JP2517158B2 - Heating element - Google Patents

Heating element

Info

Publication number
JP2517158B2
JP2517158B2 JP2152034A JP15203490A JP2517158B2 JP 2517158 B2 JP2517158 B2 JP 2517158B2 JP 2152034 A JP2152034 A JP 2152034A JP 15203490 A JP15203490 A JP 15203490A JP 2517158 B2 JP2517158 B2 JP 2517158B2
Authority
JP
Japan
Prior art keywords
heating element
coating layer
catalyst
silica
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2152034A
Other languages
Japanese (ja)
Other versions
JPH0447693A (en
Inventor
英延 脇田
昭彦 吉田
弘一 立花
之良 小野
浩直 沼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2152034A priority Critical patent/JP2517158B2/en
Publication of JPH0447693A publication Critical patent/JPH0447693A/en
Application granted granted Critical
Publication of JP2517158B2 publication Critical patent/JP2517158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Resistance Heating (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、暖房・給湯・乾燥・加熱等に利用される発
熱体に関するものである。
TECHNICAL FIELD The present invention relates to a heating element used for heating, hot water supply, drying, heating and the like.

従来の技術 暖房に用いられる赤外線のうち、近赤外線は波長が短
く高いエネルギーをもつため人体の皮膚に深く浸透し、
痛みを感じる痛点を刺激する。このため人体は、すばや
く暖かさを感じるが、長時間放射を受けると苦痛を感じ
る。これに対し、遠赤外線は、波長が長く皮膚に深く浸
透しないため、暖かさをすぐには感じないが、長時間放
射を受けても心地よい暖かさを感じることから暖房の質
として好ましいものである。
Conventional technology Among infrared rays used for heating, near infrared rays have a short wavelength and high energy, so they penetrate deeply into the skin of the human body,
It stimulates pain points. For this reason, the human body feels warmth quickly, but suffers from long-term radiation. On the other hand, far-infrared rays have a long wavelength and do not penetrate deeply into the skin, so they do not feel warmth immediately, but they feel pleasant warmth even if they are radiated for a long time, which is a preferable heating quality. .

従来の管状外装体を有する発熱体は、ニクロム線やカ
ンタル線などの金属線をコイル状にしたものを、絶縁材
料とともに用いた金属管、あるいは石英管,ガラス管,
セラミック管等に内蔵して構成されている。これら発熱
体の遠赤外線放射効果を向上するため、従来、前記管状
外装体の表面に溶射法,塗膜形成法により遠赤外線放射
材料の被覆層を形成して用いていた。
A heating element having a conventional tubular exterior body is a metal tube using a metal wire such as a nichrome wire or a kanthal wire in a coil shape together with an insulating material, or a quartz tube, a glass tube,
It is built in a ceramic tube or the like. In order to improve the far-infrared radiation effect of these heating elements, conventionally, a coating layer of a far-infrared radiation material is formed on the surface of the tubular outer casing by a thermal spraying method or a coating forming method.

しかし、このような従来の赤外線放射被覆層を有する
発熱体には、以下に示すような課題があった。
However, the heating element having such a conventional infrared radiation coating layer has the following problems.

溶射法により形成した被覆層は、多孔質であるが、溶
融粒子の融混により面結合で被覆層形成しており、比表
面積が小さい。
The coating layer formed by the thermal spraying method is porous, but the coating layer is formed by surface bonding by melting and mixing of molten particles, and has a small specific surface area.

塗膜形成法により形成した被覆層は、顔料と結合剤よ
りなり、顔料間の空隙を結合剤で充填して被覆層形成し
ているため多孔質でなく、また比表面積も非常に小さ
い。
The coating layer formed by the coating film forming method is composed of a pigment and a binder, and is not porous because the voids between the pigments are filled with the binder to form the coating layer, and the specific surface area is very small.

発明が解決しようとする課題 以上のように、従来の被覆層では、表面積が小さく、
被覆層より放射される赤外線のうち遠赤外線量比率の低
いものしか得られなかった。
As described above, in the conventional coating layer, the surface area is small,
Of the infrared rays emitted from the coating layer, only infrared rays having a low far infrared ray ratio were obtained.

また、電気ストーブで暖房する場合、発熱体は室内の
空気を加熱するとともに、室内に漂っているタバコの煙
や室内の臭気なども加熱することになる。一般に、臭気
物質は温度が高いほど、人間の鼻には強く感じるもので
あり、また室内に一度吸着した臭気成分も加熱されるこ
とにより再び気化して室内雰囲気に漂うことになる。こ
こにおいて従来の発熱体は臭気成分の浄化能を持たない
ため、電気ストーブを使用すると、電気ストーブを使用
しないときに比べて臭気がきつくなるという現象がしば
しば生じ問題であった。
When heating with an electric stove, the heating element heats the air in the room as well as the smoke of cigarettes floating in the room and the odor in the room. In general, the higher the temperature of an odor substance, the more strongly the human nose feels it, and the odor component once adsorbed in the room is also vaporized again and floats in the room atmosphere. Here, since the conventional heating element does not have the ability to purify odorous components, the use of the electric stove often causes a problem that the odor becomes harder than when the electric stove is not used.

本発明は上記従来技術の課題を解決するために、簡単
な構成で、従来と比べ高い遠赤外線放射効率を持ち、臭
気や有害ガスを除去できる発熱体を提供することを目的
とする。
In order to solve the above-mentioned problems of the prior art, it is an object of the present invention to provide a heating element that has a simple structure, has a far-infrared radiation efficiency higher than conventional ones, and can remove odors and harmful gases.

課題を解決するための手段 本発明は、電気抵抗体を内蔵する石英またはガラス体
と、石英またはガラス体表面に少なくともペロブスカイ
ト型複合酸化物とシリカとからなる触媒被覆層より構成
した発熱体である。
Means for Solving the Problems The present invention is a heating element including a quartz or glass body containing an electric resistor and a catalyst coating layer composed of at least a perovskite type complex oxide and silica on the surface of the quartz or glass body. .

作用 本発明の発熱体はセラミックからなる触媒被覆層を設
けているために、触媒層を有しない従来の石英またはガ
ラス体に比べて、放射赤外線中の遠赤外線比率が高い。
このため、従来の石英またはガラス体に比べて、快適な
暖房を提供できる。
Action Since the heating element of the present invention is provided with the catalyst coating layer made of ceramic, the far infrared ray ratio in the emitted infrared rays is higher than that of the conventional quartz or glass body having no catalyst layer.
Therefore, more comfortable heating can be provided as compared with the conventional quartz or glass body.

石英またはガラス体表面に触媒被覆層を設けてあるた
めに、石英またはガラス体は被加熱物を加熱したり周囲
の空気を加熱するとともに、触媒被覆層も加熱すること
になる。ここで触媒被覆層は発熱体の周囲を覆っている
ために、電気抵抗体からの輻射,伝熱により、熱を効率
よく吸収し、触媒被覆層は短時間で触媒の活性化温度ま
で加熱される。さらに発熱体は発熱体近傍の空気も加熱
するために、発熱体近傍に対流としての空気流が多くな
る。そして、この空気流が発熱体の加熱により活性化温
度以上に加熱された触媒に接触する際に、触媒作用によ
り空気中の臭気成分や有害成分、例えば、アンモニアや
脂肪酸や一酸化炭素(以下COと記す)が、触媒作用によ
り酸化、浄化される。
Since the catalyst coating layer is provided on the surface of the quartz or glass body, the quartz or glass body heats the object to be heated or the surrounding air, and also heats the catalyst coating layer. Here, since the catalyst coating layer covers the periphery of the heating element, the heat is efficiently absorbed by the radiation and heat transfer from the electric resistor, and the catalyst coating layer is heated to the activation temperature of the catalyst in a short time. It Further, since the heating element also heats the air in the vicinity of the heating element, the air flow as convection increases near the heating element. When this air flow contacts the catalyst heated to a temperature higher than the activation temperature by heating the heating element, the odor component or harmful component in the air due to the catalytic action, such as ammonia, fatty acid or carbon monoxide (hereinafter CO 2 ) Is oxidized and purified by the catalytic action.

したがって、発熱体が置かれている雰囲気に臭気やタ
バコの煙、CO等の有害ガスが漂っていても、加熱あるい
は使用の際に浄化され、快適な加熱環境をつくることが
できる。
Therefore, even if an odor, cigarette smoke, or harmful gas such as CO drifts in the atmosphere in which the heating element is placed, it is purified during heating or use, and a comfortable heating environment can be created.

上記作用は発熱体近傍に生じる自然対流について説明
したが、発熱体にファンなどで強制的に空気を供給した
場合、より顕著な効果が得られる。
The above operation has been described with respect to natural convection that occurs in the vicinity of the heating element, but a more remarkable effect can be obtained when the air is forcibly supplied to the heating element with a fan or the like.

また、酸化触媒としては、通常Pt,Pd等の貴金属が用
いられているが、本発明で用いたプロブスカイトは貴金
属と活性は同等であるにもかかわらず、卑金属酸化物で
あるためより安価である。
Further, as the oxidation catalyst, a noble metal such as Pt, Pd is usually used, but the perovskite used in the present invention is a noble metal oxide even though the activity is equivalent to that of the noble metal. is there.

本発明の触媒被覆層はシリカを含むものであり、これ
により石英またはガラス体への触媒の密着強度を向上さ
せることが出来る。これは、シリカとペロブスカイトと
を焼成することにより、シリカのOH基同士の脱水反応あ
るいは部分焼結により強固な被覆膜が得られるととも
に、シリカからなる石英管あるいはガラス管とも親和性
が得られ、被覆層の耐熱衝撃性(石英管との密着性)が
向上するためである。
The catalyst coating layer of the present invention contains silica, which can improve the adhesion strength of the catalyst to the quartz or glass body. This is because by firing silica and perovskite, a strong coating film can be obtained by dehydration reaction or partial sintering of OH groups of silica, and affinity with a quartz tube or glass tube made of silica can be obtained. This is because the thermal shock resistance (adhesion with the quartz tube) of the coating layer is improved.

実施例 触媒被覆層の比表面積は、10m2/g以上であることが望
ましい。これは、触媒被覆層の比表面積の増大にともな
い、放射される近赤外線量に比較した遠赤外線放射量比
率は増大するが、比表面積が、10m2/g以上で充分な遠赤
外線放射比率が得られるためである。
Example The specific surface area of the catalyst coating layer is preferably 10 m 2 / g or more. This is because as the specific surface area of the catalyst coating layer increases, the far-infrared radiation amount ratio compared to the amount of near-infrared radiation emitted increases, but the specific surface area is 10 m 2 / g or more and a sufficient far-infrared radiation ratio is This is because it can be obtained.

また、高比表面積多孔質被覆層は、石英管あるいはガ
ラス管外周面の半周より大なる面積を被覆することが望
ましい。これは、半周より大なる面積を被覆することに
より、より熱衝撃に強い被覆層が得られるからである。
Further, it is desirable that the high specific surface area porous coating layer covers an area larger than a half circumference of the outer peripheral surface of the quartz tube or the glass tube. This is because a coating layer that is more resistant to thermal shock can be obtained by coating an area larger than half the circumference.

なお、触媒被覆層を形成するとき、石英管あるいはガ
ラス管表面を粗面化した後、触媒被覆層を設けるか、石
英管表面を十分に脱脂した後、触媒被覆層を設けること
が望ましい。この製造方法により、発熱体と触媒被覆層
との密着性を向上させることができる。
When forming the catalyst coating layer, it is desirable to roughen the surface of the quartz tube or glass tube and then provide the catalyst coating layer, or to sufficiently degrease the surface of the quartz tube and then provide the catalyst coating layer. By this manufacturing method, the adhesion between the heating element and the catalyst coating layer can be improved.

シリカの含有量は触媒被覆層中に5〜40wt%であるこ
とが望ましい。シリカの含有量が5wt%未満でも、また4
0wt%を超えてもシリカの十分な密着特性向上効果が得
られず、剥離の原因となる。
The content of silica is preferably 5-40 wt% in the catalyst coating layer. Even if the content of silica is less than 5 wt%, 4
Even if it exceeds 0 wt%, a sufficient effect of improving the adhesion property of silica cannot be obtained, which causes peeling.

ペロブスカイト型複合酸化物は、Aを希土類金属およ
びSr,Pbからなる群から選ばれた少なくとも1種の金属
で構成し、BをCo,Mn,Fe,Cr,CuおよびNiからなる群から
選ばれた少なくとも1種の金属で構成したものである。
なお、AおよびBがただ一つの元素で構成される場合、
LaCoO3が最高の酸化活性を示すが、他の元素を用いて
も、酸化活性は得られる。
The perovskite type complex oxide comprises A composed of at least one metal selected from the group consisting of rare earth metals and Sr, Pb, and B selected from the group consisting of Co, Mn, Fe, Cr, Cu and Ni. It is composed of at least one metal.
If A and B consist of only one element,
LaCoO 3 has the highest oxidative activity, but oxidative activity can be obtained with other elements.

また、Aを2種の元素で複合させると、単独の元素で
構成される場合よりも、著しく酸化活性を増大できる場
合がある。特に、本発明に用いる化学式La1-xSrxCoO
3で、Xは0.1ないし0.3であるペロブスカイト型複合酸
化物は、Aが単独の元素からなるLaCoO3やSrCoO3よりも
高活性である。
Further, when A is composed of two kinds of elements, the oxidation activity may be remarkably increased as compared with the case where it is composed of a single element. In particular, the chemical formula La 1-x Sr x CoO used in the present invention is used.
In 3 , the perovskite type complex oxide in which X is 0.1 to 0.3 is more active than LaCoO 3 or SrCoO 3 in which A is a single element.

混合スラリーの塗装は種々の方法を用いることができ
る。例えば、スプレー塗装,ディップ塗装、静電塗装、
ロールコート法、スクリーン印刷法等がある。
Various methods can be used for coating the mixed slurry. For example, spray painting, dip painting, electrostatic painting,
There are roll coating method, screen printing method and the like.

以下、本発明の具体的実施例を説明する。 Specific examples of the present invention will be described below.

<実施例1> 外径10mm、内径9mm、長さ15cmの石英管外周面を脱脂
洗浄した。
<Example 1> The outer peripheral surface of a quartz tube having an outer diameter of 10 mm, an inner diameter of 9 mm and a length of 15 cm was degreased and washed.

一方、通常の処方で調製したペロブスカイト型複合酸
化物La0.8Sr0.2CoO3400gと,シリカに換算して20wt%の
シリカコロイド水溶液500gと、適量の水を加え,粘度15
0cPのスラリーAを調製した。このスラリーAを、前記
石英管の両側25mmを残して全周にスプレー法で塗装した
後、200℃で2時間乾燥し、続いて500℃で1時間焼成し
て、重量として1gのペロブスカイト/シリカ被覆層を有
する石英管Aを調製した。この石英管に、電気抵抗体で
あるニクロム線、および碍子とを用いて本発明の発熱体
(実施例A)を作成した。本発明の発熱体Aの構成を図
に示した。
On the other hand, 400 g of La 0.8 Sr 0.2 CoO 3 perovskite type complex oxide prepared by the usual formulation, 500 g of 20 wt% silica colloid aqueous solution converted to silica, and an appropriate amount of water were added to give a viscosity of 15
A 0 cP slurry A was prepared. The slurry A was spray-coated on the entire circumference, leaving 25 mm on both sides of the quartz tube, dried at 200 ° C. for 2 hours, and then calcined at 500 ° C. for 1 hour to give a weight of 1 g of perovskite / silica. A quartz tube A having a coating layer was prepared. A heating element (Example A) of the present invention was prepared by using a nichrome wire which is an electric resistor and an insulator in the quartz tube. The structure of the heating element A of the present invention is shown in the drawing.

図において、本発明の発熱体Aは300W仕様のニクロム
線1、石英管2と、その表面に形成した前記触媒被覆層
3により構成され、碍子4により絶縁、保持されてい
る。
In the figure, the heating element A of the present invention is composed of a nichrome wire 1 of 300 W specifications, a quartz tube 2 and the catalyst coating layer 3 formed on the surface thereof, and is insulated and held by an insulator 4.

被覆層を持たない発熱体と触媒層を被覆した発熱体A
のそれぞれについて、赤外線放射強度を測定したとこ
ろ、波長0.78〜3μmの近赤外線は被覆層の無い発熱体
の方が高いものの、3μm以上の遠赤外の領域では発熱
体Aの方が明らかに放射量が高かった。
Heating element without coating layer and heating element A coated with catalyst layer
For each of the above, the infrared radiation intensity was measured, and the near-infrared rays with a wavelength of 0.78 to 3 μm were higher in the heating element without the coating layer, but the heating element A clearly emitted in the far-infrared region of 3 μm or more. The quantity was high.

また発熱体Aについて、臭気成分の一種であるイソ吉
草酸の浄化特性を測定した。前記発熱体を内径15mmの石
英管内に置き、これにイソ吉草酸60ppm含有空気を流速5
00ml/minで流通させ、触媒被覆層温度を250℃として、
発熱体前後でのイソ吉草酸浄化能を測定した。この結
果、定常状態で90%の転化率となった。通電量を増し、
増媒被覆層温度を上げたところ、290℃で99%の転化率
を示した。
Further, with respect to the heating element A, the purification characteristics of isovaleric acid, which is a kind of odor component, were measured. The heating element was placed in a quartz tube with an inner diameter of 15 mm, and air containing 60 ppm of isovaleric acid was flown into it.
It is circulated at 00 ml / min, the catalyst coating layer temperature is 250 ° C.,
The ability to purify isovaleric acid before and after the heating element was measured. As a result, the conversion rate was 90% in the steady state. Increase the amount of electricity,
When the temperature of the sensitizing coating layer was raised, the conversion rate of 99% was shown at 290 ° C.

<実施例2> 実施例1で調製したスラリーAにおいて、スラリー中
の全固形成分に対して、シリカの含有量を1wt%〜60wt
%の間となるようにコロイダルシリカの含有量を変化さ
せ、シリカ増減分はペロブスカイト量を増減させたスラ
リーを調製した。これを用いて触媒被覆層1gを実施例A
と同様にして石英管外周面全周に形成した発熱体を作成
した。
<Example 2> In the slurry A prepared in Example 1, the silica content was 1 wt% to 60 wt% based on all the solid components in the slurry.
The content of colloidal silica was changed so as to be in the range of 100%, and the amount of silica increase / decrease was adjusted to prepare a slurry in which the amount of perovskite was increased or decreased. Using this, a catalyst coating layer of 1 g was prepared according to Example A.
A heating element formed on the entire outer peripheral surface of the quartz tube was prepared in the same manner as in.

これらの発熱体について熱衝撃試験を行い、被覆層の
密着性を調べた。熱衝撃試験は、石英管に内蔵した電気
抵抗体に通電し、発熱体中央の表面温度を25℃毎に設定
し、その温度で10分間保持した後、室温水中に投下して
被覆層の剥離の有無を調べ、剥離を起こさない最大温度
を耐熱衝撃温度とした。
A thermal shock test was performed on these heating elements to examine the adhesion of the coating layer. In the thermal shock test, the electric resistance built into the quartz tube is energized, the surface temperature at the center of the heating element is set at every 25 ° C, the temperature is maintained for 10 minutes, and then the coating layer is removed by dropping it in room temperature water. The presence or absence of heat resistance was examined, and the maximum temperature at which peeling did not occur was defined as the thermal shock resistance temperature.

耐熱衝撃試験の結果を第1表に示した。 The results of the thermal shock test are shown in Table 1.

第1表より明らかなように、シリカの含有量が5wt%
以上40wt%以下で最も良好な密着性(耐熱衝撃性)が得
られた。このため、シリカの含有量はこの範囲であるこ
とが望ましい。
As is clear from Table 1, the silica content is 5 wt%
The best adhesion (thermal shock resistance) was obtained at 40 wt% or less. Therefore, the content of silica is preferably in this range.

<実施例3> 実施例1で用いるペロブスカイト型複合酸化物ABO3
おいて、BをCoとして、Aを希土類化合物あるいはSrあ
るいはPbとして、実施例1と同様に発熱体を作製した。
<Example 3> In the perovskite-type composite oxide ABO 3 used in Example 1, a heating element was produced in the same manner as in Example 1 except that B was Co and A was a rare earth compound or Sr or Pb.

これらの発熱体について、実施例1と同様に触媒温度
250℃としてイソ吉草酸の浄化率を調べ、結果を第2表
に示した。第2表から明らかなように、AがLaのときに
最高活性を示した。
For these heating elements, the catalyst temperature was the same as in Example 1.
The purification rate of isovaleric acid was examined at 250 ° C, and the results are shown in Table 2. As is clear from Table 2, the highest activity was exhibited when A was La.

同様に、AをLaとして、BをCo,Mn,Fe,Cr,Cuお よびNiのいずれかとして、実施例1と同様に発熱体を作
製した。
Similarly, A is La and B is Co, Mn, Fe, Cr, Cu. As either of Ni and Ni, a heating element was manufactured in the same manner as in Example 1.

これらの発熱体について、実施例1と同様に触媒温度
250℃でのイソ吉草酸の浄化率を調べ、結果を第3表に
示した。第3表から明らかなように、BがCoのときに最
高活性を示した。
For these heating elements, the catalyst temperature was the same as in Example 1.
The purification rate of isovaleric acid at 250 ° C. was examined, and the results are shown in Table 3. As is clear from Table 3, the highest activity was exhibited when B was Co.

なお、第2表でBを、第3表でAを他の元素に 変えて試験したところ、全ての触媒において活性が認め
られたが最高活性を示した触媒はLaCoO3であった。
In addition, B in Table 2 and A in Table 3 are other elements. When tested under different conditions, the activity was recognized in all the catalysts, but the catalyst showing the highest activity was LaCoO 3 .

<実施例4> 実施例1で用いるペロブスカイト型複合酸化物ABO
3を、La1-xSrxCoO3とし、Xを0から0.5に変化させ、実
施例1と同様に発熱体を作製した。
<Example 4> Perovskite complex oxide ABO used in Example 1
3 was La 1-x Sr x CoO 3 , X was changed from 0 to 0.5, and a heating element was prepared in the same manner as in Example 1.

これらの発熱体について、実施例1と同様に触媒温度
250℃でのイソ吉草酸の浄化率を調べた。結果を第4表
に示した。第4表から明らかなように、特にXが0.1か
ら0.3の範囲で高い浄化活性が得られ望ましい。
For these heating elements, the catalyst temperature was the same as in Example 1.
The purification rate of isovaleric acid at 250 ° C was investigated. The results are shown in Table 4. As is clear from Table 4, a high purifying activity can be obtained especially when X is in the range of 0.1 to 0.3, which is desirable.

なお、上記実施は例では卑金属の例について述べた
が、貴金属を用いても消臭の効果が得られる。
In addition, although the said embodiment demonstrated the example of a base metal in the example, the effect of deodorizing can be obtained even if a noble metal is used.

発明の効果 以上のように本発明の発熱体を用いることにより、遠
赤外線放射効率の高い心地よい暖房が得られ、さらに周
囲の臭気やタバコの煙等の有害ガスが、触媒作用により
浄化、除去できる。このため発熱体を使用することによ
り、快適な加熱環境が得られる。
EFFECTS OF THE INVENTION As described above, by using the heating element of the present invention, comfortable heating with high far-infrared radiation efficiency can be obtained, and surrounding odors and harmful gases such as cigarette smoke can be purified and removed by catalytic action. . Therefore, a comfortable heating environment can be obtained by using the heating element.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の一実施例の発熱体の断面図である。 1……ニクロム線、2……石英管、3……触媒被覆層。 The drawing is a cross-sectional view of a heating element according to an embodiment of the present invention. 1 ... Nichrome wire, 2 ... Quartz tube, 3 ... Catalyst coating layer.

フロントページの続き (72)発明者 小野 之良 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 沼本 浩直 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平1−211883(JP,A)Front page continuation (72) Inventor Nora Ono 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References Japanese Patent Laid-Open No. 1-211883 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電気抵抗体と、前記電気抵抗体を覆う石英
またはガラス体と、前記石英またはガラス体の表面を被
覆する触媒層を具備し、前記触媒層は少なくとも式ABO3
であらわされるペロブスカイト型複合酸化物とシリカと
からなることを特徴とする発熱体。
1. An electric resistor, a quartz or glass body for covering the electric resistor, and a catalyst layer for coating the surface of the quartz or glass body, wherein the catalyst layer has at least the formula ABO 3
A heating element comprising a perovskite-type composite oxide represented by and silica.
【請求項2】シリカの含有量が触媒被覆層中に5〜40wt
%である請求項1記載の発熱体。
2. The content of silica is 5 to 40 wt% in the catalyst coating layer.
%, The heating element according to claim 1.
【請求項3】ペロブスカイト型複合酸化物ABO3のAを希
土類金属とSr,Pbとからなる群から選ばれた少なくとも
1種の金属で構成し、BをCo,Mn,Fe,Cr,CuおよびNiから
なる群から選ばれた少なくとも1種の金属で構成した請
求項1または2記載の発熱体。
3. A perovskite-type composite oxide ABO 3 is composed of at least one metal selected from the group consisting of rare earth metals and Sr, Pb, and B is Co, Mn, Fe, Cr, Cu and The heating element according to claim 1 or 2, comprising at least one metal selected from the group consisting of Ni.
【請求項4】ペロブスカイト型複合酸化物が化学式La
1-xSrxCoO3であり、式中Xは0.1ないし0.3であることを
特徴とする請求項1または2記載の発熱体。
4. The perovskite complex oxide has the chemical formula La.
The heating element according to claim 1 or 2, wherein the heating element is 1-x Sr x CoO 3 , and X is 0.1 to 0.3.
JP2152034A 1990-06-11 1990-06-11 Heating element Expired - Lifetime JP2517158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152034A JP2517158B2 (en) 1990-06-11 1990-06-11 Heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152034A JP2517158B2 (en) 1990-06-11 1990-06-11 Heating element

Publications (2)

Publication Number Publication Date
JPH0447693A JPH0447693A (en) 1992-02-17
JP2517158B2 true JP2517158B2 (en) 1996-07-24

Family

ID=15531610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152034A Expired - Lifetime JP2517158B2 (en) 1990-06-11 1990-06-11 Heating element

Country Status (1)

Country Link
JP (1) JP2517158B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127672B2 (en) * 2008-11-06 2013-01-23 日立造船株式会社 Ammonia decomposition catalyst
CN105289458A (en) * 2015-10-30 2016-02-03 广东美的制冷设备有限公司 Coating, purifying component, as well as preparation method and application of purifying component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532552B2 (en) * 1988-02-19 1996-09-11 松下電器産業株式会社 Electric cooker

Also Published As

Publication number Publication date
JPH0447693A (en) 1992-02-17

Similar Documents

Publication Publication Date Title
KR950008544B1 (en) Catalytic heat generator
EP0503500B1 (en) Catalytic body and process for producing the same
EP0527349B1 (en) Heating element for deodorization
JP2818051B2 (en) Air purifier also serves as a heater
JP2517158B2 (en) Heating element
JP3009507B2 (en) Resistance adjustment type heater and heater unit
JP3271635B2 (en) Thick film gas sensor and method of manufacturing the same
JP2932456B2 (en) Heating element
JPH02213080A (en) Heating device and manufacture thereof
US6524535B1 (en) Adsorption, decomposition deodorization element
JPH0811188B2 (en) Deodorizing catalyst
JPH07106318B2 (en) Heating element
JPH05154348A (en) Deodorizing device
JPH0132883B2 (en)
JPH04280088A (en) Ceramic heater
JPH0448572A (en) Thawing unit
JPS6197031A (en) Parts of combustion chamber provided with catalyst
JPS59199023A (en) Nitrogen oxide treating apparatus of burning appliance
JPH0596176A (en) Catalyst body
JPH09306644A (en) Heating element
JPH0545294B2 (en)
JPH0586255B2 (en)
JPH0838584A (en) Deodorizing apparatus
JPH1073557A (en) Activation method of catalyst for gas sensor
JPH04298237A (en) Deodorizing heating element and production thereof