JP2514608B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JP2514608B2
JP2514608B2 JP61240696A JP24069686A JP2514608B2 JP 2514608 B2 JP2514608 B2 JP 2514608B2 JP 61240696 A JP61240696 A JP 61240696A JP 24069686 A JP24069686 A JP 24069686A JP 2514608 B2 JP2514608 B2 JP 2514608B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61240696A
Other languages
Japanese (ja)
Other versions
JPS6394049A (en
Inventor
亮治 西山
翔一 鷲野
伸司 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61240696A priority Critical patent/JP2514608B2/en
Publication of JPS6394049A publication Critical patent/JPS6394049A/en
Application granted granted Critical
Publication of JP2514608B2 publication Critical patent/JP2514608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、リーンからリツチまで検出可能な空燃比
センサを用いて空燃比のフイードバツク制御を行うよう
にした内燃機関の空燃比制御装置に関し、特に過大な空
燃比誤差を検出したときでも、機関を安定に運転できる
ようにしたものである。
Description: TECHNICAL FIELD The present invention relates to an air-fuel ratio control device for an internal combustion engine configured to perform air-fuel ratio feedback control using an air-fuel ratio sensor that can detect from lean to rich, Especially, the engine can be operated stably even when an excessive air-fuel ratio error is detected.

〔従来の技術〕[Conventional technology]

第1図は従来および後述するこの発明の内燃機関の空
燃比制御装置の構成を示すものであり、従来の内燃機関
の空燃比制御装置の説明に際し、この第1図を援用して
説明する。
FIG. 1 shows a configuration of an air-fuel ratio control system for an internal combustion engine according to a conventional and later-described invention, which will be described with reference to FIG. 1 when describing a conventional air-fuel ratio control system for an internal combustion engine.

この第1図において、1は内燃機関、2はこの内燃機
関1に接続された吸気管、3はこの吸気管2内に設けら
れた絞り弁である。
In FIG. 1, reference numeral 1 is an internal combustion engine, 2 is an intake pipe connected to the internal combustion engine 1, and 3 is a throttle valve provided in the intake pipe 2.

この吸気管2内の圧力は圧力センサ4で検出し、その
検出出力はADコンバータ91に送出するようになつてい
る。
The pressure in the intake pipe 2 is detected by the pressure sensor 4, and the detection output is sent to the AD converter 91.

また、内燃機関1の回転をパルスとして回転センサ5
で検出するようにしており、この回転センサ5の出力は
入出力回路92に送出するようになつている。
The rotation sensor 5 uses the rotation of the internal combustion engine 1 as a pulse.
The output of the rotation sensor 5 is sent to the input / output circuit 92.

さらに、吸気管2へインジエクタ6により燃料を噴射
するようになつており、このインジエクタ6は出力回路
96の出力で駆動されるようになつている。
Further, fuel is injected into the intake pipe 2 by an injector 6, which is an output circuit.
It is designed to be driven by 96 outputs.

また、内燃機関1に排気管7が接続されており、この
排気管7内の排ガス成分から空燃比に対応した出力が空
燃比センサ8からADコンバータ91に送出するようにして
いる。
Further, an exhaust pipe 7 is connected to the internal combustion engine 1, and an exhaust gas component in the exhaust pipe 7 outputs an output corresponding to the air-fuel ratio from the air-fuel ratio sensor 8 to the AD converter 91.

一方、9は圧力センサ4と回転センサ5と空燃比セン
サ8などの情報から所要燃料量を演算し、インジエクタ
6の駆動パルス幅を発生する制御装置である。
On the other hand, 9 is a control device that calculates the required fuel amount from the information of the pressure sensor 4, the rotation sensor 5, the air-fuel ratio sensor 8 and the like, and generates the drive pulse width of the injector 6.

この制御装置9におけるADコンバータ91は空燃比セン
サ8および圧力センサ4などのアナログ信号をデジタル
値に変換してマイクロプロセツサ93に送出するようにな
つている。
The AD converter 91 in the control device 9 converts an analog signal from the air-fuel ratio sensor 8 and the pressure sensor 4 into a digital value and sends it to the microprocessor 93.

また、入力回路92は回転センサ5のパルス入力信号を
レベル変換するための入力回路で、その出力もマイクロ
プロセツサ93に送出するようになついている。
Further, the input circuit 92 is an input circuit for converting the level of the pulse input signal of the rotation sensor 5, and the output thereof is also sent to the microprocessor 93.

このマイクロプロセツサ93はADコンバータ91および入
力回路92から得られたデジタルおよびパルス信号に基づ
いて内燃機関1へ供給すべき燃料量を演算し、その結果
にしたがつてインジエクタ6の駆動パルス幅を出力する
ものである。
This microprocessor 93 calculates the amount of fuel to be supplied to the internal combustion engine 1 based on the digital and pulse signals obtained from the AD converter 91 and the input circuit 92, and according to the result, the drive pulse width of the injector 6 is calculated. It is what is output.

このマイクロプロセツサ93の制御手順やデータを予め
ROM94で記憶しており、またRAM95で演算過程におけるデ
ータを一時的に格納するようにしている。そして、マイ
クロプロセツサ93の出力信号にしたがつて出力回路96で
インジエクタ6を駆動するようにしている。
Pre-set the control procedure and data of this microprocessor 93.
It is stored in the ROM 94, and the data in the calculation process is temporarily stored in the RAM 95. The output circuit 96 drives the injector 6 in accordance with the output signal of the microprocessor 93.

上記第1図中の空燃比センサ8は第5図に示すように
構成されており、81は酸素ポンプセル、82は酸素電池セ
ル、83aおよび83bは多孔質でできた電極、84は拡散室、
85は基準電圧源、86は比較増幅器、87はポンプ駆動回
路、88はポンプの電流を検出するための抵抗である。
The air-fuel ratio sensor 8 in FIG. 1 is configured as shown in FIG. 5, 81 is an oxygen pump cell, 82 is an oxygen battery cell, 83a and 83b are electrodes made of a porous material, 84 is a diffusion chamber,
Reference numeral 85 is a reference voltage source, 86 is a comparison amplifier, 87 is a pump drive circuit, and 88 is a resistor for detecting the current of the pump.

この空燃比センサ8の構成は既に公知(特開昭59−19
0646号公報および特開昭60−128349号公報)のものであ
り、基準電圧源85を約0.4Vに設定し、この電圧と酸素電
池セル82の電圧を比較増輻器86にて比較し、その偏差が
零になるようにポンプ駆動回路87を介して酸素ポンプセ
ル81に電流を流し込むことによつて、拡散室84内の排気
ガスが理論空燃比相当となるように作用させるものであ
る。
The construction of this air-fuel ratio sensor 8 is already known (Japanese Patent Laid-Open No. 59-19
No. 0646 gazette and JP-A-60-128349 gazette), the reference voltage source 85 is set to about 0.4 V, and this voltage and the voltage of the oxygen battery cell 82 are compared by the comparison and increaser 86, By supplying a current to the oxygen pump cell 81 via the pump drive circuit 87 so that the deviation becomes zero, the exhaust gas in the diffusion chamber 84 acts so as to correspond to the stoichiometric air-fuel ratio.

このような原理を用いて理論空燃比よりもリーン、リ
ツチ側とも検出可能であり、その測定結果は抵抗88の両
端の電圧として取り出すことができ、第6図に示すよう
に広い空燃比の範囲に対して線形な出力電圧を得ること
ができる。
Using such a principle, it is possible to detect both the lean side and the rich side of the theoretical air-fuel ratio, and the measurement result can be taken out as the voltage across the resistor 88. As shown in FIG. It is possible to obtain a linear output voltage with respect to.

次に、上記空燃比センサ8を用いた空燃比フイードバ
ツクの従来の制御方法について第7図にしたがつて説明
する。この第7図は第1図に示す制御装置9の制御手順
をフローチヤートで表わしたものである。
Next, a conventional control method of the air-fuel ratio feedback using the air-fuel ratio sensor 8 will be described with reference to FIG. FIG. 7 is a flow chart showing the control procedure of the control device 9 shown in FIG.

ステツプ100で回転センサ5から入力されるパルス信
号、すなわち、エンジン回転数Neを読み込み、ステツプ
101で圧力センサ4から得られた吸気管内圧力(絶対圧
力)の値Pbを呼び込み、ステツプ102ではステツプ100お
よび101で読み込まれた情報を基にインジエクタ6の基
本駆動パルス幅τを演算する。
In step 100, the pulse signal input from the rotation sensor 5, that is, the engine speed Ne is read, and step
At 101, the value Pb of the intake pipe internal pressure (absolute pressure) obtained from the pressure sensor 4 is called, and at step 102, the basic drive pulse width τ O of the injector 6 is calculated based on the information read at steps 100 and 101.

演算式はτ=K・Pb/ηvで表わされ、Kは定数、
ηvは吸気圧力Pbとエンジン回転数Neに対応して予め定
められた充填効率である。
The calculation formula is represented by τ O = K · Pb / ηv, where K is a constant,
ηv is a charging efficiency that is predetermined corresponding to the intake pressure Pb and the engine speed Ne.

次に、ステツプ103で目標空燃比(A/F)Sが設定され
る。この目標空燃比(A/F)Sはエンジン回転数Neと吸気圧
力Pbに対応して最適な動力性能と燃費を得るように予め
設定されているが、さらにエンジンの温度や加減速状態
などによつて変化されてもよい。ステツプ104では空燃
比センサ8の出力信号(A/F)Rを読み込み、ステツプ105
で空燃比の偏差e=(A/F)S−(A/F)Rを求め、この値を適
当なゲインKIで積分し、空燃比フイードバツク補正係数
CFBを算出する。
Next, at step 103, the target air-fuel ratio (A / F) S is set. This target air-fuel ratio (A / F) S is preset to obtain optimum power performance and fuel efficiency corresponding to the engine speed Ne and the intake pressure Pb. It may be changed. At step 104, the output signal (A / F) R of the air-fuel ratio sensor 8 is read, and at step 105
The air-fuel ratio deviation e = (A / F) S − (A / F) R is calculated with, and this value is integrated with an appropriate gain K I to obtain the air-fuel ratio feedback correction coefficient.
Calculate C FB .

次に、ステツプ106で噴射パルス幅τをステツプ102で
先に求めた基本噴射パルス幅τに上記空燃比フイード
バツク補正係数CFBを乗算することにより求める。
Next, in step 106, the injection pulse width τ is obtained by multiplying the basic injection pulse width τ O previously obtained in step 102 by the air-fuel ratio feedback correction coefficient C FB .

以上の動作が繰り返されて、空燃比は目標値(A/F)S
なるようにフイードバツク制御される。
The above operation is repeated, and the feedback control is performed so that the air-fuel ratio becomes the target value (A / F) S.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記のような従来の内燃機関の空燃比制御装置にあつ
ては、機関の失火などによる過大な空燃比偏差を生じた
場合、この過大な空燃比偏差に基づいて算出した過大な
フイードバツク補正係数CFBに基づいて燃料を急激に増
量し、機関の失火を助長する問題があつた。
In the conventional air-fuel ratio control device for an internal combustion engine as described above, if an excessive air-fuel ratio deviation due to engine misfire or the like occurs, an excessive feed back correction coefficient C calculated based on this excessive air-fuel ratio deviation. There was a problem that fuel was suddenly increased based on FB to promote engine misfire.

また、空燃比を短い時間で目標空燃比に制御するため
に積分ゲインKIの値を大きくすると、制御系のループゲ
インが増大しているために空燃比偏差が零付近で空燃比
が振動し、発振し、機関不調を招来し、運転フイーリン
グが悪化する問題があつた。
Also, if the value of the integral gain K I is increased to control the air-fuel ratio to the target air-fuel ratio in a short time, the air-fuel ratio oscillates when the air-fuel ratio deviation is near zero because the loop gain of the control system is increasing. However, there was a problem that the engine oscillated, the engine malfunctioned, and the driving feeling deteriorated.

この発明は、かかる問題点を解決するためになされた
もので、過大な空燃比偏差が生じたときにでも、誤つた
フイードバツク補正による機関不調を回避し、かつ空燃
比が目標値に近ずいたときでも、過大なゲインによる空
燃比の発振を防ぎ、常に安定な燃焼を得ることができる
内燃機関の空燃比制御装置を得ることを目的とする。
The present invention has been made to solve such a problem, and even when an excessive air-fuel ratio deviation occurs, the engine malfunction due to the wrong feedback correction is avoided, and the air-fuel ratio is close to the target value. Even at this time, it is an object to obtain an air-fuel ratio control device for an internal combustion engine that can prevent oscillation of the air-fuel ratio due to excessive gain and can always obtain stable combustion.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る内燃機関の空燃比制御装置は、空燃比
偏差の絶対値|e|に応じて空燃比フイードバツク比例ゲ
インKPおよび積分ゲインKIを制御する手段を設けたもの
である。
The air-fuel ratio control device for an internal combustion engine according to the present invention is provided with means for controlling the air-fuel ratio feedback proportional gain K P and the integral gain K I according to the absolute value | e | of the air-fuel ratio deviation.

〔作用〕[Action]

この発明においては、空燃比偏差の絶対値|e|が所定
値以上の場合は比例ゲインKPおよび積分ゲインKIを所定
値に固定し、この空燃比偏差の絶対値|e|が所定値以下
の場合は、この絶対値|e|が小さくなるに応じて比例ゲ
インKPおよび積分ゲインKIを小さくした値を用いて機関
の空燃比を目標空燃比にフイードバツク制御する。
In the present invention, when the absolute value | e | of the air-fuel ratio deviation is equal to or greater than the predetermined value, the proportional gain K P and the integral gain K I are fixed to the predetermined values, and the absolute value | e | of the air-fuel ratio deviation is the predetermined value. In the following cases, the air-fuel ratio of the engine is feedback-controlled to the target air-fuel ratio using the values obtained by reducing the proportional gain K P and the integral gain K I according to the decrease of the absolute value | e |.

〔実施例〕〔Example〕

以下、この発明の内燃機関の空燃比制御装置の実施例
について図面に基づき説明するが、この発明の構成は前
述の第1図のものと全く同一であるが、制御装置(空燃
比制御手段)9内のマイクロプロセツサ93を中心とする
演算部における演算処理およびデータ設定の方法が従来
装置とは異なり、その演算手順は第2図のフローチヤー
トに示されている。
Hereinafter, an embodiment of an air-fuel ratio control device for an internal combustion engine of the present invention will be described based on the drawings. Although the configuration of the present invention is exactly the same as that of FIG. 1 described above, a control device (air-fuel ratio control means) The method of arithmetic processing and data setting in the arithmetic unit centering on the microprocessor 93 in 9 is different from the conventional apparatus, and the arithmetic procedure is shown in the flow chart of FIG.

この第2図のフローチヤートのステツプ200のエンジ
ン回転数Neの読み込みからステツプ204の実空燃比の読
み込みまでは従来例を示した第7図のフローチヤートの
ステツプ100〜104までと同様なので説明を省略する。
The process from reading the engine speed Ne of the flow chart step 200 to the reading of the actual air-fuel ratio of step 204 is the same as the flow chart step 100 to 104 of FIG. 7 showing the conventional example. Omit it.

ステツプ204で実空燃比の読み込みを行つた後、この
発明においては、ステツプ205において空燃比偏差eを
目標空燃比(A/F)Sと実空燃比(A/F)Rの偏差e=(A/F)S
(A/F)Rとして算出する。
After reading the actual air-fuel ratio in step 204, in the present invention, the deviation e of the air-fuel ratio deviation e between the target air-fuel ratio (A / F) S and the actual air-fuel ratio (A / F) R is equal to (=) in step 205. A / F) S
(A / F) Calculated as R.

次に、ステツプ206において、空燃比フイードバツク
比例ゲインKPを前記空燃の比偏差eの絶対値|e|に対し
てたとえば第3図に示すごとく関係となるように設定す
る。
Next, at step 206, the air-fuel ratio feedback proportional gain K P is set so as to have a relationship with the absolute value | e | of the air-fuel ratio deviation e as shown in FIG. 3, for example.

さらに、ステツプ207においても、ステツプ206と同様
にして、積分ゲインKIを偏差eの絶対値|e|に対して設
定する。
Further, also in step 207, similarly to step 206, the integral gain K I is set for the absolute value | e | of the deviation e.

ステツプ206および207で定めた比例ゲインKPおよび積
分ゲインKIを用いて、ステツプ208において偏差eに比
例ゲインKPを乗算した値と偏差eを積分して積分ゲイン
KIを乗算した値との和として、フイードバツク係数CFB
を算出する。
Using the proportional gain K P and integral gain K I determined in steps 206 and 207, the value obtained by multiplying the deviation e by the proportional gain K P in step 208 and the deviation e are integrated to obtain the integral gain.
Feedback coefficient C FB as the sum of the values multiplied by K I
Is calculated.

ステツプ209で噴射パルス幅τを基本噴射パルス幅τ
にフイードバツク補正係数CFBを乗算することにより
求める。以上の動作を繰り返すことによつて、空燃比の
偏差が零になるように制御される。
In step 209, the injection pulse width τ is changed to the basic injection pulse width τ
It is obtained by multiplying O by the feedback back correction coefficient C FB . By repeating the above operation, the deviation of the air-fuel ratio is controlled to be zero.

なお、上記実施例ではステツプ206および207におい
て、第3図のような関係を用いて比例ゲインKPおよび積
分ゲインKIを設定したが、第4図の関係を用いて比例ゲ
インKPおよび積分ゲインKIを設定してもよい。
Note that in step 206 and 207 in the above embodiment, setting the proportional gain K P and the integral gain K I using the relationship as FIG. 3, the proportional gain K P and integrated using the relationship of FIG. 4 The gain K I may be set.

また、上記実施例の説明においては、燃料噴射システ
ムとしてスピードデンシテイ方式の燃料噴射装置の具体
例としたが、エアーフローセンサを用いた燃料噴射装置
や電子制御気化器にも適用できるのは云うまでもない。
Further, in the description of the above-mentioned embodiments, the fuel injection system is a specific example of a fuel injection device of speed density type, but it can be said that the present invention is also applicable to a fuel injection device using an air flow sensor and an electronically controlled carburetor. There is no end.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明したとおり、空燃比制御手段は内
燃機関の吸入空気量に対応した燃料供給量を、目標空燃
比信号と空燃比センサの出力信号との偏差に比例した値
に比例ゲインを乗算した値および上記偏差を積分した値
に積分ゲインを乗算した値の和に応じて補正するととも
に、上記偏差の絶対値が所定以上の場合はそれら比例ゲ
インおよび積分ゲインを所定値に固定し、その偏差の絶
対値が所定以下の場合はこの絶対値が小さくなるのに応
じてそれら比例ゲインおよび積分ゲインを小さくした値
を用いて補正するように構成したので、過大な空燃比偏
差が原因で発生する異常な空燃比フィードバックを防ぐ
ことができます。また、偏差の絶対値を用いるので、偏
差の零付近でのその対応する比例ゲインおよび積分ゲイ
ンが連続であり、かつ比例ゲインおよび積分ゲインも小
さくなるので、空燃比偏差付近での空燃比の発振も防ぎ
目標空燃比を維持制御し、空燃比変動による機関出力不
調をきたすことがなく、常に良好な運転フィーリングを
得ることができる。
As described above, according to the present invention, the air-fuel ratio control means multiplies the fuel supply amount corresponding to the intake air amount of the internal combustion engine by a value proportional to the deviation between the target air-fuel ratio signal and the output signal of the air-fuel ratio sensor and the proportional gain. And the value obtained by integrating the deviation and the value obtained by multiplying the integral gain by the value are corrected, and when the absolute value of the deviation is greater than or equal to a predetermined value, the proportional gain and the integral gain are fixed to predetermined values, and If the absolute value of the deviation is less than a predetermined value, the proportional gain and integral gain are reduced to compensate as the absolute value decreases, so it is caused by an excessive air-fuel ratio deviation. You can prevent abnormal air-fuel ratio feedback. Further, since the absolute value of the deviation is used, the corresponding proportional gain and integral gain near zero of the deviation are continuous, and the proportional gain and integral gain are also small, so that the oscillation of the air-fuel ratio near the air-fuel ratio deviation is small. The target air-fuel ratio is maintained and controlled, and the engine output malfunction due to the air-fuel ratio fluctuation is not caused, and a good driving feeling can always be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明および従来装置の内燃機関の空燃比制
御装置の構成を示す図、第2図はこの発明の内燃機関の
空燃比制御装置の動作を表わすフローチヤート、第3図
および第4図はこの発明の内燃機関の空燃比制御装置に
おける空燃比フイードバツク積分ゲインおよび比例ゲイ
ンの特性図、第5図はこの発明および従来の内燃機関の
空燃比制御装置における空燃比センサの構成を示す図、
第6図はこの発明および従来の内燃機関の空燃比制御装
置における空燃比センサの特性図、第7図は従来の内燃
機関の空燃比制御装置の動作を表わしたフローチヤート
である。 1…内燃機関、2…吸気管、4…圧力センサ、5…回転
センサ、6…インジエクタ、8…空燃比センサ、9…制
御装置、81…酸素ポンプセル、82…酸素電池セル、93…
マイクロプロセツサ、94…ROM、95…RAM。
FIG. 1 is a diagram showing a configuration of an air-fuel ratio control device for an internal combustion engine according to the present invention and a conventional device, and FIG. 2 is a flow chart showing the operation of the air-fuel ratio control device for an internal combustion engine according to the present invention, FIGS. 3 and 4. FIG. 5 is a characteristic diagram of an air-fuel ratio feedback integral gain and a proportional gain in an air-fuel ratio control device for an internal combustion engine according to the present invention, and FIG. ,
FIG. 6 is a characteristic diagram of the air-fuel ratio sensor in the present invention and the conventional air-fuel ratio control device for an internal combustion engine, and FIG. 7 is a flow chart showing the operation of the conventional air-fuel ratio control device for an internal combustion engine. DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Intake pipe, 4 ... Pressure sensor, 5 ... Rotation sensor, 6 ... Injector, 8 ... Air-fuel ratio sensor, 9 ... Control device, 81 ... Oxygen pump cell, 82 ... Oxygen battery cell, 93 ...
Microprocessor, 94 ... ROM, 95 ... RAM.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−139942(JP,A) 特開 昭55−37589(JP,A) 特開 昭59−147843(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-62-139942 (JP, A) JP-A-55-37589 (JP, A) JP-A-59-147843 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関の排ガス成分のリッチ側からリー
ン側における空燃比に対応して線形に出力信号が検出可
能な空燃比センサと、目標空燃比信号と上記空燃比セン
サの出力信号との偏差に基づいて上記内燃機関の空燃比
をフィードバック制御する空燃比制御手段とを備えた内
燃機関の空燃比制御装置において、上記空燃比制御手段
は上記内燃機関の吸入空気量に対応した燃料供給量を、
上記偏差に比例した値に比例ゲインを乗算した値および
上記偏差を積分した値に積分ゲインを乗算した値の和に
応じて補正するとともに、上記偏差の絶対値が所定以上
の場合はそれら比例ゲインおよび積分ゲインを所定値に
固定し、その偏差の絶対値が所定以下の場合はこの絶対
値が小さくなるのに応じてそれら比例ゲインおよび積分
ゲインを小さくした値を用いて補正することを特徴とす
る内燃機関の空燃比制御装置。
1. An air-fuel ratio sensor capable of linearly detecting an output signal corresponding to an air-fuel ratio from a rich side to a lean side of an exhaust gas component of an internal combustion engine, and a target air-fuel ratio signal and an output signal of the air-fuel ratio sensor. In an air-fuel ratio control device for an internal combustion engine, which comprises an air-fuel ratio control means for feedback controlling the air-fuel ratio of the internal combustion engine based on a deviation, the air-fuel ratio control means is a fuel supply amount corresponding to an intake air amount of the internal combustion engine. To
Corrects according to the sum of the value obtained by multiplying the value proportional to the deviation by the proportional gain and the value obtained by multiplying the value obtained by integrating the deviation by the integral gain, and when the absolute value of the deviation is not less than a predetermined value, the proportional gain And the integral gain is fixed to a predetermined value, and when the absolute value of the deviation is less than a predetermined value, the proportional gain and the integral gain are reduced to be used as the absolute value becomes smaller. Air-fuel ratio control device for internal combustion engine.
JP61240696A 1986-10-08 1986-10-08 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP2514608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61240696A JP2514608B2 (en) 1986-10-08 1986-10-08 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61240696A JP2514608B2 (en) 1986-10-08 1986-10-08 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6394049A JPS6394049A (en) 1988-04-25
JP2514608B2 true JP2514608B2 (en) 1996-07-10

Family

ID=17063339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61240696A Expired - Fee Related JP2514608B2 (en) 1986-10-08 1986-10-08 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2514608B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237147A (en) * 1988-07-27 1990-02-07 Mitsubishi Electric Corp Air-fuel ratio control device
JP4938532B2 (en) * 2007-04-09 2012-05-23 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
CA2890199A1 (en) * 2012-11-02 2014-05-08 General Electric Company Stoichiometric combustion control for gas turbine system with exhaust gas recirculation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241710A (en) * 1978-06-22 1980-12-30 The Bendix Corporation Closed loop system
JPS59147843A (en) * 1983-02-14 1984-08-24 Nissan Motor Co Ltd Air-fuel ratio control device
JPS62139942A (en) * 1985-12-16 1987-06-23 Toyota Motor Corp Air-fuel ratio control method for internal combustion engine

Also Published As

Publication number Publication date
JPS6394049A (en) 1988-04-25

Similar Documents

Publication Publication Date Title
JPH0363654B2 (en)
US5235956A (en) Secondary air feed device of an engine
US6453229B1 (en) Air-fuel ratio control device for internal combustion engine and method thereof
JP3356878B2 (en) Air-fuel ratio control device for internal combustion engine
JPH01147138A (en) Heater controller for air-fuel ratio sensor
JPH0267443A (en) Air-fuel ratio controlling device
JP2514608B2 (en) Air-fuel ratio control device for internal combustion engine
US5289717A (en) Air-fuel ratio detecting device
KR100422619B1 (en) Fuel injection control method
JPH01147139A (en) Air-fuel ratio detector for internal combustion engine
US4915077A (en) Air-fuel ratio control apparatus
JP2531525B2 (en) Air-fuel ratio control device for internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP2505750B2 (en) Air-fuel ratio control method for multi-fuel internal combustion engine
JPH089975B2 (en) Air-fuel ratio control device for internal combustion engine
JP2752629B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6388241A (en) Air-fuel ratio control device for internal combustion engine
JP2780710B2 (en) Air-fuel ratio control method for internal combustion engine
JPH01155046A (en) Electronic control fuel injection system for internal combustion engine
EP0222019B1 (en) Fuel controller for engine
JPS6394051A (en) Air-fuel ratio controller for internal combustion engine
JP2517699B2 (en) Engine air-fuel ratio control device
JPS6029899B2 (en) Exhaust sensor bias circuit of air-fuel ratio control device
JPS58135331A (en) Control device for air-fuel ratio
JPS5941643A (en) Electronically-controlled fuel injector for internal- combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees