JP2515183B2 - Method for producing magnesium-zinc ferrite - Google Patents

Method for producing magnesium-zinc ferrite

Info

Publication number
JP2515183B2
JP2515183B2 JP3131934A JP13193491A JP2515183B2 JP 2515183 B2 JP2515183 B2 JP 2515183B2 JP 3131934 A JP3131934 A JP 3131934A JP 13193491 A JP13193491 A JP 13193491A JP 2515183 B2 JP2515183 B2 JP 2515183B2
Authority
JP
Japan
Prior art keywords
mol
magnesium
moo
zinc
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3131934A
Other languages
Japanese (ja)
Other versions
JPH04338165A (en
Inventor
秀樹 松井
武史 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP3131934A priority Critical patent/JP2515183B2/en
Publication of JPH04338165A publication Critical patent/JPH04338165A/en
Application granted granted Critical
Publication of JP2515183B2 publication Critical patent/JP2515183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マグネシウム−亜鉛系
フェライトの製造方法に関し、更に詳しく述べると、少
量の三酸化モリブデンを添加して焼成することにより高
飽和磁束密度の酸化物磁性材料を製造する方法に関する
ものである。本発明により得られる磁性材料は、特に限
定されるものではないが、例えば高偏向電圧・高周波数
対応のCRT(陰極線管)表示装置で使用する偏向ヨー
クコア等に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnesium-zinc system ferrite, and more specifically, it produces an oxide magnetic material having a high saturation magnetic flux density by adding a small amount of molybdenum trioxide and firing it. It is about how to do it. The magnetic material obtained by the present invention is not particularly limited, but is suitable for a deflection yoke core used in a CRT (cathode ray tube) display device compatible with high deflection voltage and high frequency, for example.

【0002】[0002]

【従来の技術】フェライト(酸化物磁性材料)は、通
常、まず各原料を混合して仮焼し、後の焼成工程におけ
る反応を均一化させるために粉砕を行って粒子径を揃
え、適当な結合剤と共に混練・造粒し、金型を用いて所
定の形状に成形して焼成するという工程を経て製造され
る。
2. Description of the Related Art Ferrite (oxide magnetic material) is usually prepared by mixing respective raw materials and calcining them, and then pulverizing them so as to make the reaction in the subsequent firing step uniform, so that the particle diameters are made uniform. It is manufactured through a process of kneading and granulating with a binder, molding into a predetermined shape using a mold and firing.

【0003】周知のようにフェライトには様々な組成系
列があるが、なかでもマグネシウム−亜鉛系フェライト
は、抵抗率が高く低コストであるという特徴があり、高
偏向電圧・高周波数対応のCRT表示装置で使用する偏
向ヨークコア用材料として期待されている。しかし、一
般的な製法によるマグネシウム−亜鉛系フェライトで
は、この種の用途としては必要最低限の特性しか得るこ
とができない。そこで特にフェライトの飽和磁束密度を
高めるために、製造工程上においては、粉砕時間を延長
して粉体活性度を向上させる方法、あるいは焼成温度を
更に上げて焼結を促進させる方法などが採用されてい
た。
As is well known, there are various composition series of ferrites. Among them, magnesium-zinc type ferrites are characterized by high resistivity and low cost, and CRT displays compatible with high deflection voltage and high frequency. It is expected as a material for the deflection yoke core used in the device. However, the magnesium-zinc ferrite produced by a general production method can obtain only the minimum necessary properties for this type of application. Therefore, in particular, in order to increase the saturation magnetic flux density of ferrite, in the manufacturing process, a method of extending the pulverizing time to improve the powder activity, or a method of further increasing the firing temperature to promote sintering is adopted. Was there.

【0004】[0004]

【発明が解決しようとする課題】しかし粉砕時間の延長
や焼成温度の上昇は、いずれもフェライト製造に要する
時間、ガスや電気などのエネルギー消費量の増大を伴
い、コスト上昇を招く欠点があった。更にマグネシウム
−亜鉛系フェライトのように亜鉛を含む場合には、焼成
温度の上昇及び長時間化によってフェライトの表面から
酸化亜鉛が蒸発するため逆に磁気特性が低下する問題が
生じる。
However, the prolongation of the pulverization time and the increase of the firing temperature both have a drawback that the time required for producing the ferrite and the energy consumption of gas, electricity, etc. are increased and the cost is increased. . Further, when zinc is included like magnesium-zinc ferrite, zinc oxide is evaporated from the surface of the ferrite due to increase in firing temperature and prolongation of firing temperature, which causes a problem that magnetic properties are deteriorated.

【0005】本発明の目的は、上記のような従来技術の
欠点を解消し、一般的な粉砕時間と焼成温度で処理して
も、高い飽和磁束密度を呈するようなマグネシウム−亜
鉛系フェライトの製造方法を提供することである。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to manufacture a magnesium-zinc system ferrite which exhibits a high saturation magnetic flux density even when treated at a general grinding time and firing temperature. Is to provide a method.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成できる
本発明は、従来一般に用いられている組成のマグネシウ
ム−亜鉛系フェライト材料に対して極く少量の三酸化モ
リブデン(MoO3 )を添加し、焼成する方法である。
三酸化モリブデンの添加量は、主成分となるマグネシウ
ム−亜鉛系フェライト材料に対して0.1重量%以下
(但し、0は含まず)の範囲内とする。
According to the present invention, which can achieve the above object, an extremely small amount of molybdenum trioxide (MoO 3 ) is added to a magnesium-zinc ferrite material having a composition generally used conventionally. It is a method of baking.
The addition amount of molybdenum trioxide is within the range of 0.1 wt% or less (however, 0 is not included) with respect to the magnesium-zinc ferrite material as the main component.

【0007】ここで用いるマグネシウム−亜鉛系フェラ
イト材料は、通常、高飽和磁束密度酸化物磁性材料とし
て用いられている組成範囲であってよい。例えばFe2
3 が45〜49モル%、MgOが25〜31モル%、
ZnOが17〜21モル%、MnOが2〜7モル%、C
uOが0〜3 モル%であるような組成から選ばれる。そ
の時のMoO3 の添加量は0.01〜0.08重量%と
するのが好ましい。
The magnesium-zinc type ferrite material used here may have a composition range generally used as a high saturation magnetic flux density oxide magnetic material. For example Fe 2
O 3 is 45 to 49 mol%, MgO is 25 to 31 mol%,
ZnO is 17 to 21 mol%, MnO is 2 to 7 mol%, C
The composition is selected such that uO is 0 to 3 mol%. The amount of MoO 3 added at that time is preferably 0.01 to 0.08% by weight.

【0008】本発明方法においては、粉砕工程に特に長
時間かける必要はなく、また焼成も特に高温で行う必要
はない。
In the method of the present invention, it is not necessary to take the pulverizing step for a particularly long time, and the calcination does not have to be performed at a particularly high temperature.

【0009】[0009]

【作用】上記の製造方法によって得られるマグネシウム
−亜鉛系フェライトの飽和磁束密度は従来の通常の製法
により得られるものよりも向上する。それは以下の理由
による。MoO3 は比較的低温(800℃程度)で気相
を生成し、モリブデンの高原子価イオンが粒界近傍に存
在することにより、粒界近傍の金属イオンの空格子量が
増加して粒界の移動度が高まり緻密化・粒成長が促進さ
れる。そして最終的には添加したMoO3 の殆どは昇華
してしまい粒界近傍に残らない。これらのため粒界応力
などによる悪影響も生じず、飽和磁束密度が高くなるの
である。
The saturation magnetic flux density of the magnesium-zinc type ferrite obtained by the above-mentioned manufacturing method is higher than that obtained by the conventional ordinary manufacturing method. The reason is as follows. MoO 3 forms a gas phase at a relatively low temperature (about 800 ° C.), and high valence ions of molybdenum exist near the grain boundaries, so that the vacancy amount of metal ions near the grain boundaries increases and the grain boundaries are increased. Mobility increases, and densification and grain growth are promoted. Finally, most of the added MoO 3 sublimes and does not remain near the grain boundaries. For these reasons, adverse effects due to the grain boundary stress do not occur, and the saturation magnetic flux density increases.

【0010】MoO3 の添加量を0.1重量%以下とす
るのは、それを超える量を添加すると異常粒成長が起こ
り、結晶粒内に空孔などが取り込まれ、かえって飽和磁
束密度が低下するためである。
The amount of MoO 3 added is 0.1% by weight or less. When the amount added is more than 0.1% by weight, abnormal grain growth occurs, and voids are incorporated into the crystal grains, which rather reduces the saturation magnetic flux density. This is because

【0011】[0011]

【実施例】基本組成がFe2 3 47モル%,MgO
27.5モル%,ZnO 19モル%,MnO 5モル
%,CuO 1.5モル%であるマグネシウム−亜鉛系
フェライト材料に、MoO3 を0〜0.2重量%の範囲
で添加し、1280℃で2時間の焼成を行って多数の試
料を作製し、それらについて各種の磁気特性を測定し
た。測定はいずれも常温での値である。図1はMoO3
添加量に対する飽和磁束密度B10(10Oeでの磁束密
度)の変化を表している。図2はMoO3 添加量に対す
る保磁力Hc の変化を、更に図3は100kHzでの交流初透
磁率μiac の変化をそれぞれ示している。これら特性の
線図からMoO3 添加量が0.1重量%以下の範囲でそ
の添加効果が顕著に表れることが分かる。
EXAMPLE Basic composition of Fe 2 O 3 47 mol%, MgO
MoO 3 was added in a range of 0 to 0.2 wt% to a magnesium-zinc ferrite material containing 27.5 mol%, ZnO 19 mol%, MnO 5 mol%, and CuO 1.5 mol%, and 1280 ° C. A large number of samples were prepared by firing for 2 hours, and various magnetic properties of them were measured. All measurements are at room temperature. Figure 1 shows MoO 3
The change in saturation magnetic flux density B 10 (magnetic flux density at 10 Oe) with respect to the amount of addition is shown. FIG. 2 shows the change in the coercive force Hc with respect to the added amount of MoO 3 , and FIG. 3 shows the change in the AC initial permeability μiac at 100 kHz. From these characteristic diagrams, it can be seen that the effect of addition of MoO 3 is remarkable when the amount of addition of MoO 3 is 0.1% by weight or less.

【0012】次に、高偏向電圧・高周波数対応のCRT
用偏向ヨークコアに適するフェライト材料について検討
した結果を示す。このような用途では、飽和磁束密度B
s は2500Gauss 以上、保磁力Hc は発熱(損失)を
低減するため0.3Oe以下、比抵抗ρは裸巻線での電気
絶縁性を充分にするため105 Ω−cm以上がおおよその
目安とされ、更にキュリー温度Tc も高いことが重要で
ある。そのような観点から、主成分の組成とMoO3
添加量を変えて試作実験を行い、その諸特性について測
定した。結果を表1に示す。
Next, a CRT compatible with high deflection voltage and high frequency
The results of studies on ferrite materials suitable for deflection yoke cores for automobiles are shown. In such applications, the saturation magnetic flux density B
s is 2500 Gauss or more, coercive force Hc is 0.3 Oe or less in order to reduce heat generation (loss), and specific resistance ρ is 10 5 Ω-cm or more in order to ensure sufficient electric insulation in the bare winding. In addition, it is important that the Curie temperature Tc is also high. From such a viewpoint, a trial experiment was conducted by changing the composition of the main component and the addition amount of MoO 3 , and various characteristics were measured. The results are shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】例示した11種の試料A〜Kにおいて、*
印を付した試料E,Hは特にこの種の用途で好ましい組
成(特許請求の範囲の第2項で規定した範囲内)であ
る。それ以外の基本組成領域から外れた場合(試料A,
B,C,G,I,K)及びMoO3 の添加量が規定範囲
から外れた場合(試料D,F,J)は、いずれも飽和磁
束密度Bs 、キュリー温度Tc 、及び比抵抗ρの低下、
保磁力Hc の増大といった磁気特性の悪化が見られる。
なおdsは密度である。
In the 11 kinds of samples AK exemplified above, *
The marked samples E and H are compositions (within the range defined in claim 2) particularly preferred for this type of application. When it is out of the other basic composition area (Sample A,
(B, C, G, I, K) and MoO 3 added outside the specified range (Samples D, F, J), the saturation magnetic flux density Bs, the Curie temperature Tc, and the specific resistance ρ were all decreased. ,
Deterioration of magnetic properties such as an increase in coercive force Hc is observed.
Note that ds is the density.

【0015】[0015]

【発明の効果】本発明は上記のように、マグネシウム−
亜鉛系フェライトに三酸化モリブデンを少量添加し焼成
する方法であるから、三酸化モリブデンの気相生成に伴
いモリブデンの高原子価イオンが粒界近傍に存在するこ
とにより、粒界近傍の金属イオンの空格子量が増加して
粒界の移動度が高まり緻密化・粒成長が促進され、しか
も最終的にはモリブデンの殆どは昇華してしまい粒界近
傍に残らず、そのため高飽和磁束密度が発現する。本発
明方法では粉砕時間を延長する必要はなく、また焼成温
度も特に高くする必要はないので、生産コストの上昇を
来すこともない。そのため高偏向電圧・高周波数対応の
CRT用偏向ヨークコアの製造などでは高性能化とコス
ト削減の点で効果は顕著である。
As described above, the present invention provides magnesium-
Since it is a method of adding a small amount of molybdenum trioxide to zinc-based ferrite and firing it, since the high valence ions of molybdenum exist near the grain boundaries due to the vapor phase formation of molybdenum trioxide, metal ions near the grain boundaries The amount of vacancies increases, the mobility of grain boundaries increases, densification and grain growth are promoted, and most of the molybdenum eventually sublimes and does not remain near the grain boundaries, so high saturation magnetic flux density appears. To do. In the method of the present invention, it is not necessary to extend the pulverization time and the firing temperature is not particularly required to be high, so that the production cost is not increased. Therefore, in the manufacture of a deflection yoke core for a CRT that is compatible with a high deflection voltage and a high frequency, the effect is remarkable in terms of high performance and cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】MoO3 添加量に対する飽和磁束密度B10の特
性線図。
FIG. 1 is a characteristic diagram of saturation magnetic flux density B 10 with respect to the amount of MoO 3 added.

【図2】MoO3 添加量に対する保磁力Hc の特性線
図。
FIG. 2 is a characteristic diagram of coercive force Hc with respect to the added amount of MoO 3 .

【図3】MoO3 添加量に対する交流初透磁率μiac の
特性線図。
FIG. 3 is a characteristic diagram of AC initial permeability μiac with respect to the amount of MoO 3 added.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マグネシウム−亜鉛系フェライト材料に
対して三酸化モリブデンを0.1重量%以下(但し、0
は含まず)添加して焼成を行うことを特徴とするマグネ
シウム−亜鉛系フェライトの製造方法。
1. Molybdenum trioxide is contained in an amount of 0.1% by weight or less based on the magnesium-zinc ferrite material.
The method for producing a magnesium-zinc based ferrite is characterized in that it is added and fired.
【請求項2】 マグネシウム−亜鉛系フェライト材料
が、Fe2 3 45〜49モル%、MgO 25〜31
モル%、ZnO 17〜21モル%、MnO2〜7モル
%、CuO 0〜3 モル%である組成を有し、MoO3
を0.01〜0.08重量%添加する請求項1記載の製
造方法。
2. A magnesium-zinc ferrite material comprising Fe 2 O 3 45 to 49 mol% and MgO 25 to 31.
MoO 3 having a composition of mol%, ZnO 17-21 mol%, MnO 2-7 mol%, CuO 0-3 mol%.
The manufacturing method according to claim 1, wherein 0.01 to 0.08% by weight is added.
JP3131934A 1991-05-08 1991-05-08 Method for producing magnesium-zinc ferrite Expired - Lifetime JP2515183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3131934A JP2515183B2 (en) 1991-05-08 1991-05-08 Method for producing magnesium-zinc ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3131934A JP2515183B2 (en) 1991-05-08 1991-05-08 Method for producing magnesium-zinc ferrite

Publications (2)

Publication Number Publication Date
JPH04338165A JPH04338165A (en) 1992-11-25
JP2515183B2 true JP2515183B2 (en) 1996-07-10

Family

ID=15069631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3131934A Expired - Lifetime JP2515183B2 (en) 1991-05-08 1991-05-08 Method for producing magnesium-zinc ferrite

Country Status (1)

Country Link
JP (1) JP2515183B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303073A1 (en) * 1993-02-03 1994-08-04 Siemens Matsushita Components Ferrite with low power loss and high saturation induction

Also Published As

Publication number Publication date
JPH04338165A (en) 1992-11-25

Similar Documents

Publication Publication Date Title
JP3108803B2 (en) Mn-Zn ferrite
JP2917706B2 (en) Oxide magnetic material
JP3108804B2 (en) Mn-Zn ferrite
JP6827584B1 (en) MnZn-based ferrite and its manufacturing method
JP3492802B2 (en) Low loss ferrite material
US2685568A (en) Soft ferromagnetic mixed ferrite material
CN104129980A (en) Low-sintering-temperature soft magnetic ferrite material and preparation method thereof
JPH06310320A (en) Oxide magnetic substance material
JP2515183B2 (en) Method for producing magnesium-zinc ferrite
JPH113813A (en) Ferrite material
JP2855990B2 (en) Oxide magnetic material
WO2022070634A1 (en) MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME
CN113845359A (en) Low-loss LiZnTiMn gyromagnetic ferrite material and preparation method thereof
JP3790606B2 (en) Mn-Co ferrite material
JP3446082B2 (en) Mn-Zn ferrite and method for producing the same
JPH11307336A (en) Manufacture of soft magnetic ferrite
US3457174A (en) Ferromagnetic materials and processes for their manufacture
KR100290233B1 (en) method for fabricating Mn-Zn ferrite core
JPH10270229A (en) Mn-ni ferrite material
US3291739A (en) Ferromagnetic materials and methods of fabrication
JP7117447B1 (en) Method for producing zirconia setter and MnZn ferrite
JPH10233308A (en) Polycrystalline magnetic ceramic material preparation thereof, and nonrevesible circuit element using the same
JPH0366254B2 (en)
JPH03242907A (en) Ferrite core for deflection yoke and manufacture thereof
JP2000269019A (en) Ferrite core, production thereof and inductance part