示せず)から排出される排ガスHの通
路15にエコノマイザEが配備され、エコノマイザEの熱
回収管P1、P2及びP3が、排ガスHの高温側から低温側に
かけて順番に設けられている。熱回収管P2は、前記高圧
ドラム2からの循環路2aの途中に介設され、高圧ドラム
2内の水が循環ポンプ9aにより熱回収管P2に送られ、そ
こで蒸気になって高圧ドラム2に戻される。また同様
に、熱回収管P3は、前記低圧ドラム3からの循環路3aの
途中に介設され、低圧ドラム3内の水が循環ポンプ9bに
より熱回収管P3に送られ、そこで蒸気になって低圧ドラ
ム3に戻される。高圧ドラム2には、高圧蒸気の送給管
10aが接続され、送給管10aの途中から分岐された分岐管
10cの途中に前記熱回収管P1が介設されている。そし
て、その熱回収管P1は、高圧蒸気を更に加熱するスーパ
ーヒーターとして作用し、熱回収管P1により再加熱され
た高圧蒸気が前記ガバナ弁4を介してタービン1に導入
され、タービン1の主駆動源となる。また、低圧ドラム
3には、低圧蒸気の送給管10bが接続され、低圧蒸気が
その送給管10b及びこれの途中から分岐された分岐管6a
を経由し混気弁6を介してタービン1に導入され、ター
ビン1の補助駆動源となる。なお、タービン1に導入す
る前記低圧蒸気は本実施例では1段だけであるが、適宜
複数段設けることができる。
An economizer E is provided in a passage 15 for exhaust gas H discharged from a propulsion main engine (not shown), and heat recovery pipes P1, P2, and P3 of the economizer E are provided in order from a high temperature side to a low temperature side of the exhaust gas H. ing. The heat recovery pipe P2 is provided in the middle of the circulation path 2a from the high-pressure drum 2, and the water in the high-pressure drum 2 is sent to the heat recovery pipe P2 by the circulation pump 9a, and becomes water vapor in the high-pressure drum 2. Will be returned. Similarly, the heat recovery pipe P3 is interposed in the middle of the circulation path 3a from the low pressure drum 3, and the water in the low pressure drum 3 is sent to the heat recovery pipe P3 by the circulation pump 9b, and becomes steam there. It is returned to the low-pressure drum 3. The high-pressure drum 2 has a high-pressure steam supply pipe.
A branch pipe connected to 10a and branched from the middle of the supply pipe 10a
The heat recovery pipe P1 is provided in the middle of 10c. Then, the heat recovery pipe P1 acts as a super heater for further heating the high pressure steam, and the high pressure steam reheated by the heat recovery pipe P1 is introduced into the turbine 1 through the governor valve 4 and the main turbine 1 It becomes a driving source. Further, a low-pressure steam feed pipe 10b is connected to the low-pressure drum 3, and the low-pressure steam feed pipe 10b and a branch pipe 6a branched from the middle thereof.
Is introduced into the turbine 1 via the air-fuel mixture valve 6 and serves as an auxiliary drive source for the turbine 1. The low-pressure steam introduced into the turbine 1 has only one stage in this embodiment, but a plurality of stages may be provided as appropriate.

前記タービン1の他端の蒸気排出口には、コンデンサ
12が接続されており、タービン1内を通過した蒸気がコ
ンデンサ12によって凝縮され、復水してその水がポンプ
13により前記ドラム2及び3に循環される。また前記高
圧蒸気の送給管10aの途中からバックアップ用蒸気の供
給管10dが分岐されており、この供給管10dを経由して高
圧ドラム2から低圧ドラム3の蒸気送給管10bにバック
アップ用蒸気が供給される。なお、供給管10dには、圧
力制御器16により開閉操作される開閉弁17が介装されて
いる。
A condenser is provided at the steam outlet at the other end of the turbine 1.
12 is connected, the steam that has passed through the turbine 1 is condensed by the condenser 12, condensate, and the water is pumped.
It is circulated to the drums 2 and 3 by 13. A backup steam supply pipe 10d is branched from the middle of the high-pressure steam supply pipe 10a. The backup steam is supplied from the high-pressure drum 2 to the steam supply pipe 10b of the low-pressure drum 3 via the supply pipe 10d. Is supplied. An open / close valve 17 that is opened / closed by a pressure controller 16 is interposed in the supply pipe 10d.

7は前記混気弁6を制御するためのシーケンサー又は
マイクロプロセッサーなどの制御装置で、本実施例では
シーケンサー7が本発明の制御方法に基づいた制御を行
う。このため、シーケンサー7からは混気弁6に弁開閉
信号S3が出力されるが、その電気的な弁開閉信号S3がこ
れを空気圧に変換するE/P変換器8を介して空気圧に変
換され、混気弁6の開度が調整されるようになってい
る。一方、シーケンサー7には、前記ガバナ弁4のリフ
ト量(開度)がセンサー4aにより検知され、リフト信号
S1として入力されるようになっている。またその他の制
御情報として、低圧ドラム3から送給される低圧蒸気圧
が、圧力を電気信号に変換するP/E変換器18を介して圧
力信号S2としてシーケンサー7に入力されるほか、主機
の負荷信号、排ガスダンパーDの切替信号、高圧ド
ラム2の燃焼中を示す信号、安全装置11の作動信号
、電力供給の中止信号などが入力される。
Reference numeral 7 is a control device such as a sequencer or a microprocessor for controlling the air-fuel mixture valve 6. In this embodiment, the sequencer 7 performs control based on the control method of the present invention. Therefore, the sequencer 7 outputs the valve opening / closing signal S3 to the air-fuel mixture valve 6, but the electrical valve opening / closing signal S3 is converted into air pressure via the E / P converter 8 which converts this into air pressure. The opening degree of the air-fuel mixture valve 6 is adjusted. On the other hand, in the sequencer 7, the lift amount (opening degree) of the governor valve 4 is detected by the sensor 4a, and the lift signal
It is designed to be input as S1. As other control information, the low-pressure steam pressure sent from the low-pressure drum 3 is input to the sequencer 7 as a pressure signal S2 via the P / E converter 18 that converts the pressure into an electric signal, and also the main engine A load signal, an exhaust gas damper D switching signal, a signal indicating that the high-pressure drum 2 is burning, an operation signal of the safety device 11, a power supply stop signal, and the like are input.

次に、前記シーケンサー7の制御回路を第2図に基づ
いて説明する。
Next, the control circuit of the sequencer 7 will be described with reference to FIG.

図において、ガバナ弁4(第1図)のリフト量をセン
サー4a(第1図)で検知し、その弁4のリフト量に関す
るアナログ信号S1がシーケンサー7に入力されると共
に、混気用低圧蒸気の圧力値を表すアナログ信号S2がシ
ーケンサー7に入力される。またそれらのアナログ信号
S1、S2は、A/D変換器21によりデジタル信号に変換され
る。
In the figure, the lift amount of the governor valve 4 (Fig. 1) is detected by the sensor 4a (Fig. 1), and the analog signal S1 relating to the lift amount of the valve 4 is input to the sequencer 7 and at the same time, low pressure steam for air-fuel mixture is used. The analog signal S2 representing the pressure value of is input to the sequencer 7. Also those analog signals
The S1 and S2 are converted into digital signals by the A / D converter 21.

そして、前記デジタル信号に基づいて、図中の線図K
に示す制御回路22によって、ガバナ弁4のリフト量Gで
一定値X1(例えば、8mm)に達した時点で、混気弁6の
リフトを開始し、ガバナ弁4のリフト量Gに対し所定の
関数(例えば、1.5倍)で混気弁6をリフトさせよとい
う制御信号が出力される。ガバナ弁4のリフト量(開
度)Gに対する混気弁6のリフト量(開度)Mの関数
(比率)は、混気用低圧蒸気の圧力値(4kg/cm2、1.85k
g/cm2)に基づいて線図Kのように設定される。さらに
ガバナ弁4のリフト量Gが一定値X2(例えば、2mm)に
達した時点で、混気弁6のリスト量(開度)Mが制限さ
れ、例えば蒸気圧が4kg/cm2の場合は最大リフト量(最
大開度)を45%に、蒸気圧が1.85kg/cm2の場合は最大リ
フト量(最大開度)を70%にそれぞれ制限される。この
ように混気弁6の最大開度は制限した理由は、混気用の
低圧蒸気圧が比較的高い場合に、混気弁6を開度100%
まで完全開放すると、タービン1の主駆動源である高圧
(主)蒸気の導入量が逆に制限されることがあり、調速
ガバナ5で操作されるガバナ弁4により高圧蒸気の導入
量を制御しても、タービン1の回転数を正確に制御でき
ないおそれがあるからである。
Then, based on the digital signal, the diagram K in the figure
When the lift amount G of the governor valve 4 reaches a constant value X1 (for example, 8 mm), the control circuit 22 shown in FIG. A control signal to lift the mixture valve 6 is output by a function (for example, 1.5 times). The function (ratio) of the lift amount (opening) M of the air-fuel mixture valve 6 to the lift amount (opening) G of the governor valve 4 is the pressure value (4 kg / cm 2 , 1.85 k of the low-pressure steam for air-fuel mixture).
Based on g / cm 2 ), it is set as shown in the diagram K. Furthermore, when the lift amount G of the governor valve 4 reaches a constant value X2 (for example, 2 mm), the list amount (opening) M of the air-fuel mixture valve 6 is limited, and for example, when the vapor pressure is 4 kg / cm 2 . The maximum lift (maximum opening) is limited to 45%, and when the vapor pressure is 1.85 kg / cm 2 , the maximum lift (maximum opening) is limited to 70%. The reason why the maximum opening of the air-fuel mixture valve 6 is limited in this way is that when the low-pressure steam pressure for air-fuel mixture is relatively high, the air-fuel mixture valve 6 is opened at 100%.
When fully opened, the amount of high-pressure (main) steam that is the main drive source of the turbine 1 may be conversely restricted, and the amount of high-pressure steam introduced is controlled by the governor valve 4 operated by the speed governor 5. Even if it does, the rotational speed of the turbine 1 may not be accurately controlled.

また、前記デジタル信号に基づく混気弁6のリフト量
Mの制御は、ガバナ弁4のリフト量Gの変化に即応して
逐次行われるのではなく、図中の線図Lに示す一次遅れ
回路(この一次遅れにより伝達関数は1/Ts+1である)
23を介して制御信号が出力されることにより、やや遅れ
てゆっくりと行われる。なお、本実施例では一次遅れ回
路を使用しているが、P.I.D.制御回路でも同様な制御が
行われる。
Further, the control of the lift amount M of the air-fuel mixture valve 6 based on the digital signal is not performed sequentially in response to the change of the lift amount G of the governor valve 4, but a first-order lag circuit shown in the diagram L in the figure. (The transfer function is 1 / Ts + 1 due to this first-order delay)
The control signal is output via 23, so that the operation is performed with a slight delay. Although the first-order delay circuit is used in this embodiment, the PID control circuit also performs similar control.

上記のような手順で処理されたデジタル制御信号は、
D/A変換器24によりアナログ制御信号(弁開閉信号)S3
に変換されて出力された後、さらに前記E/P変換器8
(第1図)により空気圧に変換され、混気弁6のリフト
量(開度)が制御される。
The digital control signal processed by the above procedure is
Analog control signal (valve opening / closing signal) S3 by D / A converter 24
After being converted into and output to the E / P converter 8
It is converted into air pressure by (FIG. 1) and the lift amount (opening degree) of the air-fuel mixture valve 6 is controlled.

なお、主機負荷が50%以上という信号及び排ガスH
のダンパーDが開放しているという信号以外の信号が
入力された場合であって高圧ドラム2(第1図)の蒸気
圧が7kg/cm2以上の信号が入力されたとき、安全装置1
1(第1図)が作動中の信号が入力されたとき、或は
電力供給中止の信号が入力されたときは、混気弁6を
閉鎖せよという制御信号が出力される。
The signal that the main engine load is 50% or more and the exhaust gas H
When a signal other than the signal that the damper D is open is input and a signal with the vapor pressure of the high-pressure drum 2 (Fig. 1) of 7 kg / cm 2 or more is input, the safety device 1
When the signal of 1 (FIG. 1) in operation is input or the signal of power supply stop is input, the control signal for closing the air-fuel mixture valve 6 is output.

したがって、前記混気弁6は、上記したシーケンサー
7によって第3図に示すように制御される。なお、その
制御態様を分かり易くするために第4図に示した従来例
と対比されて説明する。すなわち、従来の制御方法で
は、第4図のように混気タービン1(第1図)の出力
(負荷)が一定値A2になるまでガバナ弁4(第1図)が
開放された後は、混気弁6が完全開放されるまでリフト
し始めてガバナ弁4の開度は一定に保たれるように制御
されていたことは上記したとおりである。これに対し、
本発明の制御方法では、第3図に示すように混気タービ
ン1(第1図)の出力がある一定値A1になるまでガバナ
弁4だけがリフトするが、その後は混気弁6が、ガバナ
弁4のリフト量(開度)Gに対応して一定関数で線図M
のようにリフトする。そして、混気弁6の開度があらか
じめ設定された開度に達して混気タービン1の出力がB1
になると、再びガバナ弁4だけがリフトし始め、ガバナ
弁4が完全開放されると出力がC1になる。この結果、混
気タービン1が、これと並列運転される他の発電機、例
えばディーゼル発電機のディーゼル機関(図示せず)の
ドループに相応するドループをその全出力域でもつこと
ができるようになり、例えば供給電力が上がって出力負
荷が増大したときは、その直後にそれらのドループ特性
により両者ともに一旦回転数が低下することになるの
で、両者の負荷分担に不均衡が生じず、常に負荷分担が
安定する。なお、上記実施例では、混気弁4が1つの場
合について説明したが、本発明に制御方法は、混気弁4
を複数設けて圧力の異なる混気(低圧蒸気)をタービン
1に多段的に導入する場合にも同様に実施できる。
Therefore, the mixture valve 6 is controlled by the sequencer 7 as shown in FIG. The control mode will be described in comparison with the conventional example shown in FIG. 4 in order to make it easy to understand. That is, in the conventional control method, after the governor valve 4 (Fig. 1) is opened until the output (load) of the air-fuel mixture turbine 1 (Fig. 1) reaches a constant value A2 as shown in Fig. 4, As described above, the air-fuel mixture valve 6 is controlled to be lifted until it is completely opened and the opening degree of the governor valve 4 is kept constant. In contrast,
In the control method of the present invention, as shown in FIG. 3, only the governor valve 4 lifts until the output of the air-fuel mixture turbine 1 (FIG. 1) reaches a certain value A1, but thereafter, the air-fuel mixture valve 6 A diagram M with a constant function corresponding to the lift amount (opening) G of the governor valve 4.
To lift. Then, the opening of the air-fuel mixture valve 6 reaches a preset opening, and the output of the air-fuel mixture turbine 1 becomes B1.
Then, only the governor valve 4 starts to lift again, and when the governor valve 4 is completely opened, the output becomes C1. As a result, the air-fuel mixture turbine 1 can have a droop corresponding to the droop of another generator, for example, a diesel engine (not shown) of a diesel generator, in its entire output range. For example, when the supply power rises and the output load increases, immediately after that, both of them drastically decrease the rotation speed due to their droop characteristics. Sharing is stable. It should be noted that, in the above-described embodiment, the case where the number of the air-mixing valve 4 is one has been described, but the control method according to the present invention is not limited to this.
The same can be applied to a case where a plurality of gas turbines are provided and the mixed air (low-pressure steam) having different pressures is introduced into the turbine 1 in multiple stages.

[発明の効果] 以上説明したことから明らかなように、この発明の制
御方法は下記の効果を奏する。
[Effects of the Invention] As is apparent from the above description, the control method of the present invention has the following effects.

(1)混気式ターボ発電機にもこれと並列運転される他
の発電機と同様に、その全出力域でドループをもたせる
ことができ、両発電機の負荷分担に不均衡が生じず、負
荷分担が常に安定し、混気弁のハッチングも防止でき
る。
(1) Like the other generators that are operated in parallel with the air-fueled turbo generator, it is possible to have droop in the entire output range, and there is no imbalance in the load sharing of both generators. The load sharing is always stable and it is possible to prevent hatching of the air-fuel mixture valve.

(2)請求項2記載の制御方法によれば、混気弁はガバ
ナ弁の開閉度の変化に即応せず、やや遅れてゆっくりと
その開度が制御されるため、混気弁及びガバナ弁の開度
の変化が小さく抑えられ、それらの制御が安定する。ま
たこのことにより、制御回路が簡単になり、マイクロプ
ロセッサーよりも安価なシーケンサーを使用できるよう
になった。
(2) According to the control method of claim 2, since the air-fuel mixture valve does not immediately respond to changes in the opening / closing degree of the governor valve, and its opening degree is slowly controlled with a slight delay, the air-fuel mixture valve and the governor valve. The change in the opening of is suppressed to be small, and their control is stabilized. It also simplifies the control circuitry and allows the use of cheaper sequencers than microprocessors.

(3)請求項3記載の制御方法によれば、混気弁の最大
開度が制限されているので、混気用の低圧蒸気に圧力が
比較的高い蒸気を用いても、高圧蒸気の導入量を制御す
るガバナ弁により、混気タービンの回転数を正確に制御
できる。また混気用蒸気に比較的圧力の高い蒸気を使用
できるので、排ガスエコノマイザーの熱回収管の低温腐
食を防止できる。
(3) According to the control method of the third aspect, since the maximum opening of the air-fuel mixture valve is limited, the introduction of the high-pressure steam is performed even if the relatively low pressure steam is used as the low-pressure steam for air-fuel mixture. The governor valve that controls the amount allows the rotational speed of the mixed-air turbine to be accurately controlled. Further, since steam with relatively high pressure can be used as the steam for air-fuel mixture, low temperature corrosion of the heat recovery pipe of the exhaust gas economizer can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の制御方法を実施するための混気式ター
ボ発電機を備えた制御系統図、第2図は本発明の制御方
法に基づいた制御装置の制御回路を示すブロック図、第
3図は本発明の制御方法によるガバナ弁と混気弁の開度
の相対関係を示す線図である。第4図は第3図に対応す
る従来例の線図である。 1……混気タービン、2……高圧ドラム、3……低圧ド
ラム、4……ガバナ弁、5……調速ガバナ、6……混気
弁、7……シーケンサー、8……E/P変換器。
FIG. 1 is a control system diagram including a mixed-air turbo generator for implementing the control method of the present invention, and FIG. 2 is a block diagram showing a control circuit of a control device based on the control method of the present invention. FIG. 3 is a diagram showing a relative relationship between the opening degrees of the governor valve and the air-fuel mixture valve according to the control method of the present invention. FIG. 4 is a diagram of a conventional example corresponding to FIG. 1 ... Mixing turbine, 2 ... High pressure drum, 3 ... Low pressure drum, 4 ... Governor valve, 5 ... Speed governor, 6 ... Mixing valve, 7 ... Sequencer, 8 ... E / P converter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山瀬 善宏 香川県坂出市川崎町1番地 川崎重工業 株式会社坂出工場内 (56)参考文献 特開 昭61−40404(JP,A) 特開 昭61−116006(JP,A) 実開 昭64−11304(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoshihiro Yamase 1 Kawasaki-cho, Sakaide-shi, Kagawa Kawasaki Heavy Industries, Ltd. Sakaide factory (56) Reference JP-A-61-40404 (JP, A) JP-A-61-40 116006 (JP, A) Actually opened Sho 64-11304 (JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】調速ガバナにより操作されるガバナ弁を介
して高圧蒸気を導入すると共に、混気弁を介して低圧蒸
気を導入することにより駆動される混気タービンを備
え、ディーゼル発電機などの他の発電機と並列運転され
る混気式ターボ発電機の制御方法であって、 前記混気弁を、前記混気タービンがその全出力域で前記
他方の発電機のドループに相応するドループ特性をもつ
ように前記ガバナ弁の開度に対応して開閉させることを
特徴とする混気式ターボ発電機の制御方法。
1. A diesel generator, etc., comprising a mixture turbine driven by introducing high pressure steam via a governor valve operated by a governor governor and introducing low pressure steam via a mixture valve. A method for controlling an air-fuel mixture turbo-generator that is operated in parallel with another generator, wherein the air-fuel mixture valve has a droop corresponding to the droop of the other generator in its entire output range. A method for controlling a mixed-air turbogenerator, which is opened / closed in accordance with the opening degree of the governor valve so as to have characteristics.
【請求項2】前記混気弁を、前記ガバナ弁の開度変化に
対し一次遅れで開閉させる請求項1記載の混気式ターボ
発電機の制御方法。
2. The method of controlling a mixed-air turbo generator according to claim 1, wherein the mixed-air valve is opened and closed with a first-order lag with respect to a change in the opening degree of the governor valve.
【請求項3】前記混気弁の最大開度を制限した請求項1
又は2記載の混気式ターボ発電機の制御方法。
3. The maximum opening of the mixture valve is limited.
Alternatively, the method of controlling the mixed-air turbo generator according to the item 2.
JP1064458A 1989-03-15 1989-03-15 Control method for air-fueled turbo generator Expired - Lifetime JP2520299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1064458A JP2520299B2 (en) 1989-03-15 1989-03-15 Control method for air-fueled turbo generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1064458A JP2520299B2 (en) 1989-03-15 1989-03-15 Control method for air-fueled turbo generator

Publications (2)

Publication Number Publication Date
JPH02241907A JPH02241907A (en) 1990-09-26
JP2520299B2 true JP2520299B2 (en) 1996-07-31

Family

ID=13258818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1064458A Expired - Lifetime JP2520299B2 (en) 1989-03-15 1989-03-15 Control method for air-fueled turbo generator

Country Status (1)

Country Link
JP (1) JP2520299B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140404A (en) * 1984-07-31 1986-02-26 Kawasaki Heavy Ind Ltd Controlling method for mixture turbine
JPS61116006A (en) * 1984-11-12 1986-06-03 Ishikawajima Harima Heavy Ind Co Ltd Mixed pressure turbine
JPS6411304U (en) * 1987-07-08 1989-01-20

Also Published As

Publication number Publication date
JPH02241907A (en) 1990-09-26

Similar Documents

Publication Publication Date Title
US5203160A (en) Combined generating plant and its start-up control device and start-up control method
US5361585A (en) Steam turbine split forward flow
US5042246A (en) Control system for single shaft combined cycle gas and steam turbine unit
EP0236959B1 (en) Method for starting thermal power plant
US5784888A (en) Method and apparatus of conversion of a reheat steam turbine power plant to a no-reheat combined cycle power plant
US4854121A (en) Combined cycle power plant capable of controlling water level in boiler drum of power plant
JPS6240526B2 (en)
US4274256A (en) Turbine power plant with back pressure turbine
US20050225302A1 (en) Generator system and method for operating such a system
EP0902168B1 (en) Method and arrangement for a combi power plant
GB2313454A (en) Regulating pressure in the intake duct of an internal combustion engine
JP2520299B2 (en) Control method for air-fueled turbo generator
JPH086563B2 (en) Control method for two-stage air-fuel turbo generator
JPH0337304A (en) Start of steam turbine generation plant provided with turbine bypass device
JP3680329B2 (en) Method for controlling power generator
JPS6234598B2 (en)
US4338789A (en) Method of varying turbine output of a supercritical-pressure steam generator-turbine installation
JPH0734810A (en) Method for starting of single-shaft type combined cycle generating equipment
JPS60249609A (en) Load control device in combined cycle power plant
JPS6239653B2 (en)
JPH0586810A (en) Load control method for composite power generating plant and device therefor
JP3010086B2 (en) Cogeneration power plant
JPS60228711A (en) Turbine bypass control device for combined cycle electric power plant
JP2956066B2 (en) Generator control method
JPS59131710A (en) Control device for marine turbo generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

EXPY Cancellation because of completion of term