JP2518771B2 - Non-aqueous secondary battery and negative electrode material for non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery and negative electrode material for non-aqueous secondary battery

Info

Publication number
JP2518771B2
JP2518771B2 JP4170236A JP17023692A JP2518771B2 JP 2518771 B2 JP2518771 B2 JP 2518771B2 JP 4170236 A JP4170236 A JP 4170236A JP 17023692 A JP17023692 A JP 17023692A JP 2518771 B2 JP2518771 B2 JP 2518771B2
Authority
JP
Japan
Prior art keywords
coke
surface area
secondary battery
specific surface
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4170236A
Other languages
Japanese (ja)
Other versions
JPH06187987A (en
Inventor
政喜 藤井
隆功 中川
浩司 上野
正久 藤本
宣之 好永
晃治 西尾
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Koa Oil Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Oil Co Ltd, Sanyo Denki Co Ltd filed Critical Koa Oil Co Ltd
Priority to JP4170236A priority Critical patent/JP2518771B2/en
Publication of JPH06187987A publication Critical patent/JPH06187987A/en
Application granted granted Critical
Publication of JP2518771B2 publication Critical patent/JP2518771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水系二次電池及び非
水系二次電池用負極材料に係わり、詳しくは負極材料と
してコークスを使用した非水系二次電池の当該コークス
の改良に関する。
The present invention relates to a non-aqueous secondary battery and a non -aqueous secondary battery.
The present invention relates to a negative electrode material for a water-based secondary battery, and more specifically, to improvement of the coke in a non-aqueous secondary battery using coke as a negative electrode material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
非水系二次電池の負極材料として、コークスが、可撓性
に優れること、モッシー状のリチウムが電析するおそれ
がないことなどの理由から、従来のリチウム金属に代わ
る材料として提案されている。
2. Description of the Related Art
As a negative electrode material for a non-aqueous secondary battery, coke has been proposed as a material that replaces conventional lithium metal because of its excellent flexibility and the fact that mossy lithium is not likely to be electrodeposited.

【0003】コークスは、非水系二次電池において、充
電時に細孔内や層間にリチウムを吸蔵し、放電時にその
吸蔵したリチウムを放出するところの、いわば充放電時
のリチウムイオン授受のための負極側ホストとして機能
するものである。
In a non-aqueous secondary battery, coke occludes lithium in the pores or between layers during charging and releases the occluded lithium during discharging, so to speak, a negative electrode for giving and receiving lithium ions during charging and discharging. It functions as the host on the side.

【0004】しかしながら、コークスの単位重量当たり
の容量は、ピッチコークス等の石油系コークスであるか
石炭系コークスであるかを問わず、通常150〜200
mAh/g程度であり、充電間隔の長期化が求められて
いる非水系二次電池の負極材料としては未だ充分な容量
を有するものとは言い難い。
However, the capacity per unit weight of coke is usually 150 to 200, regardless of whether it is petroleum-based coke such as pitch coke or coal-based coke.
It is about mAh / g, and it is hard to say that it has a sufficient capacity as a negative electrode material for a non-aqueous secondary battery in which a long charging interval is required.

【0005】そこで、鋭意研究した結果、本発明者ら
は、コークスの容量とその比表面積及びX線回折パラメ
ータd002 (X線回折における格子面(002)面のd
値)との間に、密接な関係が存在することを見出した。
Then, as a result of intensive studies, the present inventors have found that the capacity of the coke and its specific surface area and the X-ray diffraction parameter d 002 (d of the lattice plane (002) plane in X-ray diffraction).
It has been found that there is a close relationship with (value).

【0006】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、電池容量の大き
い非水系二次電池及びそれに使用される非水系二次電池
用負極材料を提供するにある。
The present invention was made on the basis of such findings, and an object of the present invention is to provide a non-aqueous secondary battery having a large battery capacity and a non-aqueous secondary battery used therein.
To provide a negative electrode material for use .

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系二次電池(以下「本発明電池」と
称する。)は、負極材料として、BET法による比表面
積が100m/g以上であり、且つ、X線回折パラメ
ータd002が3.37Å以上であるコークスが使用さ
れてなる。また、本発明に係る非水系二次電池用負極材
料は、BET法による比表面積が100m /g以上で
あり、且つ、X線回折パラメータd 002 が3.37Å
以上、Lcが600Å以下のコークスからなる。
A non-aqueous secondary battery according to the present invention (hereinafter referred to as "the present battery") for achieving the above object has a specific surface area of 100 m 2 by a BET method as a negative electrode material. Coke having an X-ray diffraction parameter d 002 of 3.37 Å or more is used. Further, the negative electrode material for a non-aqueous secondary battery according to the present invention
The material has a BET specific surface area of 100 m 2 / g or more.
Yes , and the X-ray diffraction parameter d 002 is 3.37Å
As described above, the coke has Lc of 600 Å or less.

【0008】上記BET(Brunauer-Emmett-Teller)法
とは、吸着等温線上で単分子層吸着量を求め、吸着分子
の断面積から表面積を決定して比表面積を算出する方法
である。
The BET (Brunauer-Emmett-Teller) method is a method of calculating the specific surface area by determining the adsorption amount of the monolayer on the adsorption isotherm and determining the surface area from the cross-sectional area of the adsorbed molecule.

【0009】本発明電池において、コークスのBET法
による比表面積が100m2 /g以上であり、且つ、X
線回折パラメータd002 が3.37Å以上に限定される
のは、後述する実施例に示すように、コークスの比表面
積が100m2 /g未満、又は、X線回折パラメータd
002 が3.37Å未満の場合は、容量が小さく、このた
め電池容量の大きい非水系二次電池が得られないからで
ある。また、さらにX線回折パラメータLc(X線回折
におけるc軸方向の結晶子の大きさ)が600Å以下の
ものが好ましい。
In the battery of the present invention, the specific surface area of coke by the BET method is 100 m 2 / g or more, and X
The line diffraction parameter d 002 is limited to 3.37 Å or more because the specific surface area of coke is less than 100 m 2 / g, or the X-ray diffraction parameter d is
This is because when 002 is less than 3.37Å, the capacity is so small that a non-aqueous secondary battery having a large battery capacity cannot be obtained. Further, it is preferable that the X-ray diffraction parameter Lc (size of crystallite in the c-axis direction in X-ray diffraction) is 600 Å or less.

【0010】通常のコークスの容量が小さい主な理由は
次の通りである。すなわち、コークスはその製造工程の
一つであるか焼工程において原料たる易黒鉛化炭素材料
をロータリーキルンにて1200〜1400°Cの温度
でか焼することにより作製されているが、か焼の際に炭
化水素(タール)が発生し、この炭化水素がコークスの
微小な細孔を閉塞してしまうため、充電時のリチウムイ
オンの細孔内への侵入が困難となりリチウム吸蔵放出量
が減少してしまうからである。因みに、生コークスの比
表面積は通常数十m2 /g程度である。
The main reasons why the capacity of ordinary coke is small are as follows. That is, coke is produced by calcining a graphitizable carbon material as a raw material in a calcination step, which is one of the manufacturing steps, in a rotary kiln at a temperature of 1200 to 1400 ° C. Hydrocarbons (tar) are generated in the pores, and these hydrocarbons block the minute pores of the coke, which makes it difficult for lithium ions to enter the pores during charging, reducing the amount of lithium storage and release. Because it will be. Incidentally, the specific surface area of raw coke is usually about several tens m 2 / g.

【0011】本発明における高比表面積のコークスは、
たとえば活性炭の製造法としては既に公知である賦活処
理と同様の操作をコークスに施して細孔を閉塞している
炭化水素を酸化除去することにより得られる。なお、賦
活処理なる用語は、一般に活性炭の吸着能を高めるため
に細孔内面積を大きくする場合の操作をいうが、本明細
書では、同用語を、活性炭の賦活処理と同様の操作をコ
ークスの比表面積の増大化のために行うことを言うもの
と定義する。
The high specific surface area coke in the present invention is
For example, as a method for producing activated carbon, the coke is subjected to the same operation as the already known activation treatment to oxidize and remove the hydrocarbon blocking the pores. Incidentally, the term activation treatment generally refers to an operation in the case of increasing the pore internal area in order to increase the adsorption capacity of activated carbon, but in the present specification, the term is the same operation as activated carbon activation coke. It is defined as what is done to increase the specific surface area of.

【0012】賦活処理法により高比表面積のコークスを
製造する際の出発原料たる上記易黒鉛化炭素材料として
は、ピッチ類を加熱処理することにより得られる炭素質
メソフェースや、生コークスが好適である。
As the above-mentioned graphitizable carbon material which is a starting material for producing a coke having a high specific surface area by an activation treatment method, carbonaceous mesophase obtained by heat-treating pitches and raw coke are suitable. .

【0013】ところで、活性炭の賦活処理法には、大別
して、水蒸気、二酸化炭素、酸素、空気、塩素、二酸化
硫黄などのガスを使用するガス賦活法と、水酸化カリウ
ム、炭酸カリウム、塩化カルシウム、硫化カリウム、塩
化亜鉛、燐酸、燐酸塩などの薬品を原料に含浸させる薬
品賦活法とがあるが、本発明における比表面積の大きい
コークスを得るためには、これらいずれの方法をも使用
することができる。しかし、ガス賦活法の一種である水
蒸気を使用する賦活法が簡便さの点で有利である。
The activated carbon activation treatment methods are roughly classified into gas activation methods using gases such as water vapor, carbon dioxide, oxygen, air, chlorine and sulfur dioxide, and potassium hydroxide, potassium carbonate, calcium chloride, There is a chemical activation method in which a raw material is impregnated with a chemical such as potassium sulfide, zinc chloride, phosphoric acid, or a phosphate, but in order to obtain coke having a large specific surface area in the present invention, any of these methods can be used. it can. However, the activation method using water vapor, which is one of the gas activation methods, is advantageous in terms of simplicity.

【0014】コークスを賦活処理する際の賦活温度は、
賦活法により異なる。たとえば、水蒸気によるガス賦活
法においては、通常700〜1100°Cの温度に加熱
して行う。700°C未満の場合は、炭化水素と水蒸気
との反応が進行せず、また1100°Cを越えた場合
は、加熱設備、加熱源などがコスト高となり、不経済で
ある。また、薬品賦活法の場合は、使用する薬品によっ
ても異なるが、通常400〜1000°Cの温度に加熱
して行う。
The activation temperature for activating the coke is
It depends on the activation method. For example, in the gas activation method using steam, heating is usually performed at a temperature of 700 to 1100 ° C. If the temperature is lower than 700 ° C, the reaction between hydrocarbon and water vapor does not proceed, and if the temperature exceeds 1100 ° C, the cost of heating equipment, heating source, etc. becomes high, which is uneconomical. In the case of the chemical activation method, it is usually heated to a temperature of 400 to 1000 ° C, though it depends on the chemical used.

【0015】コークスを賦活処理する際の反応時間は、
活性炭の賦活処理時間に比し短くて済み、通常30分〜
2時間程度である。
The reaction time when activating the coke is
Shorter than activated carbon activation time, usually 30 minutes
It takes about 2 hours.

【0016】賦活処理により得た高比表面積のコークス
に、負極材料として、さらに好適な物性を付与するため
に、必要に応じて、これを不活性ガス雰囲気下で焼成し
てもよい。しかし、焼成すると、結晶性が高くなるため
組織に収縮が起こり、その結果比表面積がかなり小さく
なる。したがって、賦活処理後にさらに焼成を施す場合
は、その焼成により比表面積が小さくなる分を見込ん
で、賦活処理後の比表面積を予め大きくしておくことが
必要となる。
If necessary, the coke having a high specific surface area obtained by the activation treatment may be fired in an inert gas atmosphere in order to impart more suitable physical properties as a negative electrode material. However, upon firing, the crystallinity increases and the structure contracts, resulting in a considerably small specific surface area. Therefore, when further firing is performed after the activation treatment, it is necessary to increase the specific surface area after the activation treatment in advance in consideration of the decrease in the specific surface area due to the firing.

【0017】本発明電池における負極は、上記した比表
面積及びd002 の大きいコークスを負極材料として使用
し、たとえばこれをポリテトラフルオロエチレン(PT
FE)、ポリフッ化ビニリデン(PVdF)等の結着剤
と混合して負極合剤とした後、所定の圧力で加圧成型す
ることにより作製される。必要に応じて、アセチレンブ
ラック、カーボンブラック等の導電剤を添加してもよ
い。
The negative electrode in the battery of the present invention uses the above-mentioned coke having a large specific surface area and large d 002 as a negative electrode material. For example, this is made of polytetrafluoroethylene (PT).
FE), polyvinylidene fluoride (PVdF) or the like is mixed with a binder to form a negative electrode mixture, and then the mixture is produced by pressure molding at a predetermined pressure. If necessary, a conductive agent such as acetylene black or carbon black may be added.

【0018】本発明電池は、このように負極材料とし
て、比表面積及びd002 の大きいコークスを使用した点
に特徴を有するものであり、正極材料、非水系電解質、
セパレータ(液体電解質を使用する場合)などの電池を
構成する他の部材については、従来非水系二次電池用と
して実用され、或いは提案されている種々の材料を使用
することが可能である。
The battery of the present invention is characterized in that coke having a large specific surface area and large d 002 is used as the negative electrode material in this manner. The positive electrode material, the non-aqueous electrolyte,
For the other members constituting the battery such as the separator (when the liquid electrolyte is used), various materials that have been practically used or proposed for the conventional non-aqueous secondary battery can be used.

【0019】[0019]

【作用】本発明電池においては、比表面積及びd002
それぞれ特定値以上であるコークスが負極材料として使
用されているので、充放電時における負極のリチウム吸
蔵放出可能な量が多くなる。
In the battery of the present invention, since the coke having a specific surface area and d 002 that are equal to or more than the specific values is used as the negative electrode material, the amount of lithium that can be stored and released in the negative electrode during charging and discharging increases.

【0020】[0020]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0021】(製造例1)ディレードコーカー法で得た
石油系生コークス(元素組成;C:95.1重量%、
H:3.1重量%、N:0.6重量%)を粒子径0.3
5mm以下に粉砕し、この粉末250gと水酸化カリウ
ム(試薬特級)1250gとを、2リットルのステンレ
ス製容器中で充分に攪拌混合した。
Production Example 1 Petroleum raw coke obtained by the delayed coker method (elemental composition; C: 95.1% by weight,
H: 3.1% by weight, N: 0.6% by weight) with a particle size of 0.3
The powder was crushed to a size of 5 mm or less, and 250 g of this powder and 1250 g of potassium hydroxide (special grade reagent) were sufficiently stirred and mixed in a 2-liter stainless steel container.

【0022】次いで、このようにして得た混合物を上記
ステンレス製容器ごと、密閉蓋を備えた鉄製容器内に入
れて密閉し、1リットル/分の通流速度で鉄製容器内に
窒素ガスを通流させつつ、100°C/hの割合で65
0°Cまで昇温して、同温度に1時間保持した。
Then, the mixture thus obtained, together with the above stainless steel container, is placed in an iron container equipped with a sealing lid and sealed, and nitrogen gas is passed into the iron container at a flow rate of 1 liter / min. While flowing, 65 at a rate of 100 ° C / h
The temperature was raised to 0 ° C and the temperature was maintained for 1 hour.

