JP2516288B2 - Method for producing chloroform - Google Patents

Method for producing chloroform

Info

Publication number
JP2516288B2
JP2516288B2 JP3139317A JP13931791A JP2516288B2 JP 2516288 B2 JP2516288 B2 JP 2516288B2 JP 3139317 A JP3139317 A JP 3139317A JP 13931791 A JP13931791 A JP 13931791A JP 2516288 B2 JP2516288 B2 JP 2516288B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
carbon tetrachloride
chloroform
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3139317A
Other languages
Japanese (ja)
Other versions
JPH04364136A (en
Inventor
武夫 鈴木
信一 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP3139317A priority Critical patent/JP2516288B2/en
Publication of JPH04364136A publication Critical patent/JPH04364136A/en
Application granted granted Critical
Publication of JP2516288B2 publication Critical patent/JP2516288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、四塩化炭素と水素とを
反応させてクロロホルムを製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing chloroform by reacting carbon tetrachloride with hydrogen.

【0002】[0002]

【従来の技術】四塩化炭素は、メタンやメタノールの塩
素化反応によりクロロホルム、塩化メチレン、塩化メチ
ルなどと共に併産されており、また、1,2−ジクロル
プロパンの塩素化分解反応によっても、パークロロエチ
レンと共に併産されている。
Carbon tetrachloride is co-produced with chloroform, methylene chloride, methyl chloride, etc. by the chlorination reaction of methane and methanol, and also by the chlorination decomposition reaction of 1,2-dichloropropane. It is co-produced with perchlorethylene.

【0003】しかし、四塩化炭素は環境問題などから国
際的に規制され始めており、今後は、四塩化炭素の余剰
が予想されている。
However, carbon tetrachloride has started to be regulated internationally due to environmental problems and the like, and surplus of carbon tetrachloride is expected in the future.

【0004】従来、四塩化炭素の有効利用の一つとし
て、四塩化炭素を白金金属などの触媒を用いて還元し、
クロロホルムを製造することが知られていた。
Conventionally, as one of effective utilization of carbon tetrachloride, carbon tetrachloride is reduced by using a catalyst such as platinum metal,
It was known to produce chloroform.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
触媒では、メタン生成の副反応が起こり、クロロホルム
の選択率が低いという問題があった。また、クロロホル
ム生成反応が約25Kcal/molの発熱に対し、メ
タン生成の副反応は約80Kcal/molの発熱であ
るために、従来の触媒では反応温度の制御が難しいとい
う問題があった。
However, the conventional catalyst has a problem that the side reaction of methane generation occurs and the selectivity of chloroform is low. Further, since the chloroform generation reaction generates about 25 Kcal / mol and the methane formation side reaction generates about 80 Kcal / mol, the conventional catalyst has a problem that it is difficult to control the reaction temperature.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねてきた。その結果、白
金金属とランタノイド金属酸化物よりなる触媒を用い
て、四塩化炭素を水素化脱塩素反応させることにより、
収率よくクロロホルムを製造できることを見い出し、本
発明を完成するに至った。
[Means for Solving the Problems] The present inventors have conducted extensive studies to solve the above problems. As a result, by using a catalyst composed of platinum metal and a lanthanoid metal oxide, by hydrodechlorinating carbon tetrachloride,
The inventors have found that chloroform can be produced in good yield and have completed the present invention.

【0007】即ち、本発明は、白金金属とランタノイド
金属酸化物より構成される触媒の存在下に、四塩化炭素
と水素とを反応させることを特徴とするクロロホルムの
製造方法である。
That is, the present invention is a method for producing chloroform characterized in that carbon tetrachloride and hydrogen are reacted in the presence of a catalyst composed of platinum metal and a lanthanoid metal oxide.

【0008】本発明において用いられる触媒は、白金金
属とランタノイド金属酸化物より構成されるものであれ
ばよく、担体の有無、担体の種類、各々の触媒成分の担
持方法など、特に限定されるものではない。しかし、本
発明においては、担体を用いた方が原料の四塩化炭素の
転化率が大きくなるために好ましい。
The catalyst used in the present invention may be any catalyst as long as it is composed of platinum metal and lanthanoid metal oxide, and there is no particular limitation on the presence or absence of a carrier, the type of the carrier, the method of supporting each catalyst component, and the like. is not. However, in the present invention, the use of a carrier is preferable because the conversion rate of carbon tetrachloride as a raw material is increased.

【0009】本発明において用いられる担体は、一般に
触媒の担体として使用されているものが何等制限なく採
用される。特に、比表面積が10〜2000m2/g、
好ましくは100〜1000m2/gであり、細孔容積
が0.1ml/g以上である担体が好適に採用される。
このような担体としては、アルミナ、シリカ、ゼオライ
ト、および活性炭などをあげることができる。
As the carrier used in the present invention, those generally used as catalyst carriers can be adopted without any limitation. In particular, the specific surface area is 10 to 2000 m 2 / g,
A carrier having a pore volume of 100 to 1000 m 2 / g and a pore volume of 0.1 ml / g or more is preferably adopted.
Examples of such a carrier include alumina, silica, zeolite, and activated carbon.

【0010】本発明において触媒成分の担体への担持方
法としては、公知の方法が何等制限なく採用されるが、
通常は含浸法、共沈法、イオン交換法などが採用され
る。以下に代表的な担持方法による触媒調製について詳
しく説明する。
In the present invention, as a method for loading the catalyst component on the carrier, a known method is adopted without any limitation.
Usually, an impregnation method, a coprecipitation method, an ion exchange method or the like is adopted. The catalyst preparation by a typical supporting method will be described in detail below.

【0011】含浸法による触媒調製は、触媒担体に塩化
白金酸等の白金化合物の水溶液およびランタノイド金属
硝酸塩等のランタノイド金属化合物の水溶液を含浸させ
た後、乾燥、焼成および還元を行い触媒とするものであ
る。この時、担体に、まず、ランタノイド金属化合物の
水溶液を含浸させて乾燥および焼成した後、白金化合物
の水溶液を含浸させて乾燥および還元するのが好まし
い。触媒成分の分散のしやすさや触媒製造の容易さなど
から、含浸法が好適に用いられる。
In the catalyst preparation by the impregnation method, a catalyst carrier is impregnated with an aqueous solution of a platinum compound such as chloroplatinic acid and an aqueous solution of a lanthanoid metal compound such as a lanthanoid metal nitrate, and then dried, calcined and reduced to obtain a catalyst. Is. At this time, it is preferable that the carrier is first impregnated with an aqueous solution of a lanthanoid metal compound, dried and fired, and then impregnated with an aqueous solution of a platinum compound, dried and reduced. The impregnation method is preferably used because of the ease of dispersion of the catalyst components and the ease of catalyst production.

【0012】共沈法による触媒調製は、触媒担体となり
うる化合物および白金化合物やランタノイド金属化合物
などの触媒成分となりうる化合物を含む水溶液よりpH
調整などにより、各成分を一緒に沈澱させ、ろ過、洗
浄、乾燥、焼成及び還元を行うものである。
The catalyst is prepared by the coprecipitation method from the pH of an aqueous solution containing a compound that can be a catalyst carrier and a compound that can be a catalyst component such as a platinum compound or a lanthanoid metal compound.
Each component is precipitated together by adjustment, filtration, washing, drying, calcination and reduction are performed.

【0013】イオン交換法による触媒調製は、ゼオライ
ト、イオン交換樹脂などのイオン交換能のある触媒担体
を塩化白金酸等の白金化合物およびランタノイド金属化
合物を含む水溶液に浸し、イオン交換させた後、乾燥、
焼成および還元を行うものである。
The catalyst is prepared by the ion exchange method by immersing a catalyst carrier having an ion exchange capacity such as zeolite or an ion exchange resin in an aqueous solution containing a platinum compound such as chloroplatinic acid and a lanthanoid metal compound, followed by ion exchange, and then drying. ,
Baking and reduction are performed.

【0014】本発明において用いられる触媒中の白金金
属の含有量は、良好な触媒作用を期待するためには0.
01重量%以上であることが好ましい。通常は、経済性
などから0.01〜50重量%の範囲、好ましくは0.
1〜10重量%の範囲内であることがより好適である。
The content of platinum metal in the catalyst used in the present invention is 0.
It is preferably at least 01% by weight. Usually, it is in the range of 0.01 to 50% by weight, preferably 0.
More preferably, it is within the range of 1 to 10% by weight.

【0015】一方、本発明における触媒中のランタノイ
ド金属酸化物の含有量は、50〜99.99重量%、好
ましくは90〜99.9重量%であることが好適であ
る。
On the other hand, the content of the lanthanoid metal oxide in the catalyst of the present invention is preferably 50 to 99.99% by weight, preferably 90 to 99.9% by weight.

【0016】上記の触媒を担体に担持させるときには、
四塩化炭素の高い転化率とクロロホルムの高い選択率を
得るために、担体中に上記触媒が1.0〜30重量%、
更に好ましくは3.0〜25重量%の範囲内となるよう
に担持させることが好ましい。
When carrying the above catalyst on a carrier,
In order to obtain a high conversion of carbon tetrachloride and a high selectivity of chloroform, 1.0 to 30% by weight of the above catalyst is contained in the carrier.
More preferably, it is supported so as to be in the range of 3.0 to 25% by weight.

【0017】本発明においては、上記触媒の存在下に、
水素と四塩化炭素の混合ガスを流通させ、反応が行われ
る。反応は、クロロホルムの選択率を良くするために
は、水素過剰の条件で、特に水素と四塩化炭素の混合比
を3以上、好ましくは5以上の条件で、工業的には5〜
20の範囲内で行うのが好適である。
In the present invention, in the presence of the above catalyst,
The reaction is carried out by circulating a mixed gas of hydrogen and carbon tetrachloride. In order to improve the selectivity of chloroform, the reaction is carried out under the condition of excess hydrogen, especially under the condition that the mixing ratio of hydrogen and carbon tetrachloride is 3 or more, preferably 5 or more.
It is preferable to carry out in the range of 20.

【0018】水素と四塩化炭素の混合ガスの触媒に対す
る供給量は、ガス空間速度で表すと、100〜100,
000hr-1、さらには1,000〜10,000hr
-1の範囲であることが好ましい。
The supply amount of the mixed gas of hydrogen and carbon tetrachloride to the catalyst is 100 to 100 when expressed in terms of gas space velocity.
000 hr -1 , further 1,000 to 10,000 hr
It is preferably in the range of -1 .

【0019】反応温度は、四塩化炭素の転化率を高く
し、しかもメタンや塩化メチレンなどの副生成物の生成
を抑制してクロロホルムの選択率を向上させるために
は、80〜250℃の範囲、さらには100〜200℃
の範囲であることが好ましい。
The reaction temperature is in the range of 80 to 250 ° C. in order to increase the conversion rate of carbon tetrachloride and suppress the formation of by-products such as methane and methylene chloride and improve the selectivity of chloroform. And even 100-200 ° C
Is preferably within the range.

【0020】反応圧力は、特に限定されないが、通常は
0.1〜20気圧の範囲、更に好ましくは0.5〜10
気圧の範囲である。
The reaction pressure is not particularly limited, but is usually in the range of 0.1 to 20 atm, more preferably 0.5 to 10 atm.
It is the range of atmospheric pressure.

【0021】本発明における反応形式は、特に制限され
るものではなく、回分式または連続式のいずれでもよい
が、工業的には連続式で行うのが好ましい。また、触媒
の使用方法としては、固定床式または流動床式のいずれ
でもよい。
The reaction system in the present invention is not particularly limited and may be either a batch system or a continuous system, but it is industrially preferably carried out in a continuous system. The catalyst may be used in either a fixed bed type or a fluidized bed type.

【0022】[0022]

【効果】本発明の方法によれば、四塩化炭素と水素か
ら、高い選択率でクロロホルムを製造できる。さらに、
触媒を担体に担持させた場合には、原料の四塩化炭素の
転化率を大きくすることができ、したがって、クロロホ
ルムを高収率で得ることができる。また、高収率の結果
として高発熱反応である副反応が抑制され、反応の制御
が容易になる。
[Effect] According to the method of the present invention, chloroform can be produced from carbon tetrachloride and hydrogen with high selectivity. further,
When the catalyst is supported on a carrier, the conversion rate of carbon tetrachloride as a raw material can be increased, and thus chloroform can be obtained in a high yield. Further, as a result of the high yield, side reactions that are highly exothermic reactions are suppressed, and the control of the reaction becomes easier.

【0023】[0023]

【実施例】以下、本発明を更に具体的に説明するため実
施例を掲げるが、本発明はこれらの実施例に限定される
ものではない。
EXAMPLES Examples will be given below to more specifically describe the present invention, but the present invention is not limited to these examples.

【0024】実施例1 細孔容積が0.67ml/g、比表面積が160m2
gの市販のγーアルミナ(造粒品、平均径=2〜4m
m)を、触媒担体として使用した。
Example 1 Pore volume 0.67 ml / g, specific surface area 160 m 2 /
g of commercially available γ-alumina (granulated product, average diameter = 2 to 4 m
m) was used as catalyst support.

【0025】硝酸ランタン水溶液をγーアルミナに含浸
させ、風乾、乾燥(150℃×20hrs)後、電気炉
内で焼成(450℃×5hrs)して、硝酸ランタンを
熱分解し酸化ランタンを担持したアルミナとした。この
時、硝酸ランタン水溶液の濃度および含浸させる液量を
調整し、酸化ランタンのアルミナ中の含量を3〜20重
量%の範囲内で変化させた。
An aqueous solution of lanthanum nitrate was impregnated in γ-alumina, air-dried and dried (150 ° C. × 20 hrs), and then baked (450 ° C. × 5 hrs) in an electric furnace to thermally decompose lanthanum nitrate to carry lanthanum oxide-supported alumina. And At this time, the concentration of the lanthanum nitrate aqueous solution and the amount of the impregnated liquid were adjusted, and the content of lanthanum oxide in the alumina was changed within the range of 3 to 20% by weight.

【0026】次に、得られた酸化ランタンを担持させた
アルミナに塩化白金酸水溶液を含浸させ、風乾、乾燥
後、電気炉内、水素雰囲気下で、加熱還元処理(240
℃×5hrs)し、白金金属と酸化ランタンとを担持さ
せたアルミナを調製した。この時、塩化白金酸水溶液の
濃度および含浸させる液量を調整し、白金金属のアルミ
ナ中の量を0.25重量%および0.5重量%とした。
Next, the lanthanum oxide-supported alumina thus obtained was impregnated with an aqueous solution of chloroplatinic acid, air-dried and dried, and then heat-reduced in a hydrogen atmosphere in an electric furnace (240).
C. × 5 hrs) to prepare alumina supporting platinum metal and lanthanum oxide. At this time, the concentration of the chloroplatinic acid aqueous solution and the amount of the impregnated liquid were adjusted so that the amount of platinum metal in alumina was 0.25% by weight and 0.5% by weight.

【0027】得られた白金金属と酸化ランタンとを担持
させたアルミナ3.0gを、加熱器と冷却器を備えたガ
ラス製反応管(内径17mm)に入れ、水素/窒素混合
ガスを流通させ、還元前処理(270℃×3hrs)を
行った後、所定の反応温度まで降温させた。反応温度
は、100〜180℃の範囲内で変化させた。
3.0 g of the obtained alumina carrying platinum metal and lanthanum oxide was placed in a glass reaction tube (inner diameter: 17 mm) equipped with a heater and a cooler, and a hydrogen / nitrogen mixed gas was passed therethrough. After pre-reduction treatment (270 ° C. × 3 hrs), the temperature was lowered to a predetermined reaction temperature. The reaction temperature was changed within the range of 100 to 180 ° C.

【0028】次に、四塩化炭素を定量ポンプで気化器に
送り、水素と混合させた後、反応管へ導入し、反応を開
始させた。この時、四塩化炭素の送液量と水素流量を調
整し、H2/CCl4のモル比を5〜20の範囲で、ま
た、ガス空間速度(以下、GHSVという)を1000
〜5000hr-1の範囲内で変化させた。
Next, carbon tetrachloride was sent to the vaporizer by a metering pump, mixed with hydrogen, and then introduced into the reaction tube to start the reaction. At this time, the amount of carbon tetrachloride fed and the flow rate of hydrogen were adjusted so that the molar ratio of H 2 / CCl 4 was in the range of 5 to 20 and the gas space velocity (hereinafter, referred to as GHSV) was 1000.
The value was changed within the range of ˜5000 hr −1 .

【0029】反応開始と共に、反応熱により反応温度が
上昇したので、冷却器を始動させ、所定の反応温度に保
った。
Since the reaction temperature rose due to the heat of reaction at the start of the reaction, the cooler was started and kept at the predetermined reaction temperature.

【0030】反応生成物の分析は、反応が定常に達した
後、ドライアイス−メタノールで冷却して捕集し、PE
G・20Mキャピラリーカラム付きFID型ガスクロマ
トグラフを使用して行った。また、低沸点生成物はガス
で採取し、ポラパック−Q(Porapak−Q)カラ
ム付きTCD型ガスクロマトグラフで分析した。
After the reaction reached a steady state, the reaction product was analyzed by cooling with dry ice-methanol to collect PE.
It was performed using a FID type gas chromatograph equipped with a G.20M capillary column. The low boiling point product was collected as a gas and analyzed by a TCD type gas chromatograph equipped with a Porapak-Q column.

【0031】結果は、表1にまとめて示した。The results are summarized in Table 1.

【0032】比較例1 実施例1において、酸化ランタンを担持させないで、白
金金属のみを担持させたγーアルミナを調製し、反応を
行った。反応操作、分析は実施例1と同様にして行っ
た。
Comparative Example 1 In Example 1, γ-alumina supporting only platinum metal without supporting lanthanum oxide was prepared and reacted. The reaction procedure and analysis were performed in the same manner as in Example 1.

【0033】結果を表1のNo6〜9として示した。The results are shown as Nos. 6 to 9 in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】実施例2 実施例1において、硝酸ランタンを硝酸セリウムに換え
た以外は、実施例1とまったく同様にして行った。
Example 2 The procedure of Example 1 was repeated except that lanthanum nitrate was replaced with cerium nitrate.

【0036】結果は、表2にまとめて示した。The results are summarized in Table 2.

【0037】[0037]

【表2】 [Table 2]

【0038】実施例3 実施例1において、γーアルミナを使用しないで、酸化
ランタン(プレス成型品)および酸化セリウム(プレス
成型品)に、塩化白金酸水溶液を含浸させ、白金金属を
担持させた触媒を調製し、反応を行った。反応操作、分
析は実施例1と同様にして行った。
Example 3 A catalyst obtained by impregnating lanthanum oxide (press-molded product) and cerium oxide (press-molded product) with an aqueous solution of chloroplatinic acid without using γ-alumina, and carrying platinum metal. Was prepared and the reaction was carried out. The reaction procedure and analysis were performed in the same manner as in Example 1.

【0039】結果は、表3にまとめて示した。The results are summarized in Table 3.

【0040】[0040]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−133939(JP,A) 特開 平2−218627(JP,A) 特開 平1−319439(JP,A) 特開 平4−327546(JP,A) 特開 平4−305541(JP,A) 特開 平4−305539(JP,A) 特開 平4−225928(JP,A) 特開 平4−352733(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-3-133939 (JP, A) JP-A-2-218627 (JP, A) JP-A-1-319439 (JP, A) JP-A-4- 327546 (JP, A) JP 4-305541 (JP, A) JP 4-305539 (JP, A) JP 4-225928 (JP, A) JP 4-352733 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】白金金属とランタノイド金属酸化物より構
成される触媒の存在下に、四塩化炭素と水素とを反応さ
せることを特徴とするクロロホルムの製造方法。
1. A method for producing chloroform, which comprises reacting carbon tetrachloride with hydrogen in the presence of a catalyst composed of platinum metal and a lanthanoid metal oxide.
JP3139317A 1991-06-12 1991-06-12 Method for producing chloroform Expired - Fee Related JP2516288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3139317A JP2516288B2 (en) 1991-06-12 1991-06-12 Method for producing chloroform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3139317A JP2516288B2 (en) 1991-06-12 1991-06-12 Method for producing chloroform

Publications (2)

Publication Number Publication Date
JPH04364136A JPH04364136A (en) 1992-12-16
JP2516288B2 true JP2516288B2 (en) 1996-07-24

Family

ID=15242495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3139317A Expired - Fee Related JP2516288B2 (en) 1991-06-12 1991-06-12 Method for producing chloroform

Country Status (1)

Country Link
JP (1) JP2516288B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100316733B1 (en) * 1999-03-25 2001-12-12 박영구 A process for preparing chloroform from carbon tetrachloride using Pt catalyst
CN107626327B (en) * 2017-09-30 2020-04-03 西安凯立新材料股份有限公司 Dechlorination catalyst for carbon tetrachloride

Also Published As

Publication number Publication date
JPH04364136A (en) 1992-12-16

Similar Documents

Publication Publication Date Title
JP2544925B2 (en) Method for producing silver-containing catalyst
US5821394A (en) Process for converting a chlorinated alkane into a less chlorinated alkene
UA77384C2 (en) Catalyst and process for producing vinyl acetate
JPH0829250B2 (en) Method for producing silver-containing catalyst
JPS6159178B2 (en)
US4476250A (en) Catalytic process for the production of methanol
JP6718017B2 (en) Method for producing 1,3-cyclohexanedimethanol
JPS624443A (en) Manufacture of catalyst containing silver
KR870000057B1 (en) Process for preparing oxalic acid diester
JP3543550B2 (en) Method for producing chlorine
US3904701A (en) Process for the catalytic hydrofluorination of halogenated hydrocarbons
US4874888A (en) Process for the preparation of a diester of oxalic acid
CN109952270B (en) Method for producing chlorine by hydrogen chloride oxidation
JP3046865B2 (en) Method for producing chloroform from carbon tetrachloride and catalyst composition used therefor
JP2516288B2 (en) Method for producing chloroform
JP2548575B2 (en) Method for producing silver-containing catalyst
US4638085A (en) Preparation of methyl methacrylate from methacrolein
US6963016B1 (en) Process for the synthesis of highly active modified carbon supported palladium catalyst
JP2812800B2 (en) Method for producing chloroform
KR100211785B1 (en) Process for fluorinating halogenated hydrocarbon
JPS6113689B2 (en)
JPH06279012A (en) Production of carbon monoxide
JP4497459B2 (en) Method for producing methacrylate ester
EP0108359A1 (en) Process for the preparation of a diester of oxalic acid
JP2735755B2 (en) Method for producing chloroform

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees