JP2515186B2 - Composite type damping material - Google Patents

Composite type damping material

Info

Publication number
JP2515186B2
JP2515186B2 JP3143902A JP14390291A JP2515186B2 JP 2515186 B2 JP2515186 B2 JP 2515186B2 JP 3143902 A JP3143902 A JP 3143902A JP 14390291 A JP14390291 A JP 14390291A JP 2515186 B2 JP2515186 B2 JP 2515186B2
Authority
JP
Japan
Prior art keywords
rubber
damping material
polymer viscoelastic
viscoelastic layer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3143902A
Other languages
Japanese (ja)
Other versions
JPH04344230A (en
Inventor
睦 大村
一夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP3143902A priority Critical patent/JP2515186B2/en
Publication of JPH04344230A publication Critical patent/JPH04344230A/en
Application granted granted Critical
Publication of JP2515186B2 publication Critical patent/JP2515186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Resistance Welding (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属板と高分子粘弾性
材とから成る複合型制振材の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a composite type vibration damping material composed of a metal plate and a polymer viscoelastic material.

【0002】[0002]

【従来の技術】金属板と高分子粘弾性材とから成る複合
型制振材には、金属板の片面にゴム、合成樹脂等の高分
子粘弾性材を積層して構成する非拘束型制振材と、2枚
の金属板間に高分子粘弾性材をサンドイッチにして構成
する拘束型制振材とがあり、その用途としては、自動車
のエンジン設置部、ディスクブレーキ、オイルパン、ト
ランスミッション、コンプレッサ、エヤークリーナ、ブ
レーキクラッチ、冷蔵庫、電子レンジ、スピーカ、プレ
ーヤ等、各種の技術分野に広範囲にわたって採用されて
いる。
2. Description of the Related Art A composite type damping material composed of a metal plate and a polymer viscoelastic material is a non-restraint type damping material formed by laminating a polymer viscoelastic material such as rubber or synthetic resin on one side of a metal plate. There are a vibration damping material and a constrained vibration damping material formed by sandwiching a polymer viscoelastic material between two metal plates, and its applications include an engine installation part of an automobile, a disc brake, an oil pan, a transmission, Widely used in various technical fields such as compressors, air cleaners, brake clutches, refrigerators, microwave ovens, speakers and players.

【0003】 [0003]

【発明が解決しようとする課題】上記の如く、前記構成
の制振材はその優れた制振性能から各種の技術分野への
採用が更に拡大されつつあるが、高分子粘弾性材から成
る層が電気絶縁性であるため、抵抗溶接ができず、用途
が限定されるという問題がある。そこで、前記高分子粘
弾性材に導電性を賦与する目的で、金属粉の分散混入が
試みられたが、加工上金属粉を多量に充填することが困
難なため、導電性が得られず、問題の解決に至っていな
い。かりに金属粉の多量充填が可能となり、導電性が得
られたとしても、反面、制振性能の低下を招く。また、
図5(A),(B),(C)に示すように、粒子径の大
きい金属粉を配合し、溶接時の加圧によって導電性を得
ることで、溶接を行なうことも試みられたが、加圧箇所
(溶接箇所)が金属粉と離れた場合、導電性が得られ
ず、あるいは小さくなり、溶接強度にバラツキが生じ
る。
As described above, the vibration damping material having the above-mentioned structure is being adopted in various technical fields due to its excellent vibration damping performance. However, the layer made of a polymer viscoelastic material is used. Since it is electrically insulating, resistance welding cannot be performed, and there is a problem that the application is limited. Therefore, for the purpose of imparting conductivity to the polymer viscoelastic material, an attempt was made to disperse and mix the metal powder, but it is difficult to fill a large amount of metal powder on the process, conductivity is not obtained , The problem has not been resolved. Even if a large amount of metal powder can be filled and conductivity is obtained, on the other hand, the vibration damping performance is deteriorated. Also,
As shown in FIGS. 5 (A), (B), and (C), the large particle size
Includes a fine metal powder to obtain conductivity by applying pressure during welding.
By doing so, welding was attempted, but
When the (welding point) is separated from the metal powder, conductivity is obtained.
Does not occur or becomes smaller, causing variations in welding strength.
It

【0004】[0004]

【発明の目的】本発明は、複合型制振材のもつ制振性能
を損なうことなく、抵抗溶接を可能にし、かつ溶接強度
のバラツキがない導電性の良好な複合型制振材を提供す
ることを目的とする。
An object of the present invention is to enable resistance welding without impairing the vibration damping performance of the composite type vibration damping material , and to improve the welding strength.
It is an object of the present invention to provide a composite vibration damping material having good conductivity and no variation in the above.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するため、2枚の金属板間に高分子粘弾性材を設けて
成る複合型制振材において、前記高分子粘弾性材とし
て、導電性カーボンブラック10〜150PHRと金属
250〜1500PHRを含有する高分子粘弾性材を
用いたことを要旨としている。本発明において、制振材
を構成する金属板としては、鉄板(冷間圧延鋼板)、ア
ルミニウム板、ステンレス鋼板、黄銅板、銅板、亜鉛
板、ニッケル板、錫板が用いられる。
In order to achieve the above object, the present invention provides a composite type vibration damping material comprising a polymer viscoelastic material provided between two metal plates, wherein the polymer viscoelastic material is used. The gist is to use a polymer viscoelastic material containing 10 to 150 PHR of conductive carbon black and 250 to 1500 PHR of metal powder. In the present invention, an iron plate (cold-rolled steel plate), an aluminum plate, a stainless steel plate, a brass plate, a copper plate, a zinc plate, a nickel plate, and a tin plate are used as the metal plate constituting the damping material.

【0006】高分子粘弾性材としては、アクリロニトリ
ルブタジエンゴム(NBR)、スチレンブタジエンゴム
(SBR)、天然ゴム(NR)、ブチルゴム(II
R)、エチレンプロピレンゴム(EPM、EPDM)、
ブタジエンゴム(BR)、イソプレンゴム(IR)、ク
ロロプレンゴム(CR)、アクリルゴム(ACM)、シ
リコンゴム(Q)、フッ素ゴム(FKM)、エピクロロ
ヒドリンゴム(CO、ECO)、ウレタンゴム(U)、
ポリノルボルネンゴム、エチレンアクリルゴム、スチレ
ン−イソプレン−スチレンゴム(熱可塑性ゴム)等が挙
げられる。
As the polymer viscoelastic material, acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), natural rubber (NR), butyl rubber (II
R), ethylene propylene rubber (EPM, EPDM),
Butadiene rubber (BR), isoprene rubber (IR), chloroprene rubber (CR), acrylic rubber (ACM), silicone rubber (Q), fluororubber (FKM), epichlorohydrin rubber (CO, ECO), urethane rubber (U ),
Examples thereof include polynorbornene rubber, ethylene acrylic rubber, and styrene-isoprene-styrene rubber (thermoplastic rubber).

【0007】本発明で用いる導電性カーボンブラックと
は、例えばケッチェンブラック、アセチレンブラック、
SAFカーボン等で、平均粒径50nm以下で、かつ
D.B.P吸収量100cm/100g以上で、かつ
吸着量50mg/g以上のものをいう。金属粉とし
ては、例えば、銀、鉄、ニッケル、亜鉛、錫、アルミニ
ウム、ステンレス等の金属で、粒径20〜150μmの
粉体が好ましい。また、ガラス等の表面に前記金属をコ
ーティングした粉体(粒径20〜150μm)等も使用
できる。
The conductive carbon black used in the present invention includes, for example, Ketjen black, acetylene black,
SAF carbon or the like, having an average particle size of 50 nm or less, and D.I. B. In P absorption 100 cm 3/100 g or more, and refers to more than I 2 adsorption amount 50 mg / g. As the metal powder, for example, metal such as silver, iron, nickel, zinc, tin, aluminum, and stainless steel, and powder having a particle size of 20 to 150 μm is preferable. In addition, powder (particle size 20 to 150 μm) in which the surface of glass or the like is coated with the above metal can also be used.

【0008】本発明において、導電性カーボンブラック
と金属粉とを併用するのは、下記理由による。金属粉を
単一に、例えばゴムに配合した場合、ゴムの加工性の問
題から、配合量に限界がある。金属粉はゴム中で粉体同
士が接触し合いながら網目状に存在するのではなく、金
属粉個々あるいは鎖状、網目状、塊状の集合体がゴムマ
トリックスに囲まれた状態で存在する。このゴムマトリ
ックスが電気絶縁性であるため、抵抗が大きくなり、溶
接が不可能となる。
In the present invention, the conductive carbon black and the metal powder are used together for the following reason. When metal powder is blended singly, for example, in rubber, the amount of blending is limited due to the problem of rubber processability. The metal powder does not exist in the form of a mesh while the powders are in contact with each other in the rubber, but the metal powder exists individually or in the form of a chain-like, mesh-like or lump-like aggregate surrounded by the rubber matrix. Since this rubber matrix is electrically insulating, the resistance becomes large and welding becomes impossible.

【0009】 一方、導電性カーボンブラックを単一で
ゴムに配合した場合は、ゴムの体積固有抵抗を1000
〜0.1Ω・cm程度とすることができる。しかし、こ
の抵抗値では溶接は不可能である。そこで、ゴム層に大
電流を印加して破壊し、金属板同士を接触させる必要が
ある。この時、ゴム層が厚いと、より大きな電流が必要
となる。ゴムが破壊されると、その後、金属板同士が接
触し、大電流が流れるため、発熱が大きくなり、ゴムが
急激に大量に分解し、爆発等の不具合が生じる。
On the other hand, when the conductive carbon black alone is compounded in the rubber, the volume resistivity of the rubber is 1000.
It can be about 0.1 Ω · cm . However, welding is impossible with this resistance value. Therefore, it is necessary to apply a large current to the rubber layer to break it and bring the metal plates into contact with each other. At this time, if the rubber layer is thick, a larger current is required. When the rubber is destroyed, the metal plates come into contact with each other and a large current flows, so that heat generation is increased, the rubber is rapidly decomposed in a large amount, and problems such as explosion occur.

【0010】 しかし、金属粉と導電性カーボンブラッ
クを併用した場合には、金属粉を囲むゴムマトリックス
が導電性であり、かつ層が薄いこととあいまって、低い
電流でゴムが容易に破壊され、2枚の金属板と金属粉が
接触し、電流の通り径ができるため、溶接が可能とな
る。この場合、電流が小さいため、発熱が小さく、前述
した不具合は生じない。また、ゴムマトリックスを導電
性にすることにより、電流は厚さ方向だけでなく、面方
向等あらゆる方向に流れるため、常に電流の通り径が確
保され、かつ電流のバラツキも小さくなり、溶接強度の
バラツキが小さくなる。
However, when the metal powder and the conductive carbon black are used in combination, the rubber matrix surrounding the metal powder is conductive and the layer is thin, so that the rubber is easily destroyed at a low current, Since the two metal plates come into contact with the metal powder and the diameter of the current can be passed, welding becomes possible. In this case, since the current is small, the heat generation is small, and the above-mentioned problems do not occur. Also conductive rubber matrix
By changing the conductivity, the electric current can be applied not only in the thickness direction but also in the lateral direction.
Since the current flows in all directions such as the
Of the welding strength
Variation is reduced.

【0011】前記導電性カーボンブラックの配合量は、
例えばゴム粘弾性材の場合、10〜150PHRが好ま
しい。10PHR以下では導電性が小さいために、ゴム
を破壊するための電流が流れにくくなり、150PHR
以上ではゴムの加工性が著しく低下する。金属粉の配合
量は、250〜1500PHRが好ましい。250PH
R以下では、金属粉を囲むゴムマトリックスの層が厚く
なってしまい、溶接ができない。1500PHR以上で
は、ゴムの加工性が低下する等の不具合が生じる。
The amount of the conductive carbon black compounded is
For example, in the case of a rubber viscoelastic material, 10 to 150 PHR is preferable. Below 10 PHR, the electrical conductivity is low, so it becomes difficult for the current to break the rubber to flow.
If it is above, the workability of the rubber is significantly lowered. The amount of the metal powder blended is preferably 250 to 1500 PHR. 250 PH
Below R, the layer of the rubber matrix surrounding the metal powder becomes thick and welding cannot be performed. When it is 1500 PHR or more, problems such as deterioration of rubber workability occur.

【0012】[0012]

【作用】上記構成によれば、2枚の金属板間の高分子粘
弾性層は、導電性カーボンブラックおよび金属粉を含有
しているので、その相乗効果により、高い導電性が得ら
れ、抵抗溶接が可能となる。
According to the above construction, the polymer viscoelastic layer between the two metal plates contains the conductive carbon black and the metal powder. Therefore, the synergistic effect of the polymer viscoelastic layer provides high conductivity and resistance. Welding becomes possible.

【0013】[0013]

【実施例】具体的な実施例に先立って、構造上の一実施
例を図1(A),(B)に示す。ここで、1は金属板、
2は導電性カーボンブラックおよび金属粉を含むゴム系
または合成樹脂系の高分子粘弾性層であって、予め金属
板の片面に形成しておく。
EXAMPLE Prior to a concrete example, one structural example is shown in FIGS. 1 (A) and 1 (B). Here, 1 is a metal plate,
Reference numeral 2 is a rubber-based or synthetic resin-based polymer viscoelastic layer containing conductive carbon black and metal powder, which is previously formed on one surface of the metal plate.

【0014】高分子粘弾性層2を金属板1に形成する方
法としては、例えばゴムの場合、そのゴム配合物を芳香
族炭化水素、エステル系、ケトン系、アルコール系等の
溶剤に溶解し、ナイフコーター等にて金属板面に塗布
し、乾燥後加硫する方法がとられる。前記ゴム配合物の
コート厚さは乾燥後で20〜150μmとする。
As a method of forming the polymer viscoelastic layer 2 on the metal plate 1, for example, in the case of rubber, the rubber compound is dissolved in a solvent such as an aromatic hydrocarbon, an ester type, a ketone type or an alcohol type, A method of coating on a metal plate surface with a knife coater, etc., and drying and then vulcanizing is used. The coat thickness of the rubber compound is 20 to 150 μm after drying.

【0015】次に金属板1と高分子粘弾性層2からなる
積層体を素材a1とし、この素材a1を高分子粘弾性層2
を中にして向い合わせ、高融点の熱融着性合成樹脂フィ
ルム3を用いて貼り合わせる。前記フィルム3として
は、ナイロン(ポリアミド系)、ポリエステル(ポリエ
ステル系)、ポリプロピレン、ポリエチレン(ポリオレ
フィン系)、FEP(フッ素樹脂系)等が用いられる。
Next, a laminate composed of the metal plate 1 and the polymer viscoelastic layer 2 is used as the material a 1, and this material a 1 is used as the polymer viscoelastic layer 2.
Are faced to each other, and the high melting point heat-fusible synthetic resin film 3 is used for bonding. As the film 3, nylon (polyamide type), polyester (polyester type), polypropylene, polyethylene (polyolefin type), FEP (fluorine resin type) or the like is used.

【0016】前記熱融着性合成樹脂フィルム3に用いら
れる合成樹脂もまた電気絶縁性であるが、前記高分子粘
弾性層2の表面が微細な凹凸状となっており、この凹凸
部によって前記フィルム3の厚さに薄い部分が生じる。
あるいは前記凹凸部分がフィルム3を突き破って、2枚
の素材a1の相互の粘弾性層2が直接接触することによ
り、電気絶縁性である熱融着性合成樹脂フィルムがある
にもかかわらず、複合型制振材全体としては導電性とな
っている。
The synthetic resin used for the heat-fusible synthetic resin film 3 is also electrically insulating, but the surface of the polymer viscoelastic layer 2 has fine irregularities, and the irregularities cause A thin portion occurs in the thickness of the film 3.
Alternatively, the uneven portion penetrates the film 3 and the viscoelastic layers 2 of the two materials a 1 are in direct contact with each other, so that there is a heat-fusible synthetic resin film that is electrically insulating, The composite vibration damping material is electrically conductive as a whole.

【0017】図2(A),(B)に、構造上の他の実施
例を示す。ここで、1は金属板、4は導電性カーボンブ
ラックおよび金属粉を含む熱可塑性合成樹脂系の高分子
粘弾性層であり、金属板1に予め前記高分子粘弾性層4
を形成して作った素材a2相互を、粘弾性層を中にして
向い合わせて加熱し、貼り合わせた構造である。前記熱
可塑性合成樹脂としては、スチレン−イソプレン−スチ
レンゴム(SIS)等の熱可塑性ゴムが用いられる。
2A and 2B show another structural example. Here, 1 is a metal plate, 4 is a polymer viscoelastic layer of a thermoplastic synthetic resin containing conductive carbon black and metal powder, and the polymer viscoelastic layer 4 is previously formed on the metal plate 1.
The raw materials a 2 formed by forming are bonded to each other with the viscoelastic layer facing each other, heated, and bonded together. As the thermoplastic synthetic resin, a thermoplastic rubber such as styrene-isoprene-styrene rubber (SIS) is used.

【0018】図3(A),(B)に、さらに構造上の他
の実施例を示す。ここで、1は金属板、5は導電性カー
ボンブラックおよび金属粉を含み、予めシート状に形成
されたゴム粘弾性層であり、そのゴムシートの両面に金
属板1を貼り合わせて構成したものである。前記ゴムシ
ートは、ゴム配合物をプレス、押出し、カレンダー成形
等の方法で作製される。シート厚さは40〜300μm
とする。
FIGS. 3A and 3B show still another structural example. Here, 1 is a metal plate, 5 is a rubber viscoelastic layer formed in advance into a sheet shape, containing conductive carbon black and metal powder, and the metal sheet 1 is attached to both sides of the rubber sheet. Is. The rubber sheet is produced by a method such as pressing, extruding, and calendering a rubber compound. Sheet thickness is 40-300 μm
And

【0019】以上、3つの構造例に示した制振材におい
ては、従来の拘束型制振材に比べて、導電性の充填材が
多量に配合できるため、抵抗溶接で安定した溶接強度が
得られる。また、従来の制振材と比べると、充填材が多
量に配合されているため、損失係数のピーク値は低下す
るものの、高温域での損失係数が従来のものより大きく
なっており、広い温度範囲で良好な制振性能を有する制
振材が得られる。加えて、図1および図2に示すよう
に、金属板に予め高分子粘弾性層を形成したものを素材
とする場合、従来の制振材製造工程において、安価に、
かつ量産性をもって製造できる利点がある。次に、高分
子粘弾性材に用いる配合物を主にした具体的実施例を示
す。
In the vibration damping materials shown in the three structural examples above, a large amount of conductive filler can be blended as compared with the conventional constrained vibration damping material, so that stable welding strength can be obtained by resistance welding. To be In addition, compared to the conventional damping material, since the filler is blended in a larger amount, the peak value of the loss coefficient decreases, but the loss coefficient in the high temperature range is larger than that of the conventional material, and the wide temperature range. A vibration damping material having good vibration damping performance in the range can be obtained. In addition, as shown in FIGS. 1 and 2, in the case where a metal viscoelastic layer is preliminarily formed on a metal plate as a material, it can be manufactured inexpensively in a conventional damping material manufacturing process.
Moreover, there is an advantage that it can be manufactured with mass productivity. Next, specific examples mainly containing the compound used for the polymer viscoelastic material will be shown.

【0020】実施例1(図1(A),(B)) 厚さ0.25mmの冷間圧延鋼板に高分子粘弾性層を形成
する。高分子粘弾性層に下記配合物Iを用い、これを下
記溶剤Iに50重量%で溶解し、ナイフコーターで前記
鋼板の片面に塗布し、70℃で20分間乾燥して溶剤を
揮発させた後、180℃で20分間加硫を行い、厚さ7
0μmの高分子粘弾性層を形成させた。なお、鋼板と高
分子粘弾性層の接着を高めるため、フェノール樹脂系プ
ライマーを接着剤として使用した。 上記のようにして得られた素材を用い、この素材相互
を粘弾性層を中にして向い合わせ、熱融着性合成樹脂フ
ィルムとしてナイロンフィルムを用い、面圧40kgf/c
m2、温度210℃で貼り合わせ、全厚さ0.6mmの制振
材を得た。
Example 1 (FIGS. 1A and 1B) A polymer viscoelastic layer is formed on a cold rolled steel plate having a thickness of 0.25 mm. The following formulation I was used for the polymer viscoelastic layer, and this was dissolved in the following solvent I at 50% by weight, applied on one side of the steel sheet with a knife coater, and dried at 70 ° C. for 20 minutes to volatilize the solvent. Then, vulcanize at 180 ° C for 20 minutes to obtain a thickness of 7
A 0 μm thick polymer viscoelastic layer was formed. A phenol resin primer was used as an adhesive in order to enhance the adhesion between the steel plate and the polymer viscoelastic layer. Using the materials obtained as described above, the materials are faced to each other with the viscoelastic layer inside, and a nylon film is used as the heat-fusible synthetic resin film. The surface pressure is 40 kgf / c.
Bonding was performed at m 2 and a temperature of 210 ° C. to obtain a damping material having a total thickness of 0.6 mm.

【0021】実施例2 実施例1と同様の方法により、全厚0.6mmの制振材を
得た。ただし、高分子粘弾性層に下記配合物IIを用い
た。 配合物II エチレンアクリルゴム 100部 ステアリン酸 1 ケッチェンブラック 30 ニッケル粒(最大粒径74μm) 500 加工助剤 30 老化防止剤 10 加硫剤 1 加硫促進剤 4
Example 2 By the same method as in Example 1, a damping material having a total thickness of 0.6 mm was obtained. However, the following compound II was used for the polymer viscoelastic layer. Blend II Ethylene acrylic rubber 100 parts Stearic acid 1 Ketjen black 30 Nickel particles (maximum particle size 74 μm) 500 Processing aid 30 Anti-aging agent 10 Vulcanizing agent 1 Vulcanization accelerator 4

【0022】実施例3 実施例1と同様な方法により、全厚さ0.7mmの制振材
を得た。ただし、高分子粘弾性層の厚さを120μmと
した。
Example 3 By the same method as in Example 1, a damping material having a total thickness of 0.7 mm was obtained. However, the thickness of the polymer viscoelastic layer was 120 μm.

【0023】実施例4 実施例1と同様な方法により、全厚さ0.6mmの制振材
を得た。ただし、高分子粘弾性層に下記配合物IIIを用
い、溶剤Iに60重量%で溶解した。 配合物III ニトリルゴム(NBR) 100部 亜鉛華 5 ステアリン酸 1 ケッチェンブラック 20 ニッケル粒(最大粒径74μm) 1000 加工助剤 30 老化防止剤 10 硫黄 1 加硫促進剤 3
Example 4 By the same method as in Example 1, a damping material having a total thickness of 0.6 mm was obtained. However, the following compound III was used for the polymer viscoelastic layer and dissolved in the solvent I at 60% by weight. Formulation III Nitrile rubber (NBR) 100 parts Zinc white 5 Stearic acid 1 Ketjen black 20 Nickel particles (maximum particle size 74 μm) 1000 Processing aid 30 Anti-aging agent 10 Sulfur 1 Vulcanization accelerator 3

【0024】 実施例5実施例1と同様な方法により、
全厚さ0.7mmの制振材を得た。ただし、高分子粘弾
性層の厚さを120μmとし、配合物IVを用いた。 配合物IV ニトリルゴム(NBR) 100部 亜鉛華 5 ステアリン酸 1 ケッチェンブラック 30 ニッケル粒(最大粒径105μm) 500 加工助剤 30 老化防止剤 10 硫黄 1 加硫促進剤 3
Example 5 By the same method as in Example 1,
A damping material having a total thickness of 0.7 mm was obtained. However, the thickness of the polymer viscoelastic layer was 120 μm, and the compound IV was used. Formulation IV Nitrile rubber (NBR) 100 parts Zinc white 5 Stearic acid 1 Ketjen black 30 Nickel particles (maximum particle size 105 μm) 500 Processing aid 30 Anti-aging agent 10 Sulfur 1 Vulcanization accelerator 3

【0025】実施例6 実施例1と同様な方法により、全厚さ0.6mmの制振材
を得た。ただし、高分子粘弾性層に下記配合物Vを用い
た。 配合物V ニトリルゴム(NBR) 100部 亜鉛華 5 ステアリン酸 1 アセチレンブラック 60 ニッケル粒(最大粒径74μm) 500 加工助剤 30 老化防止剤 10 硫黄 1 加硫促進剤 3
Example 6 By the same method as in Example 1, a damping material having a total thickness of 0.6 mm was obtained. However, the following formulation V was used for the polymer viscoelastic layer. Formulation V Nitrile rubber (NBR) 100 parts Zinc white 5 Stearic acid 1 Acetylene black 60 Nickel particles (maximum particle size 74 μm) 500 Processing aid 30 Anti-aging agent 10 Sulfur 1 Vulcanization accelerator 3

【0026】 実施例7 実施例1と同様な方法により、全厚さ0.6mmの制振
材を得た。ただし、高分子粘弾性層に下記配合物VIを
用いた。 配合物VI ニトリルゴム(NBR) 100部 亜鉛華 5 ステアリン酸 1 ケッチェンブラック 30亜鉛 粒(最大粒径74μm) 500 加工助剤 30 老化防止剤 10 硫黄 1 加硫促進剤 3
Example 7 By the same method as in Example 1, a damping material having a total thickness of 0.6 mm was obtained. However, the following formulation VI was used for the polymer viscoelastic layer. Formulation VI Nitrile rubber (NBR) 100 parts Zinc white 5 Stearic acid 1 Ketjen black 30 Zinc particles (maximum particle size 74 μm) 500 Processing aid 30 Anti-aging agent 10 Sulfur 1 Vulcanization accelerator 3

【0027】実施例8 実施例1と同様な方法により、全厚さ0.6mmの制振材
を得た。ただし、熱融着性合成樹脂フィルムとしてポリ
プロピレンフィルムを用い、貼り合わせの温度を180
℃とした。
Example 8 By the same method as in Example 1, a damping material having a total thickness of 0.6 mm was obtained. However, a polypropylene film is used as the heat-fusible synthetic resin film, and the bonding temperature is 180
° C.

【0028】実施例9 実施例1と同様な方法により、全厚さ0.5mmの制振材
を得た。ただし、金属板として0.2mmのステンレス鋼
板を用いた。
Example 9 By the same method as in Example 1, a damping material having a total thickness of 0.5 mm was obtained. However, a 0.2 mm stainless steel plate was used as the metal plate.

【0029】実施例10 実施例1と同様な方法により、全厚さ0.59mmの制振
材を得た。ただし、高分子粘弾性層に下記配合物VIを用
い、加硫を行わず、素材相互の粘弾性層を中にして向い
合わせ、面圧40kgf/cm2、温度200℃で貼り合わせ
た。 配合物VII スチレン-イソプレン-スチレンゴム(SIS) 100部 ケッチェンブラック 30 ニッケル粒(最大粒径74μm) 500 加工助剤 30
Example 10 By the same method as in Example 1, a damping material having a total thickness of 0.59 mm was obtained. However, the following compound VI was used for the polymer viscoelastic layer, and vulcanization was not performed, but the raw materials were made to face each other with the viscoelastic layer inside, and laminated at a surface pressure of 40 kgf / cm 2 and a temperature of 200 ° C. Formulation VII Styrene-isoprene-styrene rubber (SIS) 100 parts Ketjen Black 30 Nickel particles (maximum particle size 74 μm) 500 Processing aid 30

【0030】実施例11(図3(A),(B)) 配合物Iを、170℃、10分の加硫条件でプレス成形
して0.2mmのゴムシートを作製し、これを厚さ0.2
5mmの冷間圧延鋼板で挟み、貼り合わせて全厚さ0.7
mmの制振材を得た。
Example 11 (FIGS. 3 (A) and (B)) The compound I was press-molded under vulcanization conditions of 170 ° C. for 10 minutes to prepare a rubber sheet having a thickness of 0.2 mm. 0.2
It is sandwiched between 5mm cold-rolled steel sheets and laminated to give a total thickness of 0.7.
The vibration damping material of mm was obtained.

【0031】以上の各実施例により得た制振材から、図
4に示すように、長さ、幅が210mm,100mmの制振
材Mを切り出し、それと同じ大きさで厚さ0.25mmの
冷間圧延鋼板Nとを幅20mmで重ね合わせ、20mm間隔
で10点、抵抗溶接を行い、これを一点鎖線に沿って切
断し、引張り試験を行った。その最適溶接条件、引張り
試験および損失係数の結果を下記表に示す。
As shown in FIG. 4, a vibration damping material M having a length and width of 210 mm and 100 mm was cut out from the vibration damping material obtained in each of the above examples, and the same size and thickness of 0.25 mm were obtained. A cold-rolled steel sheet N was overlaid with a width of 20 mm, resistance welding was performed at 10 points at 20 mm intervals, and this was cut along the alternate long and short dash line to perform a tensile test. The optimum welding conditions, tensile test and loss factor results are shown in the table below.

【0032】[0032]

【表1】 [Table 1]

【0033】 ただし、従来品1は、実施例11(図
3)の構造で、粒子径の大きい金属粉のみを含む高分子
粘弾性材を用いて作製したもの、従来品2は、実施例1
(図1)の構造で、導電性カーボンブラックおよび金属
粉を含まない高分子粘弾性材を用いて作製したものであ
る。
However, the conventional product 1 has the structure of Example 11 (FIG. 3) and is manufactured by using a polymer viscoelastic material containing only metal powder having a large particle size , and the conventional product 2 is manufactured by using the structure of Example 1
The structure shown in FIG. 1 is produced by using a polymer viscoelastic material containing neither conductive carbon black nor metal powder.

【0034】[0034]

【発明の効果】以上に述べたように、本発明によれば、
高分子粘弾性層に導電性カーボンブラックと金属粉を含
有する粘弾性材を使用しているため、従来の制振材に比
べて、溶接が可能で、かつ安定した溶接性が得られ、ま
た制振性能おいても広い温度範囲にわたって高い制振性
能が得られる。
As described above, according to the present invention,
As the viscoelastic material containing conductive carbon black and metal powder is used for the polymer viscoelastic layer, welding is possible and stable weldability is obtained compared to conventional damping materials. High vibration damping performance can be obtained over a wide temperature range.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の一実施例による複合型制振材
であって、中間工程にある側面図である。(B)は完成
後の側面図である。
FIG. 1A is a side view of a composite damping material according to an embodiment of the present invention in an intermediate step. (B) is a side view after completion.

【図2】(A)は他の実施例による複合型制振材であっ
て、中間工程にある側面図である。(B)は完成後の側
面図である。
FIG. 2A is a side view of a composite type vibration damping material according to another embodiment in an intermediate step. (B) is a side view after completion.

【図3】(A)は他の実施例による複合型制振材であっ
て、中間工程にある側面図である。(B)は完成後の側
面図である。
FIG. 3A is a side view of a composite vibration damping material according to another embodiment in an intermediate step. (B) is a side view after completion.

【図4】制振材の溶接試験に用いた供試体の平面図であ
る。
FIG. 4 is a plan view of a test piece used for a welding test of a damping material.

【図5】 粘弾性層に粒子径の大きい金属粉を有する制
振材の溶接時における通電、非通電状態を示す説明図で
ある。
FIG. 5 is an explanatory diagram showing a current-carrying state and a non-current-carrying state during welding of a damping material having a viscoelastic layer containing metal powder having a large particle size.

【符号の説明】[Explanation of symbols]

1 金属板 2,4,5 高分子粘弾性層 3 熱融着性合成樹脂フィルム 1 Metal plate 2,4,5 Polymer viscoelastic layer 3 Heat-fusible synthetic resin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B32B 25/02 B32B 25/02 // C08K 3/04 KCT C08K 3/04 KCT 3/08 KCU 3/08 KCU C08L 21/00 C08L 21/00 F16F 15/02 9138−3J F16F 15/02 Q ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B32B 25/02 B32B 25/02 // C08K 3/04 KCT C08K 3/04 KCT 3/08 KCU 3 / 08 KCU C08L 21/00 C08L 21/00 F16F 15/02 9138-3J F16F 15/02 Q

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2枚の金属板間に高分子粘弾性材を設け
て成る複合型制振材において、前記高分子粘弾性材が、
導電性カーボンブラック10〜150PHRと金属粉
50〜1500PHRを含有する高分子粘弾性材である
ことを特徴とする複合型制振材。
1. A composite type damping material comprising a polymeric viscoelastic material provided between two metal plates, wherein the polymeric viscoelastic material is
Conductive carbon black 10-150 PHR and metal powder 2
A composite damping material, which is a polymer viscoelastic material containing 50 to 1500 PHR .
【請求項2】 高分子粘弾性層を金属板に予め形成した
ものを素材とし、この素材相互が高分子粘弾性層を中に
して向い合わされ、高融点の熱融着性合成樹脂フィルム
で貼り合わされている請求項1に記載の複合型制振材。
2. A material in which a polymer viscoelastic layer is formed on a metal plate in advance is used as a material, and the materials are faced to each other with the polymer viscoelastic layer in the middle and pasted with a high melting point heat-fusible synthetic resin film. The composite type vibration damping material according to claim 1, which is combined.
【請求項3】 熱可塑性樹脂系の高分子粘弾性層を金属
板に予め形成したものを素材とし、この素材相互が高分
子粘弾性層を中にして向い合わされ、融着により貼り合
わされている請求項1に記載の複合型制振材。
3. A thermoplastic resin-based polymer viscoelastic layer formed in advance on a metal plate is used as a material, and the materials are faced to each other with the polymer viscoelastic layer in the middle, and bonded by fusion bonding. The composite damping material according to claim 1.
JP3143902A 1991-05-20 1991-05-20 Composite type damping material Expired - Lifetime JP2515186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3143902A JP2515186B2 (en) 1991-05-20 1991-05-20 Composite type damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3143902A JP2515186B2 (en) 1991-05-20 1991-05-20 Composite type damping material

Publications (2)

Publication Number Publication Date
JPH04344230A JPH04344230A (en) 1992-11-30
JP2515186B2 true JP2515186B2 (en) 1996-07-10

Family

ID=15349728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3143902A Expired - Lifetime JP2515186B2 (en) 1991-05-20 1991-05-20 Composite type damping material

Country Status (1)

Country Link
JP (1) JP2515186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504457B (en) * 2012-11-02 2015-10-21 Univ Nat Pingtung Sci & Tech A spot welding method for lap-joint of multi-metal sheets

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030096917A1 (en) * 2001-08-23 2003-05-22 Sumitomo Rubber Industries, Ltd. Polymer composition for conductive roller, polymer composition, conductive roller, and conductive belt
US7401690B2 (en) * 2005-09-02 2008-07-22 Material Sciences Corporation Damped clutch plate system and method
JP5172416B2 (en) * 2008-03-27 2013-03-27 株式会社神戸製鋼所 Foamed resin coated metal sheet and unfoamed resin coated metal sheet
JP6531613B2 (en) * 2015-10-26 2019-06-19 日本製鉄株式会社 Low noise winding transformer and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111030A (en) * 1981-12-24 1983-07-01 Mitsubishi Paper Mills Ltd Support for photography
JPS6244437A (en) * 1985-08-22 1987-02-26 新日本製鐵株式会社 Resin composite vibration-damping metallic plate and manufacture thereof
JPH0673935B2 (en) * 1988-04-01 1994-09-21 ニチアス株式会社 Damping material and soundproof structure using damping material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504457B (en) * 2012-11-02 2015-10-21 Univ Nat Pingtung Sci & Tech A spot welding method for lap-joint of multi-metal sheets

Also Published As

Publication number Publication date
JPH04344230A (en) 1992-11-30

Similar Documents

Publication Publication Date Title
US20060062977A1 (en) Bonded lightweight structural sheet
US3347978A (en) Electrically conductive joints and gaskets
WO2015152216A1 (en) Packaging material for batteries
EP0440410A2 (en) Method for joining FRP material with vulcanized rubber
JP2515186B2 (en) Composite type damping material
US20130068419A1 (en) Thermally conductive reinforcing sheet, molded article and reinforcing method thereof
JPH05138802A (en) Composite type vibration damping material excellent in spot-weldability and adherence
JPWO2016159278A1 (en) Battery packaging material, manufacturing method thereof and battery
US4019941A (en) Method of constructing conveyor belting
JPH09228079A (en) Corrosion protection method of metal, corrosion protecting material and conductive sheet
JPH07122056B2 (en) Composition for composite type damping material
CN1200593C (en) Electrothermal face heating component with special insulating layer
JPH0542628A (en) Manufacture of composite steel sheet with good weldability
JP2502467Y2 (en) Flexible sheet for preventing electrical and electromagnetic interference
JP5368354B2 (en) Resin coated metal plate
JPS62132639A (en) Vibration-damping metallic plate
JPH0688286A (en) Production of electroplated resin laminated steel plate
JP3409456B2 (en) Gas liquid impermeable rubber material and method for producing the same
JP2547802B2 (en) Composition for composite type damping material
JP2015195089A (en) Battery-packaging material
JP2945544B2 (en) Resin composite metal plate with excellent resistance weldability
JPH01280544A (en) Laminated metallic plate with excellent damping property and manufacturing method thereof
JP6277825B2 (en) Battery packaging materials
JPH0830182B2 (en) Joint sheet
JPH02273231A (en) Composite damping material for room temperature