JP2515948Y2 - Current detector - Google Patents

Current detector

Info

Publication number
JP2515948Y2
JP2515948Y2 JP2291090U JP2291090U JP2515948Y2 JP 2515948 Y2 JP2515948 Y2 JP 2515948Y2 JP 2291090 U JP2291090 U JP 2291090U JP 2291090 U JP2291090 U JP 2291090U JP 2515948 Y2 JP2515948 Y2 JP 2515948Y2
Authority
JP
Japan
Prior art keywords
diode
secondary winding
lead wire
current transformer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2291090U
Other languages
Japanese (ja)
Other versions
JPH03113937U (en
Inventor
博美 小泉
隆實 森田
秀文 小田原
喜一 大前
雅治 青木
哲男 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tempearl Industrial Co Ltd
Original Assignee
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tempearl Industrial Co Ltd filed Critical Tempearl Industrial Co Ltd
Priority to JP2291090U priority Critical patent/JP2515948Y2/en
Publication of JPH03113937U publication Critical patent/JPH03113937U/ja
Application granted granted Critical
Publication of JP2515948Y2 publication Critical patent/JP2515948Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Breakers (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、第5図に示すように、高感度・高速型漏電
ブレーカ1′の電源側電路と大地間に発生する雷サージ
等の衝撃電圧により、漏電ブレーカ1′負荷2側電路3
と大地間に負荷機器保護のために接続されたサージアブ
ソーバ4を介して衝撃電流が大地に流れることによる漏
電検出器1の誤動作防止に関するものである。
[Detailed Description of the Invention] [Industrial field of application] As shown in Fig. 5, the present invention is based on the impact of a lightning surge or the like generated between the power-side electric circuit of the high-sensitivity and high-speed type earth leakage breaker 1'and the ground. Depending on the voltage, earth leakage breaker 1'load 2 side circuit 3
The present invention relates to prevention of malfunction of the earth leakage detector 1 due to impact current flowing to the ground via the surge absorber 4 connected between the ground and the ground for protection of load equipment.

〔従来の技術〕[Conventional technology]

従来、漏電ブレーカ1′は第6図、第7図に示すよう
に、負荷2側電路3を1次巻線とする零相変流器5の2
次巻線6出力は増幅器7に入力され、2次巻線6出力が
漏電検出レベルVSを超えた時に増幅器7から漏電発生信
号SAを出力させ、該漏電発生信号SAが定時間以上持続し
た場合に遮断信号SBを発生させると共に、遮断装置9の
接点10をオフ作動させて負荷回路3を遮断している。
Conventionally, as shown in FIG. 6 and FIG. 7, the earth leakage breaker 1 ′ has a zero phase current transformer 5 having a load 2 side electric circuit 3 as a primary winding.
The output of the secondary winding 6 is input to the amplifier 7, and when the output of the secondary winding 6 exceeds the leakage detection level V S , the amplifier 7 outputs the leakage generation signal S A, and the leakage generation signal S A has a constant time or longer. When it continues, the breaking signal S B is generated and the contact 10 of the breaking device 9 is turned off to cut off the load circuit 3.

〔従来技術の問題点〕[Problems of conventional technology]

この場合において、第8図Aに示すように、衝撃電流
地絡が発生すると、零相変流器5の2次巻線6から第8
図Bに示すように、衝撃電流による直接出力と衝撃電流
がオフになった時の逆起電圧による出力とから成る波形
の出力電圧VZが発生し、該出力電圧VZは増幅器7の漏電
検出レベルVSを大幅に超えた状態で出力時間もコンデン
サCで規定された感応時間より長く(第8図C、第8図
D参照)、従って、ラッチ回路8から遮断信号SBが発生
して、漏電ブレーカ1′が不要動作するという欠点があ
った。
In this case, as shown in FIG. 8A, when an impact current ground fault occurs, the secondary winding 6 of the zero-phase current transformer 5
As shown in FIG. B, direct output and impact current by impact current output voltage V Z is the generation of a waveform consisting of the output due to the counter electromotive voltage when turned off, the output voltage V Z is leakage of the amplifier 7 When the detection level V S is greatly exceeded, the output time is longer than the response time specified by the capacitor C (see FIGS. 8C and 8D), and therefore the latch circuit 8 generates the cutoff signal S B. In addition, there is a drawback that the earth leakage breaker 1 ′ operates unnecessarily.

なお、衝撃電流が第8図Aと逆方向に流れた場合に
は、衝撃電流による直接出力と衝撃電流がオフになった
時の逆起電圧による出力とから成る波形も第8図Eのよ
うに第8図Bに示す波形の逆になり、増幅器7の検出レ
ベルVSを超えた部分の出力時間は第8図Eに示すよう
に、コンデンサCで設定された遅延時間より相当短く、
従って第8図Fに示すように、コンデンサC端子電圧が
低く、漏電ブレーカ1′は誤動作しない。
When the shock current flows in the direction opposite to that in FIG. 8A, the waveform composed of the direct output due to the shock current and the output due to the counter electromotive voltage when the shock current is turned off is also as shown in FIG. 8E. As shown in FIG. 8E, the output time of the portion which is the reverse of the waveform shown in FIG. 8B and exceeds the detection level V S of the amplifier 7 is considerably shorter than the delay time set by the capacitor C,
Accordingly, as shown in FIG. 8F, the voltage at the capacitor C terminal is low, and the earth leakage breaker 1 'does not malfunction.

〔考案の目的及び目的を達成する手段〕[Object of the device and means for achieving the object]

以上の点に鑑み本件考案は、2次巻線6の一端16及び
他端17の特定部分から第3の口出し線15を出して成る零
相変流器5において、該変流器5の2次巻線6の一端16
及び他端17に並列に第1の抵抗R1を接続すると共に第1
のダイオードD3を、第3の口出し線15が近接した側の該
2次巻線6の一端16に該ダイオードD3のアノード側を配
して該2次巻線6の一端16及び他端17間に並列接続し、
コンデンサC1を充電する方向に第2のダイオードD5を接
続し、該ダイオードD5のアノード側を第3の口出し線15
から離れた該2次巻線6の他端17に、又コンデンサC1の
他端を第3の口出し線15に接続し、該ダイオードD5の両
端に第2の抵抗R2と第3の抵抗R3とを直列回路として並
列接続し、該ダイオードD5のカソードに第3のダイオー
ドD6のアノードを、該ダイオードD6のカソードを第3の
口出し線15が近接した側の該2次巻線6の一端16に接続
し、第1の抵抗R1と第2の抵抗R2を直列接続した両端に
発生する電圧Va+Vbの大きさを判別して、上記変流器5
の1次電流Iを検出する判別手段を備えて成り、該変流
器5の第3の口出し線15と該口出し線15と2次巻線6の
一端16が近接する部分間の巻数n2が該2次巻線6の一端
16及び他端17の巻数n1の少なくとも1/4以下となるよう
配されて成り、雷サージ等の衝撃電圧により漏電検出器
1が誤動作しないよう該零相変流器5の2次巻線6の一
端16及び他端17間に第3の口出し線15を設け該零相変流
器5の出力の差電圧を利用したことにある。
In view of the above points, the present invention is a zero-phase current transformer 5 in which a third lead wire 15 is extended from specific portions of one end 16 and the other end 17 of the secondary winding 6, and One end 16 of the next winding 6
And the other end 17 is connected in parallel with the first resistor R1 and
Between the one end 16 and the other end 17 of the secondary winding 6 by arranging the anode side of the diode D3 at one end 16 of the secondary winding 6 on the side close to the third lead wire 15 Connected in parallel to
The second diode D5 is connected in the direction to charge the capacitor C1, and the anode side of the diode D5 is connected to the third lead wire 15
The other end 17 of the secondary winding 6 and the other end of the capacitor C1 are connected to the third lead wire 15, and the second resistor R2 and the third resistor R3 are connected to both ends of the diode D5. Are connected in parallel as a series circuit, the anode of the third diode D6 is connected to the cathode of the diode D5, and the cathode of the diode D6 is connected to one end 16 of the secondary winding 6 on the side close to the third lead wire 15. The current transformer 5 is connected by determining the magnitude of the voltage Va + Vb generated at both ends of the first resistor R1 and the second resistor R2 connected in series.
Of the current transformer 5 and the number of turns n2 between the third lead wire 15 of the current transformer 5 and the portion where the lead wire 15 and one end 16 of the secondary winding 6 are close to each other. One end of the secondary winding 6
The secondary winding 6 of the zero-phase current transformer 5 is arranged such that the leakage detector 1 does not malfunction due to an impact voltage such as a lightning surge. The third lead wire 15 is provided between one end 16 and the other end 17 of the above, and the difference voltage of the output of the zero-phase current transformer 5 is utilized.

〔考案の実施例の説明〕[Explanation of the embodiment of the invention]

このように接続されている電流検出装置(第1図)の
動作を第3図の動作状態図及び第4図の拡大図を用いて
説明する。
The operation of the current detecting device (FIG. 1) connected in this way will be described with reference to the operation state diagram of FIG. 3 and the enlarged view of FIG.

さて第4図において、零相変流器5の1次側に第3図
Aのような衝撃電流Iが流れると、同図Bに示した電圧
が零相変流器5の2次巻線6の一端16及び他端17間と第
3の口出し線15間に発生する。これによる電圧Va及びVb
は電流Ia及びIbとなって、電流IaはダイオードD5を通し
てコンデンサC1に流れ、電流IbはコンデンサC1を通して
ダイオードD6に流れる。
Now, in FIG. 4, when an impact current I as shown in FIG. 3A flows on the primary side of the zero-phase current transformer 5, the voltage shown in FIG. 6 between one end 16 and the other end 17 and between the third lead wire 15. The resulting voltage Va and Vb
Become currents Ia and Ib, the current Ia flows to the capacitor C1 through the diode D5, and the current Ib flows to the diode D6 through the capacitor C1.

ところが、該2次巻線6の他端17と第3の口出し線15
間の巻数はn1−n2であり、該2次巻線6の一端16と第3
の口出し線15間の巻数はn2である。巻数n1とn2の関係は
n2/n1≦1/4以下に選定されているから当然2次巻線6の
他端17と第3の口出し線15間に発生する電圧Vaの方が大
きいことになる。従って電圧Va,Vbによって流れる電流I
a,IbはIa>>IbとなりコンデンサC1にはVa−Vbなる電圧
が蓄積される。(第3図C参照)尚、その蓄積電圧Va−
VbはダイオードD6で規制され、ダイオードの順方向電圧
VF以上には上昇し得ないことになる。
However, the other end 17 of the secondary winding 6 and the third lead wire 15
The number of turns between n1 and n2 is between the one end 16 of the secondary winding 6 and the third
The number of turns between the lead wires 15 of n is n2. The relationship between the number of turns n1 and n2 is
Since n2 / n1 ≦ 1/4 is selected, the voltage Va generated between the other end 17 of the secondary winding 6 and the third lead wire 15 is naturally higher. Therefore, the current I flowing by the voltages Va and Vb
Since a and Ib are Ia >> Ib, a voltage Va-Vb is stored in the capacitor C1. (See FIG. 3C) The accumulated voltage Va−
Vb is regulated by diode D6 and the forward voltage of the diode
It cannot rise above VF.

次に、零相変流器5の1次電流(第3図A)が無くな
った時点(イ)で該変流器5の2次出力(第3図B)は
残留磁束の影響で反転(第3図Bのロ)する。この時コ
ンデンサC1に蓄積された電圧Va−Vbは抵抗R3,R2を介し
て該変流器5の2次巻線6の他端17及び第3の口出し線
15を通して放電し、第3図Bのロ部の反転信号を相殺
し、第3図Cに示した電圧波形に抑制する。この電圧波
形を第4図のダイオードD6のカソードと抵抗R3と抵抗R2
との接続点から判別手段(増幅器)7に信号(第3図
D)を与えるが、該判別手段(増幅器)7の判定レベル
VSを下回る信号レベルVXである為該判別手段(増幅器)
7は検知しない。従ってコンデンサCには充電が起こら
ず第3図Eに示した通り、ラッチ回路8は駆動せず漏電
検出器1は誤動作しない。又逆極性で発生した1次電流
については第8図の逆極性不動作の説明で示した通り誤
動作しない。
Next, at the time (a) when the primary current of the zero-phase current transformer 5 (Fig. 3A) disappears, the secondary output of the current transformer 5 (Fig. 3B) reverses due to the effect of the residual magnetic flux ( (B) in FIG. 3B. At this time, the voltage Va-Vb accumulated in the capacitor C1 is passed through the resistors R3 and R2 to the other end 17 of the secondary winding 6 of the current transformer 5 and the third lead wire.
It discharges through 15, cancels the inversion signal of the portion B in FIG. 3B, and suppresses the voltage waveform shown in FIG. 3C. This voltage waveform is shown in Fig. 4 as the cathode of diode D6, resistor R3 and resistor R2.
A signal (Fig. 3D) is given to the discriminating means (amplifier) 7 from the connection point with the discriminating level of the discriminating means (amplifier) 7.
Since the signal level V X is lower than V S , the discrimination means (amplifier)
7 is not detected. Therefore, the capacitor C is not charged, and as shown in FIG. 3E, the latch circuit 8 is not driven and the leakage detector 1 does not malfunction. Further, the primary current generated with the reverse polarity does not malfunction as described in the explanation of the reverse polarity non-operation in FIG.

(作用及び効果) 以上に述べた通り、本考案により雷サージ等の衝撃電
圧により漏電検出器1が誤動作したりしなくなり、より
信頼性の高い高感度・高速形漏電ブレーカを提供するこ
とができる。
(Operation and effect) As described above, according to the present invention, the leakage detector 1 does not malfunction due to an impact voltage such as a lightning surge, and it is possible to provide a more reliable high-sensitivity and high-speed type earth leakage breaker. .

【図面の簡単な説明】[Brief description of drawings]

第1図……本件考案の電流検出装置の1実施例による回
路構成図、 第2図……本件考案の応用例による回路構成図、 第3図……第1図の本件考案に関係する動作状態図、 第4図……本件考案における動作説明図、 第5図……本件考案と従来実施例に共通するサージアブ
ソーバ接続状態を示す電気回路図、 第6図……従来実施例の電気回路図、 第7図と第8図は従来実施例の動作特性を示す波形図で
ある。 1……漏電検出器、3……負荷電路、5……零相変流
器、7……増幅器、8……ラッチ回路、D3……ダイオー
ド、Tr……トランジスタ、R2……抵抗、R3……抵抗、C1
……コンデンサ。
FIG. 1 ... Circuit configuration diagram according to one embodiment of the current detection device of the present invention, FIG. 2 ... Circuit configuration diagram according to application example of the present invention, FIG. 3 ... Operation related to the present invention of FIG. State diagram, FIG. 4 ... Operation explanatory diagram in the present invention, FIG. 5 ... Electric circuit diagram showing a surge absorber connection state common to the present invention and the conventional embodiment, FIG. 6 ... Electric circuit of the conventional embodiment FIG. 7, FIG. 7 and FIG. 8 are waveform charts showing the operating characteristics of the conventional embodiment. 1 ... Leakage detector, 3 ... Load circuit, 5 ... Zero-phase current transformer, 7 ... Amplifier, 8 ... Latch circuit, D3 ... Diode, Tr ... Transistor, R2 ... Resistor, R3 ... … Resistor, C1
...... Capacitor.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 青木 雅治 広島県広島市南区大州3丁目1番42号 テンパール工業株式会社内 (72)考案者 古本 哲男 広島県広島市南区大州3丁目1番42号 テンパール工業株式会社内 審査官 矢島 伸一 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaharu Aoki 3-42, Oshu, Minami-ku, Hiroshima-shi, Hiroshima Prefecture Temporary Industrial Co., Ltd. (72) (72) Tetsuo Furumoto 3-chome, Oshu, Minami-ku, Hiroshima-shi, Hiroshima No. 1-42 Examiner at Tempar Industrial Co., Ltd. Shinichi Yajima

Claims (3)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】2次巻線の特定の部分から第3の口出し線
(15)を引き出して成る零相変流器において、該変流器
の2次巻線に並列に第1の抵抗を接続すると共に第1の
ダイオードを第3の口出し線(15)が近接した側の該2
次巻線の一端(16)に該ダイオードのアノード側を配し
て該2次巻線間に並列接続し、コンデンサ(C1)を充電
する方向に第2のダイオードを接続し該ダイオードのア
ノード側を第3の口出し線(15)から離れた該2次巻線
の他端(17)に、又コンデンサ(C1)の他端を第3の口
出し線(15)に接続し、第2のダイオードの両端に第2
の抵抗と第3の抵抗を並列接続し第2のダイオードのカ
ソードに第3のダイオードのアノードを、第3のダイオ
ードのカソードを第3の口出し線(15)が近接した側の
該2次巻線の一端(16)に接続し、第1の抵抗と第2の
抵抗を直列接続した両端に発生する電圧の大きさを判別
して上記変流器の1次電流を検出する判別手段を備えて
成ることを特徴とする電流検出装置。
1. A zero-phase current transformer formed by drawing a third lead wire (15) from a specific portion of a secondary winding, wherein a first resistor is provided in parallel with the secondary winding of the current transformer. Connect the first diode to the second diode on the side close to the third lead wire (15).
The anode side of the diode is arranged at one end (16) of the secondary winding and is connected in parallel between the secondary windings, and the second diode is connected in the direction of charging the capacitor (C1), and the anode side of the diode is connected. Is connected to the other end (17) of the secondary winding distant from the third lead wire (15), and the other end of the capacitor (C1) is connected to the third lead wire (15). Second on both ends of
And the third resistor are connected in parallel, the anode of the third diode is connected to the cathode of the second diode, and the cathode of the third diode is connected to the secondary winding on the side close to the third lead wire (15). A determination means is provided which is connected to one end (16) of the wire and which detects the primary current of the current transformer by determining the magnitude of the voltage generated at both ends of the first resistance and the second resistance connected in series. A current detection device comprising:
【請求項2】実用新案登録請求の範囲第(1)項におい
て、第3の抵抗の両端に発生する電圧の大きさを判別し
て、上記変流器の1次電流を検出する判別手段を備えて
成ることを特徴とする実用新案登録請求の範囲第(1)
項記載の電流検出装置。
2. A utility model registration claim (1), wherein a determining means for determining the magnitude of the voltage generated across the third resistor and detecting the primary current of the current transformer is provided. Claim for utility model registration characterized in that it is provided (1)
The current detection device according to the item.
【請求項3】実用新案登録請求範囲第(1)項の零相変
流器の第3の口出し線(15)と、該口出し線(15)と2
次巻線の一端(16)が近接する部分間の巻数(n2)が該
2次巻線の巻数(n1)の少なくとも1/4以下とすること
を特徴とする実用新案登録請求の範囲第(1)項記載の
電流検出装置。
3. The third lead wire (15) of the zero-phase current transformer according to claim (1) of the utility model registration, and the lead wires (15) and 2
The number of turns (n2) between parts where one end (16) of the secondary winding is close to is at least 1/4 or less of the number of turns (n1) of the secondary winding. The current detection device according to the item 1).
JP2291090U 1990-03-06 1990-03-06 Current detector Expired - Lifetime JP2515948Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2291090U JP2515948Y2 (en) 1990-03-06 1990-03-06 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2291090U JP2515948Y2 (en) 1990-03-06 1990-03-06 Current detector

Publications (2)

Publication Number Publication Date
JPH03113937U JPH03113937U (en) 1991-11-21
JP2515948Y2 true JP2515948Y2 (en) 1996-11-06

Family

ID=31525917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2291090U Expired - Lifetime JP2515948Y2 (en) 1990-03-06 1990-03-06 Current detector

Country Status (1)

Country Link
JP (1) JP2515948Y2 (en)

Also Published As

Publication number Publication date
JPH03113937U (en) 1991-11-21

Similar Documents

Publication Publication Date Title
JP2735598B2 (en) Solid trip device
AU678036B2 (en) Ground fault circuit interrupter with immunity to wide band noise
US5654857A (en) Ground fault circuit interrupt system including auxiliary surge suppression ability
US4942313A (en) Method for detecting a current flowing over the human body between a forward and a return conductor and a circuit configuration for carrying out the method
US5856902A (en) Earth leakage breaker
US4216515A (en) Ground fault interrupter
JPH05501043A (en) Loss of neutral or ground protection circuit
EP0224557A1 (en) A ground fault circuit interrupter with an additional current-sensing element
JPH0152974B2 (en)
US3895263A (en) Grounded neutral detector drive circuit for two pole ground fault interrupter
JP3267900B2 (en) Earth leakage breaker
JP2515948Y2 (en) Current detector
EP0464516B1 (en) Earth leakage-current protection system
CA1104243A (en) Ground fault circuit interrupter module
JPH0425501B2 (en)
JP2874780B2 (en) Current detector
JP2542411Y2 (en) Current detector
JP2710622B2 (en) Earth leakage breaker
JP3395530B2 (en) Leakage detection device of earth leakage breaker
JPH0758298B2 (en) Current detector
JP3367503B2 (en) System failure detection device
JP2531294B2 (en) Leakage detector
JP3044327B2 (en) Accident point search indicator
JP3821249B2 (en) Earth leakage breaker
JPH03256517A (en) Leakage circuit breaker