【0023】次いで、室温付近まで冷却した後、内容物
を少量ずつ4リットルの水中に入れ、攪拌後、ガラスフ
ィルター(17G4)で濾過した。さらに、濾液のpH
が10になるまで濾過物を水洗した後、2リットルの2
0%塩酸中に移し、約5時間還流させつつ煮沸した。そ
の後、これをガラスフィルタ(17G4)で濾過し、得
られた濾過物を1.5リットルの水中へ入れて1時間煮
沸し、再び濾過する操作を5回繰り返し行った後、12
0°Cで12時間乾燥した。このときのコークスの収率
は74重量%(対生コークス)であり、また比表面積は
1270m2 /gであった。
Then, after cooling to around room temperature, the contents were put into 4 liters of water little by little, stirred and filtered with a glass filter (17G4). In addition, the pH of the filtrate
After washing the filtrate with water until the value becomes 10, 2 liters of 2
It was transferred to 0% hydrochloric acid and boiled under reflux for about 5 hours. Thereafter, this was filtered through a glass filter (17G4), the obtained filtered product was put into 1.5 liter of water, boiled for 1 hour, and filtered again, which was repeated 5 times.
It was dried at 0 ° C for 12 hours. The coke yield at this time was 74% by weight (against raw coke), and the specific surface area was 1270 m 2 / g.

【0024】次いで、上記コークスを黒鉛ルツボに入
れ、黒鉛ルツボごと、密閉蓋を備えた鉄製容器に入れて
密閉し、1リットル/分の通流速度で鉄製容器内に窒素
ガスを通流させつつ、200°C/hの割合で1400
°Cまで昇温して、同温度に1時間保持して焼成した。
Next, the above coke was put into a graphite crucible, and the graphite crucible was put together with an iron container equipped with a sealing lid and sealed, and nitrogen gas was allowed to flow through the iron container at a flow rate of 1 liter / min. , 1400 at a rate of 200 ° C / h
The temperature was raised to ° C and the temperature was maintained for 1 hour for firing.

【0025】この焼成したコークスをジェットミル粉砕
機(セイシン企業社製、型式「CPN−04」)を使用
して平均粒子径20μmに粉砕して負極材料としてのコ
ークスを作製した。
The calcined coke was crushed to an average particle diameter of 20 μm using a jet mill crusher (manufactured by Seishin Enterprise Co., Ltd., model “CPN-04”) to prepare coke as a negative electrode material.

【0026】以上の操作により得たコークスの収率は6
2重量%(対生コークス)であり、またその比表面積は
420m2 /gであった。さらに、X線回折パラメータ
002 及びLcはそれぞれ3.45Å、44Åであっ
た。
The coke yield obtained by the above operation is 6
It was 2% by weight (against fresh coke), and its specific surface area was 420 m 2 / g. Further, the X-ray diffraction parameters d 002 and Lc were 3.45Å and 44Å, respectively.

【0027】なお、比表面積は、カルロエルバ社製の表
面積測定機(商品コード「ソープトマチック190
0」)を使用してBET法により求めたものであり、ま
たd002及びLcは、学振法に準拠して求めたものであ
る。以下の製造例における各値についても、同じ方法に
より求めたものである。
The specific surface area is measured by Carlo Elba's surface area measuring device (product code "Sorptomatic 190").
0 ”) was used for the BET method, and d 002 and Lc were determined according to the Gakshin method. The values in the following production examples are also obtained by the same method.

【0028】(製造例2〜13)製造例1において、賦
活処理の条件(温度及び処理時間)を種々代えたこと以
外は製造例1と同様にして、比表面積のみが異なる12
種のコークス(d002 :3.45Å,Lc:44Å)を
作製した。
(Production Examples 2 to 13) In Production Example 1, only the specific surface area is different in the same manner as in Production Example 1 except that the activation conditions (temperature and treatment time) are changed.
Seed coke (d 002 : 3.45Å, Lc: 44Å) was prepared.

【0029】(製造例14)製造例1において、か焼温
度を650°Cに代えて900°Cとしたこと以外は製
造例1と同様にして負極材料としてのコークスを作製し
た。このときの賦活処理後のコークスの収率は61重量
%(対生コークス)、比表面積は2350m2 /gであ
り、また負極材料としてのコークスの収率は51重量%
(対生コークス)、比表面積は1320m2 /g、d
002 及びLcはそれぞれ3.412Å、76Åであっ
た。
Production Example 14 A coke as a negative electrode material was produced in the same manner as in Production Example 1 except that the calcination temperature was changed from 650 ° C. to 900 ° C. At this time, the yield of coke after activation treatment was 61% by weight (against raw coke), the specific surface area was 2350 m 2 / g, and the yield of coke as a negative electrode material was 51% by weight.
(Against coke), specific surface area 1320 m 2 / g, d
002 and Lc were 3.412Å and 76Å, respectively.

【0030】(製造例15〜19)製造例1において、
焼成温度を種々変えたこと以外は製造例1と同様にし
て、d002 のみが異なる6種のコークス(比表面積:1
320m2 /g,Lc:76Å)を作製した。
(Production Examples 15 to 19) In Production Example 1,
6 types of coke differing only in d 002 (specific surface area: 1) in the same manner as in Production Example 1 except that the firing temperature was changed variously.
320 m 2 / g, Lc: 76Å) was prepared.

【0031】(製造例20〜25)製造例1において、
前処理加熱を行った後、賦活処理の条件(温度及び処理
時間)を種々変えて賦活処理を行ったこと以外は製造例
1と同様にして、比表面積のみが異なる6種のコークス
(d002 :3.36Å,Lc:650Å)を作製した。
(Production Examples 20 to 25) In Production Example 1,
Six kinds of coke (d 002) differing only in the specific surface area were prepared in the same manner as in Production Example 1 except that after the pretreatment heating, the activation treatment conditions (temperature and treatment time) were variously changed. : 3.36Å, Lc: 650Å) was prepared.

【0032】〔3極式電池試験〕上記製造例1〜25で
作製した各コークスを負極材料として使用し、それぞれ
に導電剤としてのアセチレンブラック及び結着剤として
のフッ素樹脂を、重量比85:10:5の比率で混練し
て負極合剤とした後、加圧成型して負極を作製した。
[Tripolar Battery Test] Each of the cokes produced in the above Production Examples 1 to 25 was used as a negative electrode material, and acetylene black as a conductive agent and a fluororesin as a binder were mixed in a weight ratio of 85: After kneading at a ratio of 10: 5 to prepare a negative electrode mixture, pressure molding was carried out to produce a negative electrode.

【0033】上記各電極を作用極とし、リチウム電極を
対極及び参照電極として3極式電池試験を行い、各電極
の単位重量当たりの容量を調べた。充放電は、電流密度
0.2mA/cm2 で行い、充電終止電位を0V(vs
リチウム単極電位)、放電終止電位を1V(vsリチウ
ム単極電位)とした。結果を図1〜図3に示す。
A three-pole battery test was conducted using each of the above electrodes as a working electrode and a lithium electrode as a counter electrode and a reference electrode, and the capacity per unit weight of each electrode was investigated. Charging / discharging was performed at a current density of 0.2 mA / cm 2 , and the end-of-charge potential was 0 V (vs
The lithium single electrode potential) and the discharge end potential were 1 V (vs lithium single electrode potential). The results are shown in FIGS.

【0034】図1は、d002 が3.37Å以上であるコ
ークスの放電容量と比表面積との関係を、縦軸に放電容
量(mAh/g)を、横軸に比表面積(m2 /g)をと
って示したグラフであり、同図より、d002 が3.37
Å以上であっても、比表面積が100m2 /g未満の場
合は、放電容量が小さいことが分かる。
FIG. 1 shows the relationship between the discharge capacity and specific surface area of coke having d 002 of 3.37 Å or higher, the discharge capacity (mAh / g) on the vertical axis and the specific surface area (m 2 / g on the horizontal axis). ), The d 002 is 3.37.
Even if it is Å or more, it can be seen that the discharge capacity is small when the specific surface area is less than 100 m 2 / g.

【0035】図2は、比表面積が100m2 /g以上で
あるコークスの放電容量とd002 との関係を、縦軸に放
電容量(mAh/g)を、横軸にd002 (Å)をとって
示したグラフであり、同図より、比表面積が100m2
/g以上であっても、d002が3.37Å未満の場合、
放電容量が小さいことが分かる。
FIG. 2 shows the relationship between the discharge capacity of coke having a specific surface area of 100 m 2 / g or more and d 002 , the discharge capacity (mAh / g) on the vertical axis and d 002 (Å) on the horizontal axis. The graph shows the specific surface area of 100 m 2
/ G or more, if d 002 is less than 3.37Å,
It can be seen that the discharge capacity is small.

【0036】図3は、d002 が3.37Å未満であるコ
ークスの放電容量と比表面積との関係を、縦軸に放電容
量(mAh/g)を、横軸に比表面積(m2 /g)をと
って示したグラフであり、同図より、d002 が3.37
Å未満の場合は、比表面積の如何を問わず、放電容量が
100mAh/g程度と小さいことが分かる。
FIG. 3 shows the relationship between the discharge capacity and specific surface area of coke having d 002 of less than 3.37Å, the discharge capacity (mAh / g) on the vertical axis and the specific surface area (m 2 / g on the horizontal axis). ), The d 002 is 3.37.
It can be seen that when it is less than Å, the discharge capacity is as small as about 100 mAh / g regardless of the specific surface area.

【0037】なお、本発明は電池の形状に特に制限はな
く、円筒型、扁平型、角型など、種々の形状の非水系二
次電池に適用し得るものである。
The present invention is not particularly limited in the shape of the battery, and can be applied to non-aqueous secondary batteries having various shapes such as a cylindrical shape, a flat shape and a square shape.

【0038】[0038]

【発明の効果】本発明電池は、負極材料たるコークスの
リチウム吸蔵放出量が多いので、電池容量が大きいな
ど、本発明は優れた特有の効果を奏する。
Since the battery of the present invention has a large amount of lithium occlusion and release of coke, which is a negative electrode material, the present invention has excellent unique effects such as a large battery capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】d002 ≧3.37Åの場合の放電容量と比表面
積との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a discharge capacity and a specific surface area when d 002 ≧ 3.37 Å.

【図2】比表面積≧100m2 /g以上の場合の放電容
量とd002 との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the discharge capacity and d 002 when the specific surface area ≧ 100 m 2 / g or more.

【図3】d002 <3.37Åの場合の放電容量と比表面
積との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the discharge capacity and the specific surface area when d 002 <3.37 Å.

フロントページの続き (72)発明者 藤本 正久 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 好永 宣之 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 古川 修弘 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平5−299091(JP,A)Front page continuation (72) Masahisa Fujimoto 2-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Noriyuki Yoshinaga 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Denki Incorporated (72) Inventor Koji Nishio 2-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Nobuhiro Furukawa 2-18-2 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-5-299091 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極材料として、BET法による比表面積
が100m2 /g以上であり、且つ、X線回折パラメー
タd002 が3.37Å以上であるコークスが使用されて
いることを特徴とする非水系二次電池。
1. A coke having a specific surface area according to the BET method of 100 m 2 / g or more and an X-ray diffraction parameter d 002 of 3.37 Å or more is used as a negative electrode material. Aqueous secondary battery.
【請求項2】前記コークスは、さらにそのX線回折パラ
メータLcが600Å以下である請求項1記載の非水系
二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the coke has an X-ray diffraction parameter Lc of 600 Å or less.
【請求項3】前記コークスは、賦活処理により細孔内の
炭化水素を除去して得たものである請求項1又は2記載
の非水系二次電池。
3. The non-aqueous secondary battery according to claim 1, wherein the coke is obtained by removing hydrocarbons in the pores by activation treatment.
【請求項4】BET法による比表面積が100m/g
以上であり、且つ、X線回折パラメータd002が3.
37Å以上、Lcが600Å以下のコークスからなる非
水系二次電池用負極材料。
4. A BET specific surface area of 100 m 2 / g.
Above, and the X-ray diffraction parameter d 002 is 3.
A negative electrode material for a non-aqueous secondary battery, comprising coke having a Lc of 37 Å or more and an Lc of 600 Å or less.
JP4170236A 1992-06-03 1992-06-03 Non-aqueous secondary battery and negative electrode material for non-aqueous secondary battery Expired - Fee Related JP2518771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4170236A JP2518771B2 (en) 1992-06-03 1992-06-03 Non-aqueous secondary battery and negative electrode material for non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4170236A JP2518771B2 (en) 1992-06-03 1992-06-03 Non-aqueous secondary battery and negative electrode material for non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH06187987A JPH06187987A (en) 1994-07-08
JP2518771B2 true JP2518771B2 (en) 1996-07-31

Family

ID=15901195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4170236A Expired - Fee Related JP2518771B2 (en) 1992-06-03 1992-06-03 Non-aqueous secondary battery and negative electrode material for non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2518771B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3551490B2 (en) * 1994-09-30 2004-08-04 三菱化学株式会社 Non-aqueous secondary battery
WO1996030318A1 (en) * 1995-03-30 1996-10-03 Nippon Sanso Corporation Porous carbonaceous material, process for producing the same, and use thereof
JP3577776B2 (en) * 1995-04-18 2004-10-13 三菱化学株式会社 Non-aqueous secondary battery
CN107408726B (en) * 2015-03-16 2019-10-25 日立化成株式会社 Lithium ion battery, negative electrode for lithium ion battery, battery module, automobile and electric storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299091A (en) * 1992-04-20 1993-11-12 Hitachi Maxell Ltd Carbon electrode and lithium secondary battery using same

Also Published As

Publication number Publication date
JPH06187987A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
JP6495819B2 (en) Cathode active material
JP3800799B2 (en) Electric double layer capacitor
JPH04115457A (en) Non-aqueous electrolyte secondary battery
JP2023538848A (en) active electrode material
WO2014200063A1 (en) Aluminum silicate complex, conductive material, conductive material for lithium ion secondary cell, composition for forming lithium ion secondary cell negative electrode, composition for forming lithium ion secondary cell positive electrode, negative electrode for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
JP2011520752A (en) Lithium titanate and method for forming the same
JP6860496B2 (en) Manufacturing method of positive electrode active material, positive electrode active material, positive electrode and lithium ion secondary battery
JPH0668878A (en) Hydride of nickel dioxide cathode active substance and secondary battery
TWI544676B (en) Carbon coated electrochemically active powder
US20140234536A1 (en) Metal Fluoride Electrode Protection Layer and Method of Making Same
JP6822500B2 (en) Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Next battery
JPWO2019172193A1 (en) Positive electrode active material for lithium ion secondary batteries and lithium ion secondary batteries
CN103228575A (en) Lithium cobalt oxide material
JP2019089708A (en) Method of producing lithium-containing composite oxide, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5230117B2 (en) Method for producing graphite particles
JP2518771B2 (en) Non-aqueous secondary battery and negative electrode material for non-aqueous secondary battery
KR101503433B1 (en) Manufacturing method of lithium-titanium composite comprising carbon in crystal, lithium-titanium composite comprising carbon in crystal made by the same, and the use of the same
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JPH07326343A (en) Negative electrode material for nonaqueous electrolytic secondary battery and its manufacture
JP3807854B2 (en) Electric double layer capacitor
JP6692632B2 (en) Method for manufacturing positive electrode active material
JP2015230794A (en) Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6315258B2 (en) Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Secondary battery
KR102133790B1 (en) Recovery method of lithium using ncm oxide
JP2021017397A (en) Monoclinic lithium nickel manganese-based complex oxide and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 15

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 15

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees