JP2518412B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2518412B2
JP2518412B2 JP1190160A JP19016089A JP2518412B2 JP 2518412 B2 JP2518412 B2 JP 2518412B2 JP 1190160 A JP1190160 A JP 1190160A JP 19016089 A JP19016089 A JP 19016089A JP 2518412 B2 JP2518412 B2 JP 2518412B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
amount
heat exchanger
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1190160A
Other languages
Japanese (ja)
Other versions
JPH0355454A (en
Inventor
一彦 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1190160A priority Critical patent/JP2518412B2/en
Publication of JPH0355454A publication Critical patent/JPH0355454A/en
Application granted granted Critical
Publication of JP2518412B2 publication Critical patent/JP2518412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は蓄熱槽を有する空気調和機に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to an air conditioner having a heat storage tank.

(従来の技術) 蓄熱槽を有する空気調和機の従来例として、例えば特
公昭62−20460号公報記載の装置を挙げることができ
る。その装置においては、圧縮機からの吐出冷媒を室内
熱交換器から室外熱交換器へと循環させて行う暖房運転
時、暖房余剰熱量が生じた場合にこれを蓄熱槽内に蓄熱
し、そして除霜運転時、上記蓄熱槽内の熱量を循環冷媒
に回収する運転とすることによって循環冷媒中の保有熱
量を増加させ、これにより除霜と暖房との同時運転を行
うようになされている。
(Prior Art) As a conventional example of an air conditioner having a heat storage tank, for example, a device described in Japanese Patent Publication No. 62-20460 can be cited. In the device, during the heating operation in which the refrigerant discharged from the compressor is circulated from the indoor heat exchanger to the outdoor heat exchanger, when excess heating heat is generated, it is stored in the heat storage tank and then removed. At the time of frost operation, the amount of heat retained in the circulating refrigerant is increased by performing an operation of recovering the amount of heat in the heat storage tank into the circulating refrigerant, whereby simultaneous operation of defrosting and heating is performed.

(発明が解決しようとする課題) ところで上記のような蓄熱槽を設ける空気調和機にお
いては、深夜電力による運転によって蓄熱しておき、こ
の蓄熱量の回収運転によって、日中の暖房運転を行うよ
うに構成することも可能である。このように電力コスト
の安価な深夜電力による蓄熱量を利用して行う暖房運転
は、低外気温の中で室外熱交換器を蒸発器として機能さ
せる通常の暖房運転より暖房コストを小さくなし得るこ
とから、運転経費をより少なくすることが可能となり、
また上記蓄熱槽内に、一日の暖房に必要な最大熱量が上
記深夜電力での蓄熱運転によって蓄熱されるように構成
し、常時、上記蓄熱回収での暖房運転をなし得るように
構成することによって、さらに運転経費の低減を図るこ
とが可能となる。
(Problems to be Solved by the Invention) By the way, in the air conditioner provided with the heat storage tank as described above, heat is stored by the operation by the midnight power, and the heating operation during the day is performed by the operation of recovering the heat storage amount. It is also possible to configure. In this way, the heating operation performed by using the heat storage amount from the late-night power, which has a low power cost, can make the heating cost smaller than the normal heating operation in which the outdoor heat exchanger functions as an evaporator in a low outdoor temperature. Therefore, it becomes possible to reduce operating expenses,
Further, in the heat storage tank, the maximum amount of heat required for heating for one day is configured to be stored by the heat storage operation at the midnight power, and is configured to be able to always perform the heating operation in the heat storage recovery. This makes it possible to further reduce operating costs.

しかしながら、一日の暖房に必要な熱量は変動するも
のであり、例えば初冬の時期、すなわち朝晩の短い時間
帯に限って暖房運転を行うような時期にも、真冬の時
期、すなわち日中での暖房運転も行われるような時期に
対応する最大の蓄熱量で蓄熱運転を日々行う場合には、
余剰蓄熱量を生じ、したがって無駄な電力消費がなされ
ることとなって、必ずしも充分な運転経費の低減が図れ
ないという問題を生じる。
However, the amount of heat required for heating in one day fluctuates.For example, even in the period of early winter, that is, when the heating operation is performed only in the short hours of morning and evening, even in the period of midwinter, that is, in the daytime. When performing the heat storage operation daily with the maximum heat storage amount corresponding to the time when the heating operation is also performed,
An excessive amount of heat is stored, resulting in wasted power consumption, which causes a problem that the operating cost cannot be reduced sufficiently.

この発明は上記に鑑みなされたものであって、その目
的は、蓄熱運転で蓄熱槽内に蓄熱される熱量を空調負荷
変化に応じて制御することによって、運転経費をより低
減し得る空気調和機を提供することにある。
The present invention has been made in view of the above, and an object thereof is to control an amount of heat stored in a heat storage tank in a heat storage operation according to a change in an air conditioning load, thereby further reducing an operating cost. To provide.

(課題を解決するための手段) そこでこの発明の空気調和機は、第1図に示している
ように、圧縮機1に室外熱交換器11と室内熱交換器17と
を接続して冷媒循環回路を構成する一方、蓄熱槽Zとこ
の蓄熱槽Z内の蓄熱剤に熱量を付与する蓄熱手段21と上
記蓄熱槽Z内の蓄熱量を検出する蓄熱量検出手段37とを
設け、また上記蓄熱槽Z内の蓄熱量が基準量以上のとき
に、上記圧縮機1から室内熱交換器17を通して循環する
冷媒に上記蓄熱槽Z内の熱量を付与する蓄熱回収運転に
よって室内の空調を行う一方、上記蓄熱槽Z内の蓄熱量
が基準量未満のときには上記圧縮機1から室内熱交換器
17と室外熱交換器11とを通して冷媒を循環させる非蓄熱
回収運転によって室内の空調を行うべく運転を制御する
運転制御手段38を設け、さらに所定時間間隔毎に、上記
蓄熱量検出手段37での検出蓄熱量、及び上記非蓄熱回収
運転の積算時間Δt2と上記蓄熱回収運転の積算時間Δt1
との運転時間比率から空調負荷に対する蓄熱量の過不足
を求める演算手段45と、この演算手段45での結果におけ
る過不足を解消する方向に増減させて目標蓄熱量を設定
する目標蓄熱量設定手段46と、上記蓄熱手段21を作動さ
せる蓄熱運転で上記目標蓄熱量の熱量が上記蓄熱槽Z内
に蓄熱されるべく制御する蓄熱運転制御手段47とを設け
ている。
(Means for Solving the Problem) Therefore, in the air conditioner of the present invention, as shown in FIG. 1, the outdoor heat exchanger 11 and the indoor heat exchanger 17 are connected to the compressor 1 to circulate the refrigerant. A heat storage tank Z, a heat storage means 21 for giving heat quantity to the heat storage agent in the heat storage tank Z, and a heat storage amount detection means 37 for detecting the heat storage amount in the heat storage tank Z are provided while constituting the circuit, and the heat storage is also provided. When the amount of heat stored in the tank Z is equal to or larger than the reference amount, the indoor air conditioning is performed by the heat storage recovery operation that gives the amount of heat in the heat storage tank Z to the refrigerant circulating from the compressor 1 through the indoor heat exchanger 17, When the amount of heat stored in the heat storage tank Z is less than the reference amount, the compressor 1 to the indoor heat exchanger
The operation control means 38 for controlling the operation to perform the air conditioning of the room by the non-heat storage recovery operation in which the refrigerant is circulated through the outdoor heat exchanger 17 and the outdoor heat exchanger 11 is provided, and further, at predetermined time intervals, the heat storage amount detection means 37 Detected heat storage amount, integrated time Δt2 for non-heat storage recovery operation and integrated time Δt1 for heat storage recovery operation
And a calculation means 45 for obtaining the excess or deficiency of the heat storage amount with respect to the air-conditioning load from the operating time ratio, and a target heat storage amount setting means for increasing or decreasing the excess or deficiency in the result of the calculation means 45 to set the target heat storage amount. 46 and a heat storage operation control means 47 for controlling the heat storage operation for operating the heat storage means 21 so that the heat quantity of the target heat storage quantity is stored in the heat storage tank Z.

(作用) 上記構成の空気調和機においては、空調負荷に対する
蓄熱量の過不足が求められ、この過不足が生じないよう
な目標蓄熱量が設定されて、この目標蓄熱量の熱量が蓄
熱運転で蓄熱槽Zに蓄熱される。したがって空調負荷変
動に応じて逐次蓄熱量が変更され、これにより、空調負
荷が変化する場合にも、蓄熱回収運転で室内の空調がほ
ぼ行われると共に余剰蓄熱量を生じない運転状態を維持
することが可能となる。
(Operation) In the air conditioner having the above configuration, excess or deficiency of the heat storage amount with respect to the air conditioning load is required, a target heat storage amount that does not cause the excess or deficiency is set, and the heat amount of the target heat storage amount is set in the heat storage operation. The heat is stored in the heat storage tank Z. Therefore, the heat storage amount is sequentially changed according to the fluctuation of the air conditioning load, so that even when the air conditioning load changes, the indoor air conditioning is almost performed in the heat storage recovery operation and the operating state that does not generate the surplus heat storage amount is maintained. Is possible.

(実施例) 次にこの発明の空気調和機の具体的な実施例につい
て、図面を参照しつつ詳細に説明する。
(Example) Next, a specific example of the air conditioner of the present invention will be described in detail with reference to the drawings.

第2図には、この発明の一実施例における空気調和機
の全体構成を示す模式図を示しており、同図において、
Xは室外ユニットであって、この室外ユニットXに、室
内ユニットAと蓄熱槽Zとが接続されている。
FIG. 2 shows a schematic diagram showing the overall configuration of the air conditioner in one embodiment of the present invention.
X is an outdoor unit, and the indoor unit A and the heat storage tank Z are connected to the outdoor unit X.

第3図には上記空気調和機の冷媒回路図を示してい
る。図のように、室外ユニットXには圧縮機1が内装さ
れており、この圧縮機1の吐出配管2は第1四路切換弁
3の高圧側ポート3−Hに接続され、また上記圧縮機1
の吸込配管4は、その先端側が第1、第2吸込管5、6
に分岐されて、第1吸込管5が上記第1四路切換弁3の
低圧側ポート3−Lに、また第2吸込管6は第2四路切
換弁7の低圧側ポート7−Lにそれぞれ接続されてい
る。
FIG. 3 shows a refrigerant circuit diagram of the air conditioner. As shown in the figure, a compressor 1 is installed in the outdoor unit X, a discharge pipe 2 of the compressor 1 is connected to a high pressure side port 3-H of a first four-way switching valve 3, and the compressor is also the above-mentioned compressor. 1
The suction pipe 4 has a first and second suction pipes 5 and 6 on the tip side.
The first suction pipe 5 to the low pressure side port 3-L of the first four way switching valve 3 and the second suction pipe 6 to the low pressure side port 7-L of the second four way switching valve 7. Each is connected.

上記第2四路切換弁7の高圧側ポート7−Hは、連結
管8によって第1四路切換弁3の第1切換ポート3−1
に接続される一方、上記第2四路切換弁7の第1切換ポ
ート7−1には第1ガス管9が、また第2切換ポート7
−2には第2ガス管10がそれぞれ接続されている。そし
てこの第2ガス管10に、順次、室外熱交換器11、第1電
動膨張弁12の介設された第1液管13、受液器14、第2電
動膨張弁15の介設された第2液管16が接続され、この第
2液管16と第1ガス管9との間に、室内ユニットAに内
装されている室内熱交換器17が接続されている。
The high pressure side port 7-H of the second four-way switching valve 7 is connected to the first switching port 3-1 of the first four-way switching valve 3 by the connecting pipe 8.
On the other hand, the first gas pipe 9 is connected to the first switching port 7-1 of the second four-way switching valve 7 and the second switching port 7 is connected to
The second gas pipes 10 are connected to -2. Then, in the second gas pipe 10, the outdoor heat exchanger 11, the first liquid pipe 13 in which the first electric expansion valve 12 is interposed, the liquid receiver 14, and the second electric expansion valve 15 are sequentially interposed. The second liquid pipe 16 is connected, and the indoor heat exchanger 17 installed in the indoor unit A is connected between the second liquid pipe 16 and the first gas pipe 9.

さらに上記受液器14には、第3電動膨張弁18の介設さ
れた蓄熱用液管19が接続される一方、第1四路切換弁3
の第2切換ポート3−2に蓄熱用ガス管20が接続され、
これらの蓄熱用液管19と蓄熱用ガス管20との間に、蓄熱
槽Z内に配設されている蓄熱用熱交換器(蓄熱手段)21
が接続されている。
Furthermore, the liquid receiver 14 is connected to the heat storage liquid pipe 19 in which the third electric expansion valve 18 is interposed, while the first four-way switching valve 3 is connected.
The heat storage gas pipe 20 is connected to the second switching port 3-2 of
A heat storage heat exchanger (heat storage means) 21 arranged in the heat storage tank Z between the heat storage liquid pipe 19 and the heat storage gas pipe 20.
Is connected.

上記蓄熱槽Z内には、例えば水等の蓄熱剤23が満たさ
れ、この蓄熱剤23中に、上記蓄熱用熱交換器21を浸漬し
て、この蓄熱用熱交換器21内を流通する冷媒と上記蓄熱
剤23との間の熱交換が生じるように構成されている。
The heat storage tank Z is filled with a heat storage agent 23 such as water, and the heat storage heat exchanger 21 is immersed in the heat storage agent 23, and a refrigerant flowing in the heat storage heat exchanger 21. The heat storage agent 23 is configured to exchange heat with the heat storage agent 23.

なお図中、24は、吸込配管4に介設されているアキュ
ームレータ、25は、室外熱交換器11に付設されている室
外ファン、26は、室内熱交換器17に付設されている室内
ファンをそれぞれ示している。
In the figure, 24 is an accumulator installed in the suction pipe 4, 25 is an outdoor fan attached to the outdoor heat exchanger 11, and 26 is an indoor fan attached to the indoor heat exchanger 17. Shown respectively.

上記構成の空気調和機においては、圧縮機1からの吐
出冷媒を室外熱交換器11と室内熱交換器17とを通して循
環させる冷房、暖房の空調運転、また室外熱交換器11と
蓄熱用熱交換器21を通して循環させる蓄熱運転、さらに
室内熱交換器17と蓄熱用熱交換器21を通して循環させる
蓄熱回収空調運転の各運転モードへの切換を行うことが
可能であり、次に各運転モードでの冷媒循環の制御につ
いて説明する。
In the air conditioner configured as described above, the refrigerant discharged from the compressor 1 is circulated through the outdoor heat exchanger 11 and the indoor heat exchanger 17, the air conditioning operation of cooling and heating, and the outdoor heat exchanger 11 and the heat storage heat exchange. It is possible to switch to each operation mode of the heat storage operation that circulates through the device 21, and the heat storage recovery air conditioning operation that circulates through the indoor heat exchanger 17 and the heat storage heat exchanger 21, and then in each operation mode. The control of the refrigerant circulation will be described.

まず暖房運転は、第1、第2四路切換弁3、7をそれ
ぞれ図中破線で示す切換位置に位置させ、第2電動膨張
弁15を開、第3電動膨張弁18を閉にして圧縮機1を運転
することによって行う。このとき圧縮機1からの吐出冷
媒は、第1四路切換弁3、連結管8、第2四路切換弁7
を経て第1ガス管9から室内熱交換器17に流入し、この
室内熱交換器17内で凝縮した後、第2液管16から第1液
管13を経て室外熱交換器11にて蒸発する。そしてこの蒸
発冷媒が第2ガス管10、第2四路切換弁7、第2吸込管
6、吸込配管4を通して上記圧縮機1に返流される。な
おこの場合、第1電動膨張弁12によって循環冷媒の過熱
度制御を行う(以下、この運転を非蓄熱回収暖房運転と
いう)。
First, in the heating operation, the first and second four-way switching valves 3 and 7 are respectively positioned at switching positions indicated by broken lines in the figure, the second electric expansion valve 15 is opened, and the third electric expansion valve 18 is closed to perform compression. This is done by operating the machine 1. At this time, the refrigerant discharged from the compressor 1 is the first four-way switching valve 3, the connecting pipe 8, and the second four-way switching valve 7.
After passing through the first gas pipe 9 into the indoor heat exchanger 17 and condensing in the indoor heat exchanger 17, the second liquid pipe 16 passes through the first liquid pipe 13 and evaporates in the outdoor heat exchanger 11. To do. Then, the evaporated refrigerant is returned to the compressor 1 through the second gas pipe 10, the second four-way switching valve 7, the second suction pipe 6, and the suction pipe 4. In this case, the superheat degree control of the circulating refrigerant is performed by the first electric expansion valve 12 (hereinafter, this operation is referred to as a non-heat storage recovery heating operation).

一方、冷房運転は、上記から第2四路切換弁7を図中
実線で示す切換位置に切換え、第1電動膨張弁12を開に
して圧縮機1を運転することによって行う。このとき圧
縮機1からの吐出冷媒は、室外熱交換器11に供給されて
凝縮した後、室内熱交換器17で蒸発し、その後、上記圧
縮機1に返流される循環サイクルとなる。この場合、第
2電動膨張弁15で循環冷媒の過熱度制御を行う。
On the other hand, the cooling operation is performed by switching the second four-way switching valve 7 to the switching position shown by the solid line in the figure from the above and operating the compressor 1 by opening the first electric expansion valve 12. At this time, the refrigerant discharged from the compressor 1 is supplied to the outdoor heat exchanger 11, condensed, evaporated in the indoor heat exchanger 17, and then returned to the compressor 1 in a circulation cycle. In this case, the second electric expansion valve 15 controls the degree of superheat of the circulating refrigerant.

次に第1四路切換弁3を図中実線で示す切換位置、第
2四路切換弁7を図中破線で示す切換位置にそれぞれ位
置させ、第3電動膨張弁18を開、第2電動膨張弁15を閉
にして圧縮機1を運転すると共に、第1電動膨張弁12で
循環冷媒の過熱度制御を行う運転によって、蓄熱用熱交
換器21が凝縮器、室外熱交換器11が蒸発器としてそれぞ
れ機能する冷媒循環サイクルとなる。この運転の継続に
よって、蓄熱用交換器21での凝縮熱が蓄熱剤23に付与さ
れ、この蓄熱剤23の温度上昇を生じさせる蓄熱運転が行
われる。
Next, the first four-way switching valve 3 is placed in the switching position shown by the solid line in the figure, the second four-way switching valve 7 is placed in the switching position shown by the broken line in the figure, and the third electric expansion valve 18 is opened and the second electric switching valve is opened. By the operation of closing the expansion valve 15 to operate the compressor 1 and controlling the degree of superheat of the circulating refrigerant by the first electric expansion valve 12, the heat storage heat exchanger 21 evaporates and the outdoor heat exchanger 11 evaporates. The refrigerant circulation cycle functions as a container. By continuing this operation, the heat of condensation in the heat storage exchanger 21 is applied to the heat storage agent 23, and the heat storage operation that causes the temperature increase of the heat storage agent 23 is performed.

また第1四路切換弁3を図中破線で示す切換位置、第
2四路切換弁7を図中実線で示す切換位置にそれぞれ切
換、第1電動膨張弁12を開、第2電動膨張弁15を閉にし
て圧縮機1を運転すると共に、第3電動膨張弁18で循環
冷媒の過熱度制御を行う運転に切換えた場合には、室外
熱交換器11が凝縮器、蓄熱用熱交換器21が蒸発器として
それぞれ機能する冷媒循環サイクルとなる。この運転に
よって、蓄熱剤23の保有熱量は、蓄熱用熱交換器21で蒸
発する冷媒に吸収され、したがって上記蓄熱剤23の温度
低下を生じることとなって、冷熱蓄熱運転が行われる。
Further, the first four-way switching valve 3 is switched to the switching position shown by the broken line in the figure, the second four-way switching valve 7 is switched to the switching position shown in the solid line, the first electric expansion valve 12 is opened, and the second electric expansion valve is opened. When the compressor 1 is operated by closing 15 and the operation is switched to the operation for controlling the degree of superheat of the circulating refrigerant by the third electric expansion valve 18, the outdoor heat exchanger 11 is the condenser, the heat storage heat exchanger. 21 is a refrigerant circulation cycle that functions as an evaporator. By this operation, the amount of heat held by the heat storage agent 23 is absorbed by the refrigerant that evaporates in the heat storage heat exchanger 21, and therefore the temperature of the heat storage agent 23 drops, whereby the cold heat storage operation is performed.

そして蓄熱回収空調運転を行う場合、まず暖房運転
は、第1、第2四路切換弁3、7をそれぞれ図中破線で
示す切換位置に位置させ、第2電動膨張弁15を開、第1
電動膨張弁1を閉にして圧縮機1を運転すると共に、第
3電動膨張弁18で循環冷媒の過熱度制御を行う。このと
き圧縮機1からの吐出冷媒は室内熱交換器17に供給され
て凝縮し、次いで第2液管16、受液器14、蓄熱用液管19
から蓄熱用熱交換器21に流入する。そして蓄熱剤23から
熱量を吸収して蒸発した後、蓄熱用ガス管20を通して圧
縮機1に返流される(以下、この運転を蓄熱回収暖房運
転という)。
When performing the heat storage recovery air conditioning operation, first, in the heating operation, the first and second four-way switching valves 3 and 7 are respectively positioned at the switching positions indicated by broken lines in the figure, the second electric expansion valve 15 is opened, and the first
The electric expansion valve 1 is closed to operate the compressor 1, and the third electric expansion valve 18 controls the degree of superheat of the circulating refrigerant. At this time, the refrigerant discharged from the compressor 1 is supplied to the indoor heat exchanger 17 and condensed, and then the second liquid pipe 16, the liquid receiver 14, and the heat storage liquid pipe 19
Flows into the heat storage heat exchanger 21. Then, after absorbing the amount of heat from the heat storage agent 23 and evaporating, it is returned to the compressor 1 through the heat storage gas pipe 20 (hereinafter, this operation is referred to as heat storage recovery heating operation).

一方、蓄熱回収の冷房運転は、第1、第2四路切換弁
3、7をそれぞれ図中実線で示す切換位置に切換え、第
3電動膨張弁18を開、第1電動膨張弁1を閉にして圧縮
機1を運転すると共に、第2電動膨張弁15で循環冷媒の
過熱度制御を行う。これにより、圧縮機1からの吐出冷
媒は蓄熱用ガス管20を通して蓄熱用熱交換器21に供給さ
れ、蓄熱剤21に放熱して凝縮した後、蓄熱用液管19、受
液器14、第2液管16を通して室内熱交換器17に流入す
る。そしてこの室内熱交換器17で蒸発した後、圧縮機1
に返流される。
On the other hand, in the cooling operation for heat storage recovery, the first and second four-way switching valves 3 and 7 are switched to the switching positions shown by solid lines in the figure, the third electric expansion valve 18 is opened, and the first electric expansion valve 1 is closed. The compressor 1 is operated and the second electric expansion valve 15 controls the degree of superheat of the circulating refrigerant. As a result, the refrigerant discharged from the compressor 1 is supplied to the heat storage heat exchanger 21 through the heat storage gas pipe 20, radiates heat to the heat storage agent 21 and is condensed, and then, the heat storage liquid pipe 19, the liquid receiver 14, It flows into the indoor heat exchanger 17 through the two liquid pipe 16. After being evaporated in the indoor heat exchanger 17, the compressor 1
Returned to.

なお上記構成においては、例えば上記蓄熱回収暖房運
転のサイクルで、さらに第1電動膨張弁12を開にし、室
内熱交換器17での凝縮冷媒を蓄熱用熱交換器21と室外熱
交換器11とに分流させて、両者17、21をそれぞれ蒸発器
として機能させる運転や、室外熱交換器11で凝縮させた
後、室内熱交換器17と蓄熱用熱交換器21とに分流させ、
室内熱交換器17と蓄熱用熱交換器21とをそれぞれ蒸発器
として機能させることによって、冷房と冷熱蓄熱の同時
運転を行うこと等も可能であるが、それらの説明につい
ては省略し、以下には便宜上、非蓄熱回収暖房運転と、
蓄熱剤23を昇温させる蓄熱運転と、蓄熱回収暖房運転と
の切換制御について説明する。
In the above configuration, for example, in the cycle of the heat storage recovery heating operation, the first electric expansion valve 12 is further opened, and the condensed refrigerant in the indoor heat exchanger 17 is transferred to the heat storage heat exchanger 21 and the outdoor heat exchanger 11. The operation of causing both 17 and 21 to function as an evaporator, or after being condensed in the outdoor heat exchanger 11, the air is divided into the indoor heat exchanger 17 and the heat storage heat exchanger 21,
By causing the indoor heat exchanger 17 and the heat storage heat exchanger 21 to each function as an evaporator, it is also possible to perform simultaneous operation of cooling and cold heat storage, but the description thereof will be omitted, and will be described below. Is a non-heat storage recovery heating operation for convenience,
The switching control between the heat storage operation of raising the temperature of the heat storage agent 23 and the heat storage recovery heating operation will be described.

第4図には上記空気調和機の運転制御系統図を示して
いる。図のように、室内ユニットAには室内制御装置31
が、また室外ユニットXには室外制御装置32がそれぞれ
設けられており、上記室内制御装置31には、運転スイッ
チ33及び希望室温を設定するための室温設定スイッチ34
を有する運転操作用リモコン35と、室温を検出する室温
センサ36とが接続されている。上記室内制御装置31から
は、運転スイッチ33がONであることを前提に、上記室温
センサ36での検出室温が室温設定スイッチ34での設定室
温に達していないときに、室外制御装置32に暖房運転指
令信号が出力される。
FIG. 4 shows an operation control system diagram of the air conditioner. As shown in the figure, the indoor unit A has an indoor control device 31
However, the outdoor unit X is also provided with an outdoor control device 32, and the indoor control device 31 includes an operation switch 33 and a room temperature setting switch 34 for setting a desired room temperature.
A remote controller for driving operation 35 having the above and a room temperature sensor 36 for detecting the room temperature are connected. From the indoor control device 31, assuming that the operation switch 33 is ON, when the room temperature detected by the room temperature sensor 36 has not reached the room temperature set by the room temperature setting switch 34, the outdoor controller 32 is heated. The operation command signal is output.

一方、蓄熱槽Z内には、蓄熱剤23の温度を検出する蓄
熱温度センサ(蓄熱量検出手段)37が設けられ、このセ
ンサ37での検出蓄熱温度Tが上室外制御装置32に入力さ
れる。そしてこの室外制御装置32内には、運転制御部
(運転制御手段)38が設けられ、この運転制御部38で
は、室内制御装置31から上記暖房指令信号が入力された
ときに、まず上記蓄熱温度センサ37での検出蓄熱温度T
を基準温度Tdと比較する。この基準温度Tdは、蓄熱剤23
中の蓄熱量がほぼ0である状態に対応する温度として予
め設定されている。上記TがTdよりも高いことを確認し
て、前記蓄熱回収暖房運転時の冷媒循環径路を形成すべ
く第1、第2四路切換弁3、7の切換作動、第2電動膨
張弁15の開弁、第1電動膨張弁12の閉弁操作が上記運転
制御部38によって行われ、そして圧縮機1が起動され
て、前記蓄熱回収暖房運転が開始される。この運転中、
上記運転制御部38で第3電動膨張弁18による循環冷媒の
過熱度制御が行われ、また室内ファン26の作動は上記室
内制御装置31によって制御される。
On the other hand, in the heat storage tank Z, a heat storage temperature sensor (heat storage amount detecting means) 37 for detecting the temperature of the heat storage agent 23 is provided, and the heat storage temperature T detected by this sensor 37 is input to the upper outdoor control device 32. . An operation controller (operation controller) 38 is provided in the outdoor controller 32. In the operation controller 38, when the heating command signal is input from the indoor controller 31, the heat storage temperature is first set. Heat storage temperature T detected by sensor 37
Is compared with the reference temperature Td. This reference temperature Td is
The temperature is preset as the temperature corresponding to the state where the amount of stored heat is almost zero. It is confirmed that T is higher than Td, and the switching operation of the first and second four-way switching valves 3 and 7 and the second electric expansion valve 15 to form the refrigerant circulation path during the heat storage recovery heating operation. The valve opening operation and the valve closing operation of the first electric expansion valve 12 are performed by the operation control unit 38, the compressor 1 is activated, and the heat storage recovery heating operation is started. During this operation,
The operation control unit 38 controls the degree of superheat of the circulating refrigerant by the third electric expansion valve 18, and the operation of the indoor fan 26 is controlled by the indoor control device 31.

上記の運転は、蓄熱剤23の蓄熱量を室内に放出する運
転であり、したがってこの運転の継続によって、蓄熱剤
23の温度は徐々に低下していく。そこで上記検出蓄熱温
度Tが基準温度Tdまで低下したこと、すなわち蓄熱剤23
中の蓄熱量がほぼ0になったことが判別されると、上記
運転制御部38は、上記蓄熱回収暖房運転から、前記した
室外熱交換器11を蒸発器として機能させる非蓄熱回収暖
房運転への切換えを行う。すなわち上記から第3電動膨
張弁18を閉弁すると共に、第1電動膨張弁12を開弁し、
また室外ファン25の運転を開始する。
The above operation is an operation of releasing the heat storage amount of the heat storage agent 23 into the room, and therefore, by continuing this operation, the heat storage agent
The temperature of 23 gradually decreases. Therefore, the detected heat storage temperature T has decreased to the reference temperature Td, that is, the heat storage agent 23
When it is determined that the amount of stored heat in the interior has become almost 0, the operation control unit 38 shifts from the heat storage recovery heating operation to the non-heat storage recovery heating operation that causes the outdoor heat exchanger 11 to function as an evaporator. Switch. That is, from the above, the third electric expansion valve 18 is closed and the first electric expansion valve 12 is opened,
Further, the operation of the outdoor fan 25 is started.

ところで上記装置においては、蓄熱量の低下した蓄熱
剤23への蓄熱運転を、電力コストの安価な深夜電力を利
用して行う。この場合の暖房コストは、低温の外気中で
室外熱交換器11を蒸発器として機能させる非蓄熱回収暖
房運転よりも小さくなることから、毎日の暖房運転が上
記蓄熱回収運転によって行われ、しかも深夜電力供給時
間帯となる毎の蓄熱運転の開始時には、余剰蓄熱量を生
じさせないように、毎日の暖房負荷に合わせて過不足の
ない熱量を蓄熱させることによって、運転経費を極力少
なくすることができる。このために上記装置において
は、室外制御装置32内に、さらに、時計部41と運転時間
積算部42と蓄熱量演算制御部43とが設けられている。
By the way, in the above apparatus, the heat storage operation for the heat storage agent 23 having a reduced heat storage amount is performed by using the late-night power, which has a low power cost. Since the heating cost in this case is smaller than the non-heat storage recovery heating operation in which the outdoor heat exchanger 11 functions as an evaporator in the low temperature outside air, the daily heating operation is performed by the heat storage recovery operation, and at midnight. At the start of the heat storage operation every time the power supply time is started, the operating cost can be minimized by storing a sufficient amount of heat in accordance with the daily heating load so as not to generate an excessive amount of heat storage. . Therefore, in the above device, a clock unit 41, an operating time integration unit 42, and a heat storage amount calculation control unit 43 are further provided in the outdoor control device 32.

上記時計部41は、深夜電力供給時間帯(AM1時〜6
時)の間、上記運転制御部38と蓄熱量演算制御部43とに
深夜時間帯信号を出力する。また上記運転時間積算部42
は、一日における蓄熱回収暖房運転の積算時間Δt1と、
蓄熱量がなくなった後に行われる非蓄熱回収暖房運転の
積算時間Δt2とを求める機能を有している。そして上記
蓄熱量演算制御部43は、前記検出蓄熱温度Tと上記Δt
1、Δt2とに基づいて目標蓄熱量を定め、この目標蓄熱
量の蓄熱が行われるように、運転制御部38に蓄熱運転指
令信号を出力して、前記蓄熱運転を行わせる機能を有し
ており、以下、この蓄熱量演算制御部43でなされる制御
について、第5図の制御フローチャートを参照して説明
する。
The clock unit 41 is used for power supply during the midnight hours (1 am to 6 am
During the time), the midnight time zone signal is output to the operation control unit 38 and the heat storage amount calculation control unit 43. In addition, the operating time integration unit 42
Is the cumulative time Δt1 of heat storage recovery heating operation in one day,
It has a function of obtaining the integrated time Δt2 of the non-heat storage recovery heating operation performed after the heat storage amount is exhausted. Then, the heat storage amount calculation control unit 43 calculates the detected heat storage temperature T and the Δt.
1, the target heat storage amount is determined based on Δt2, and the heat storage operation command signal is output to the operation control unit 38 so that the target heat storage amount is stored, and the heat storage operation is performed. The control performed by the heat storage amount calculation control unit 43 will be described below with reference to the control flowchart of FIG.

同図のステップS1において、上記時計部41からの深夜
時間帯信号の入力開始時、すなわち深夜電力供給時間帯
の開始時刻(AM1時)となったことが判別されると、ま
ずステップS2において、余剰蓄熱量の有無を判別する。
これは、検出蓄熱温度Tを基準温度Tdと比較し、TがTd
よりも高い場合に、前日の暖房運転で利用されなかった
余剰蓄熱量ありの判別が行われる。この場合には、ステ
ップS3において、上記TからTdを引いた温度差に、蓄熱
剤23の熱容量(比熱c×充填量w)を乗じて余剰蓄熱量
Δq1を算出し、次いでステップS4において、目標蓄熱量
Q2を、 Q2=Q1−W1×Δq1 によって求める。但し、Q1は前日の目標蓄熱量、W1は正
の定数である。
In step S1 of the figure, when it is determined that the input of the midnight time zone signal from the clock unit 41 has been started, that is, the start time of the midnight power supply time zone (AM 1:00) has come, first in step S2 Determine whether there is excess heat storage.
This compares the detected heat storage temperature T with the reference temperature Td, and T is Td.
If it is higher than the above, it is determined that there is an excess heat storage amount that was not used in the heating operation of the previous day. In this case, in step S3, the temperature difference obtained by subtracting Td from T is multiplied by the heat capacity (specific heat c × filling amount w) of the heat storage agent 23 to calculate the surplus heat storage amount Δq1, and then in step S4, the target Amount of heat storage
Q2 is calculated by Q2 = Q1−W1 × Δq1. However, Q1 is the target heat storage amount on the previous day, and W1 is a positive constant.

一方、上記ステップS2において、検出蓄熱温度Tが基
準温度Tdまで低下していることが判別され、したがって
余剰蓄熱量がない場合には、ステップS5に移行し、前記
非蓄熱回収暖房運転の積算時間Δt2がほぼ0であるか否
かを判別する。0でない場合、すなわち前日の蓄熱回収
暖房運転の途中で蓄熱量がなくなり、その後、非蓄熱回
収暖房運転に切換えられている場合には、この運転も蓄
熱回収暖房運転として行うために必要であった不足蓄熱
量Δq2を、ステップS6において、 Δq2=Q1×(Δt2/Δt1) で求め、次いでステップS7において、目標蓄熱量Q2を、 Q2=Q1+W2×Δq2 (但し、W2は正の定数) によって求める。
On the other hand, in step S2, it is determined that the detected heat storage temperature T has decreased to the reference temperature Td, and therefore, when there is no excess heat storage amount, the process proceeds to step S5, and the integrated time of the non-heat storage recovery heating operation is performed. It is determined whether Δt2 is almost 0. When it is not 0, that is, when the heat storage amount runs out in the middle of the heat storage recovery heating operation on the previous day, and then the operation is switched to the non-heat storage recovery heating operation, this operation was also required to be performed as the heat storage recovery heating operation. The amount of insufficient heat storage Δq2 is obtained by Δq2 = Q1 × (Δt2 / Δt1) in step S6, and then the target heat storage amount Q2 is obtained by Q2 = Q1 + W2 × Δq2 (where W2 is a positive constant) in step S7.

なお上記ステップS5においてΔt2がほぼ0である場
合、すなわち前日の目標蓄熱量Q1に応じた蓄熱量が前日
の暖房運転で必要な熱量と過不足のない状態であった場
合には、ステップS8において、前日の目標蓄熱量Q1をそ
のまま今回の目標蓄熱量Q2とする処理を行う。
In step S8, if Δt2 is almost 0 in step S5, that is, if the heat storage amount corresponding to the target heat storage amount Q1 of the previous day is the same as the heat amount necessary for the heating operation of the previous day, , The target heat storage amount Q1 of the previous day is directly set as the target heat storage amount Q2 of this time.

上記のように、前日の暖房運転に対して蓄熱量に余剰
を生じた場合には前日よりも小さく、また不足していた
場合には前日よりも大きくした目標蓄熱量Q2を求め、次
いでステップS9において、前記運転制御部38に蓄熱運転
指令信号を出力する。運転制御部38では、室内制御装置
31からの暖房運転指令信号がなく、かつ前記時計部41か
らの深夜時間帯信号と上記蓄熱運転指令信号とが入力さ
れることによって、前記蓄熱運転を開始する。
As described above, the target heat storage amount Q2, which is smaller than the previous day when there is a surplus in the heat storage amount for the heating operation of the previous day and is larger than the previous day when it is insufficient, is then calculated in step S9. At, the heat storage operation command signal is output to the operation control unit 38. The operation control unit 38 is an indoor control device.
The heat storage operation is started when there is no heating operation command signal from 31 and the midnight time zone signal and the heat storage operation command signal are input from the clock unit 41.

上記蓄熱運転の継続中、ステップS10において、蓄熱
剤23中の蓄熱量が上記目標蓄熱量Q2に達したか否かの判
別を行う。すなわち上記Q2を蓄熱剤23の熱容量で除した
加熱目標温度まで、蓄熱温度センサ37での検出蓄熱温度
Tが上昇したか否かを判別する。そして目標蓄熱量Q2に
達した時に、ステップS11において、蓄熱運転指令信号
の出力を停止し、これにより、深夜電力供給時間帯の終
了時刻(AM6時)以前であっても上記蓄熱運転を終了さ
せる。
While the heat storage operation is continuing, in step S10, it is determined whether or not the heat storage amount in the heat storage agent 23 has reached the target heat storage amount Q2. That is, it is determined whether or not the heat storage temperature T detected by the heat storage temperature sensor 37 has risen to the heating target temperature obtained by dividing Q2 by the heat capacity of the heat storage agent 23. When the target heat storage amount Q2 is reached, the output of the heat storage operation command signal is stopped in step S11, whereby the heat storage operation is ended even before the end time (AM6 o'clock) of the midnight power supply time zone. .

上記ステップS11を実行した後は前記ステップS1に戻
る処理を行い、したがっで翌日の深夜電力開始時刻とな
った時、この時までの暖房運転で消費された蓄熱量の残
量状態に基づき、また上記目標蓄熱量Q2をQ1として、新
たな目標蓄熱量Q2を求めて蓄熱運転を制御する上記ステ
ップS2〜ステップS11の処理が繰返される。
After performing the step S11, the process of returning to the step S1 is performed, and accordingly, at the midnight power start time of the next day, based on the remaining amount state of the heat storage amount consumed in the heating operation up to this time, With the target heat storage amount Q2 as Q1, a new target heat storage amount Q2 is obtained, and the processes of steps S2 to S11 for controlling the heat storage operation are repeated.

第6図には、上記制御のシミュレーション結果の一例
を示している。図中、実線aは高負荷家庭での暖房負荷
変動曲線、実線bは標準的な家庭、実線cは低負荷家庭
での暖房負荷変動曲線をそれぞれ示し、そして破線
a′、b′、c′で、上記各負荷変動に対して制御され
た蓄熱量の変化を示している。横軸は経過日数であっ
て、各日毎の暖房負荷変化を数ヶ月に渡って長期的にみ
た場合、初冬の外気温がそれほど低くない時期には、朝
晩の比較的短時間の利用に限定された運転が行われ、そ
して真冬に至るにつれて日中の運転時間が長くなり、さ
らに真冬を過ぎて晩冬に至る時期には、再度一日の運転
時間は短くなることから、全体的には外気温の変化に応
じた変化を呈する。そして上記制御によって、このよう
な負荷変化にほぼ追随した蓄熱量の制御が行われる。こ
の結果、電力コストの安価な深夜電力で暖房運転経費が
ほぼ賄われることとなり、また過剰な深夜電力の消費も
抑えられて、より少ない経費で暖房運転を行い得るもの
となる。
FIG. 6 shows an example of the simulation result of the above control. In the figure, a solid line a represents a heating load fluctuation curve in a high load household, a solid line b represents a standard household, a solid line c represents a heating load fluctuation curve in a low load household, and broken lines a ', b', and c '. Shows the change in the amount of heat storage controlled for each load change. The horizontal axis is the number of days elapsed, and when the heating load change for each day is viewed over a long period of several months, it is limited to relatively short use in the morning and evening when the outside air temperature in early winter is not so low. The driving time is longer during the day as it reaches mid-winter, and the driving time for one day becomes shorter again after mid-winter to late winter. Change according to the change of. By the above control, the heat storage amount is controlled so as to substantially follow such a load change. As a result, the heating operation cost is almost covered by the late-night power with low power cost, and the excessive late-night power consumption is suppressed, so that the heating operation can be performed with a smaller cost.

以上、暖房運転時を例に挙げて説明したが、冷房運転
時の制御にもその発明を適用することが可能であり、こ
の場合の蓄熱は、冷熱蓄熱を意味するものとなる。また
上記においては、蓄熱量検出手段を、蓄熱剤23の温度を
検出する蓄熱温度センサ37で構成したが、例えば水を蓄
熱剤として用い、氷にして冷熱蓄熱を行う場合には、氷
の量によって冷熱蓄熱量を検出する等のその他の構成と
することができる。また上記実施例では、第5図のステ
ップS2、S3、S5、S6によって空調負荷に対する蓄熱量の
過不足を求める演算手段45を、ステップS4、S7によって
目標蓄熱量設定手段46を、ステップS9〜S11によって蓄
熱運転制御手段47をそれぞれ構成したが、同様の機能を
有するその他の構成とすることができる。また上記にお
いては、蓄熱用熱交換器21で蓄熱手段を構成し、冷凍サ
イクルで蓄熱を行う例を挙げたが、例えば電気ヒータに
よる蓄熱を行うように構成することも可能である。もっ
とも実施例のように運転効率の高い冷凍サイクルでの蓄
熱を行い、また深夜電力での運転とすることによって、
運転経費をより低減し得るものとなる。またこの発明は
深夜電力による蓄熱運転に限定されるものではなく、例
えば朝晩の外気温が低いときに蓄熱回収暖房運転を行
い、外気温が高くなって暖房負荷が小さくなる昼間に特
定の時間帯を定めて、この時間帯で暖房と共に蓄熱を行
うように構成した装置等において、この発明による蓄熱
量の制御を行うことで、運転経費の低減を図ることがで
きる。
In the above description, the heating operation is taken as an example, but the invention can be applied to the control during the cooling operation, and the heat storage in this case means cold heat storage. Further, in the above, the heat storage amount detecting means is configured by the heat storage temperature sensor 37 that detects the temperature of the heat storage agent 23, but when water is used as the heat storage agent and ice is used for cold heat storage, the amount of ice is Other configurations such as detecting the cold heat storage amount can be adopted. Further, in the above embodiment, the calculating means 45 for determining the excess or deficiency of the heat storage amount with respect to the air conditioning load is executed by steps S2, S3, S5 and S6 of FIG. Although the heat storage operation control unit 47 is configured by S11, other configurations having the same function can be used. Further, in the above description, an example in which the heat storage heat exchanger 21 constitutes the heat storage means to store heat in the refrigeration cycle has been described, but it is also possible to store heat by an electric heater, for example. However, by storing heat in a refrigeration cycle with high operation efficiency as in the example, and by operating at midnight power,
The operating cost can be further reduced. Further, the present invention is not limited to the heat storage operation by the midnight power, for example, the heat storage recovery heating operation is performed when the outside air temperature in the morning and evening is low, and the outside air temperature becomes high and the heating load becomes small during a specific time period during the daytime. By controlling the amount of heat storage according to the present invention in an apparatus or the like configured to store heat in addition to heating in this time zone, the operating cost can be reduced.

(発明の効果) 上記のようにこの発明の空気調和機においては、空調
負荷が変化する場合にも、空調負荷に対する蓄熱量の過
不足量が生じないように蓄熱量の制御がなされるので、
例えば深夜電力で蓄熱することによって空調コストがよ
り安価となる蓄熱回収運転で室内の空調をほぼ行わせる
ことが可能になると共に、余剰蓄熱量を生じさせないこ
とによって無駄な電力消費が抑えられるので、運転経費
を従来よりも低減することが可能となる。
(Effects of the Invention) As described above, in the air conditioner of the present invention, even when the air conditioning load changes, the heat storage amount is controlled so that the excess or deficiency of the heat storage amount with respect to the air conditioning load does not occur.
For example, by storing heat with late-night power, the air conditioning cost becomes cheaper.Also, it is possible to almost perform air conditioning in the room in the heat storage recovery operation, and since unnecessary heat storage amount is not generated, useless power consumption is suppressed, It becomes possible to reduce the operating cost as compared with the conventional one.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の機能ブロック図、第2図はこの発明
の一実施例における空気調和機の全体構成を示す模式
図、第3図は上記装置の冷媒回路図、第4図は上記装置
の運転制御系統図、第5図は上記装置における蓄熱量演
算制御部でなされる蓄熱量制御のフローチャート、第6
図は暖房負荷変化に対する上記蓄熱量制御のシミュレー
ション結果の一例を示すグラフである。 1……圧縮機、11……室外熱交換器、17……室内熱交換
器、21……蓄熱用熱交換器(蓄熱手段)、37……蓄熱温
度センサ(蓄熱量検出手段)、38……運転制御部(運転
制御手段)、45……演算手段、46……目標蓄熱量設定手
段、47……蓄熱運転制御手段、Z……蓄熱槽。
FIG. 1 is a functional block diagram of the present invention, FIG. 2 is a schematic diagram showing the overall configuration of an air conditioner in an embodiment of the present invention, FIG. 3 is a refrigerant circuit diagram of the above device, and FIG. FIG. 5 is a flowchart of heat storage amount control performed by the heat storage amount calculation control unit in the above device, FIG.
The figure is a graph showing an example of a simulation result of the heat storage amount control with respect to a heating load change. 1 ... Compressor, 11 ... Outdoor heat exchanger, 17 ... Indoor heat exchanger, 21 ... Heat storage heat exchanger (heat storage means), 37 ... Heat storage temperature sensor (heat storage amount detection means), 38 ... … Operation control part (operation control means), 45 …… calculation means, 46 …… target heat storage amount setting means, 47 …… heat storage operation control means, Z …… heat storage tank.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機(1)に室外熱交換器(11)と室内
熱交換器(17)とを接続して冷媒循環回路を構成する一
方、蓄熱槽(Z)とこの蓄熱槽(Z)内の蓄熱剤に熱量
を付与する蓄熱手段(21)と上記蓄熱槽(Z)内の蓄熱
量を検出する蓄熱量検出手段(37)とを設け、また上記
蓄熱槽(Z)内の蓄熱量が基準量以上のときに、上記圧
縮機(1)から室内熱交換器(17)を通して循環する冷
媒に上記蓄熱槽(Z)内の熱量を付与する蓄熱回収運転
によって室内の空調を行う一方、上記蓄熱槽(Z)内の
蓄熱量が基準量未満のときには上記圧縮機(1)から室
内熱交換器(17)と室外熱交換器(11)とを通して冷媒
を循環させる非蓄熱回収運転によって室内の空調を行う
べく運転を制御する運転制御手段(38)を設け、さらに
所定時間間隔毎に、上記蓄熱量検出手段(37)での検出
蓄熱量、及び上記非蓄熱回収運転の積算時間(Δt2)と
上記蓄熱回収運転の積算時間(Δt1)との運転時間比率
から空調負荷に対する蓄熱量の過不足を求める演算手段
(45)と、この演算手段(45)での結果における過不足
を解消する方向に増減させて目標蓄熱量を設定する目標
蓄熱量設定手段(46)と、上記蓄熱手段(21)を作動さ
せる蓄熱運転で上記目標蓄熱量の熱量が上記蓄熱槽
(Z)内に蓄熱されるべく制御する蓄熱運転制御手段
(47)とを設けていることを特徴とする空気調和機。
1. A refrigerant circulation circuit is constructed by connecting an outdoor heat exchanger (11) and an indoor heat exchanger (17) to a compressor (1), while a heat storage tank (Z) and this heat storage tank (Z). ) Is provided with heat storage means (21) for giving heat quantity to the heat storage agent and heat storage amount detection means (37) for detecting the heat storage amount in the heat storage tank (Z), and heat storage in the heat storage tank (Z). When the amount is equal to or larger than the reference amount, the indoor air conditioning is performed by the heat storage recovery operation that gives the heat amount in the heat storage tank (Z) to the refrigerant circulating from the compressor (1) through the indoor heat exchanger (17). When the amount of heat stored in the heat storage tank (Z) is less than the reference amount, a non-heat storage recovery operation in which a refrigerant is circulated from the compressor (1) through the indoor heat exchanger (17) and the outdoor heat exchanger (11) An operation control means (38) for controlling the operation is provided to perform air conditioning in the room, and the above-mentioned operation is performed at predetermined time intervals. The heat storage amount detected by the heat storage amount detection means (37) and the operating time ratio of the integrated time (Δt2) of the non-heat storage recovery operation and the integrated time (Δt1) of the heat storage recovery operation described above are sufficient or insufficient for the air conditioning load. Calculating means (45), a target heat storage amount setting means (46) for setting a target heat storage amount by increasing or decreasing in a direction to eliminate excess or deficiency in the result of the calculation means (45), and the heat storage means (21). ) Is operated, the heat storage operation control means (47) for controlling the heat amount of the target heat storage amount to be stored in the heat storage tank (Z) is provided, and the air conditioner.
JP1190160A 1989-07-21 1989-07-21 Air conditioner Expired - Fee Related JP2518412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190160A JP2518412B2 (en) 1989-07-21 1989-07-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190160A JP2518412B2 (en) 1989-07-21 1989-07-21 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0355454A JPH0355454A (en) 1991-03-11
JP2518412B2 true JP2518412B2 (en) 1996-07-24

Family

ID=16253425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190160A Expired - Fee Related JP2518412B2 (en) 1989-07-21 1989-07-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP2518412B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673198A (en) * 2012-09-04 2014-03-26 林铖 Variable temperature and pressure control system of refrigerating media of central air-conditioner
WO2018211679A1 (en) * 2017-05-19 2018-11-22 三菱電機株式会社 Power monitoring system

Also Published As

Publication number Publication date
JPH0355454A (en) 1991-03-11

Similar Documents

Publication Publication Date Title
US5388420A (en) Heat storage type air conditioner, and defrosting method
JP2001248937A (en) Heat pump hot water supply air conditioner
JP3267187B2 (en) Heat pump water heater
JP2518412B2 (en) Air conditioner
US5275010A (en) Control method and apparatus of absorption chiller heater
JPH0735938B2 (en) Heat pump type water heater
JPH0849936A (en) Regenerative air-conditioner
CN114857662A (en) Multi-split air conditioning system and control method thereof
JP6897657B2 (en) Heat pump device, air conditioner, and hot water unit
JPH02223757A (en) Air conditioner
JPH0349034B2 (en)
JP2930837B2 (en) Air conditioner humidity display
JPH0349016B2 (en)
JP2000074455A (en) Heat storage/hot water supply air conditioner
JP7415750B2 (en) heat pump cycle equipment
JP2839457B2 (en) Thermal storage type air conditioner
JP2001304659A (en) Air-conditioning system for building capable of controlling amount of heat storage
JP2705492B2 (en) Water storage, hot water storage type hot water supply device
JPH01239349A (en) Heat pump type hot water feed apparatus
JPH0233108Y2 (en)
JPS5922437Y2 (en) Air conditioning/heating water heater
JPH01184365A (en) Hot water feeding device
JPH078973Y2 (en) Air conditioner
JPH094906A (en) Heat storage type freezing/air conditioning apparatus
JP2801698B2 (en) Refrigerant natural circulation cooling system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees