JP2514358B2 - Porcelain capacitor - Google Patents

Porcelain capacitor

Info

Publication number
JP2514358B2
JP2514358B2 JP8843987A JP8843987A JP2514358B2 JP 2514358 B2 JP2514358 B2 JP 2514358B2 JP 8843987 A JP8843987 A JP 8843987A JP 8843987 A JP8843987 A JP 8843987A JP 2514358 B2 JP2514358 B2 JP 2514358B2
Authority
JP
Japan
Prior art keywords
mol
porcelain
sio
sample
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8843987A
Other languages
Japanese (ja)
Other versions
JPS63254603A (en
Inventor
広一 茶園
稔 大塩
俊二 村井
弘志 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP8843987A priority Critical patent/JP2514358B2/en
Publication of JPS63254603A publication Critical patent/JPS63254603A/en
Application granted granted Critical
Publication of JP2514358B2 publication Critical patent/JP2514358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘電体磁器と少なくとも2つの電極とから
成る単層又は積層構造の磁器コンデンサに関し、更に詳
細には、高い低効率及び高い曲げ強度を有する磁器コン
デンサに関する。
Description: TECHNICAL FIELD The present invention relates to a single-layer or laminated structure porcelain capacitor composed of a dielectric porcelain and at least two electrodes, and more particularly to a high low efficiency and high bending. It relates to a porcelain capacitor having strength.

〔従来の技術〕[Conventional technology]

従来、積層磁器コンデンサを製造する際には、誘電体
磁器原料粉末から成るグリーンシート(未焼結磁器シー
ト)に白金又はパラジウム等の貴金属の導電性ペースト
を所望パターンに印刷し、これを複数枚積み重ねて圧着
し、1300℃〜1600℃の酸化性雰囲気中で焼結させた。こ
れにより、誘電体磁器と内部電極とが同時に得られる。
上述の如く、貴金属を使用すれば、酸化雰囲気中で高温
で焼結させても目的とする内部電極を得ることが出来
る。しかし、白金、パラジウム等の貴金属は高価である
ため、必然的に積層磁器コンデンサがコスト高になつ
た。
Conventionally, when manufacturing a laminated porcelain capacitor, a green sheet (non-sintered porcelain sheet) made of dielectric porcelain raw material powder is printed with a conductive paste of a noble metal such as platinum or palladium in a desired pattern, and a plurality of this is printed. They were stacked, pressed and sintered in an oxidizing atmosphere at 1300 ° C to 1600 ° C. As a result, the dielectric ceramic and the internal electrode can be obtained at the same time.
As described above, if the noble metal is used, the target internal electrode can be obtained even if it is sintered at a high temperature in an oxidizing atmosphere. However, since precious metals such as platinum and palladium are expensive, the cost of the laminated ceramic capacitor is inevitably high.

この種の問題を解決するために、CaZrO3とMnO2とから
成る磁器組成物をコンデンサの誘電体として使用するこ
とが、例えば、特開昭53−98099号公報に開示されてい
る。ここに開示されている誘電体磁器組成物は還元性雰
囲気中で焼成可能であるので、ニツケル等の卑金属の酸
化が生じない。
In order to solve this kind of problem, the use of a porcelain composition composed of CaZrO 3 and MnO 2 as a dielectric of a capacitor is disclosed in, for example, Japanese Patent Laid-Open No. 53-98099. Since the dielectric ceramic composition disclosed herein can be fired in a reducing atmosphere, oxidation of a base metal such as nickel does not occur.

ところで、上記のCaZrO3とMnO2とから成る誘電体磁器
組成物は、高温(1350℃〜1380℃)で焼成しなければな
らない。このため、グリーンシートにニツケルを主成分
とする導電性ペーストを印刷して焼成すると、たとえ非
酸化性雰囲気中での焼成であつても、導電性ペースト中
のニツケル粒子が成長しつつ凝集し、ニツケルが玉状に
分布する。また、高温焼成のためにニツケルが誘電体磁
器中に拡散し、誘電体磁器の絶縁劣化が生じる。この結
果、所望の静電容量、及び絶縁抵抗を有する磁器コンデ
ンサを得ることが困難であつた。
By the way, the above dielectric ceramic composition of CaZrO 3 and MnO 2 must be fired at a high temperature (1350 ° C. to 1380 ° C.). Therefore, when a conductive paste containing nickel as a main component is printed and fired on the green sheet, even when fired in a non-oxidizing atmosphere, the nickel particles in the conductive paste aggregate while growing. Nickel is distributed in a ball shape. In addition, nickel is diffused into the dielectric ceramic due to the high temperature firing, and insulation deterioration of the dielectric ceramic occurs. As a result, it has been difficult to obtain a porcelain capacitor having a desired capacitance and insulation resistance.

そこで、本件出願人は、特願昭60−270540号におい
て、上記の問題を解決するために低温(1200℃以下)で
焼成することができる誘電体磁器組成物を提案した。こ
の組成物は、(CaO)k・Zr1-xTix)O2(但し、k、xは各元
素の原子数の割合を示す数値)から成る基本成分と、Li
2O、SiO2、MO(但し、MOはBaO、MgO、ZnO、SrO及びCaO
の内の少なくとも1種の金属酸化物)とから成る添加成
分とを含む。この誘電体磁器組成物を使用して温度補償
用積層磁器コンデンサを得る時には、この誘電体磁器組
成物のグリーンシート(未焼結磁器シート)にニツケル
を主成分とする導電性ペーストを印刷し、非酸化性雰囲
気、1200℃以下の低温で焼成する。この様に低温で焼成
すれば、ニツケル粒子の凝集が抑制される。
Therefore, the present applicant proposed in Japanese Patent Application No. 60-270540 a dielectric ceramic composition that can be fired at a low temperature (1200 ° C. or lower) in order to solve the above problems. This composition comprises a basic component consisting of (CaO) k · Zr 1-x Ti x ) O 2 (where k and x are numerical values indicating the ratio of the number of atoms of each element), and Li
2 O, SiO 2 , MO (where MO is BaO, MgO, ZnO, SrO and CaO
And at least one metal oxide). When a temperature-compensated laminated porcelain capacitor is obtained using this dielectric porcelain composition, a green paste (unsintered porcelain sheet) of this dielectric porcelain composition is printed with a conductive paste containing nickel as a main component, Baking at a low temperature of 1200 ° C or less in a non-oxidizing atmosphere. Such baking at a low temperature suppresses the aggregation of nickel particles.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前述の特願昭60−270542号に開示されている誘電体磁
器組成物によれば、比誘電率εが30以上、温度係数TC
が−800〜+40ppm/℃、Qが2000以上、抵抗率ρが1×1
07MΩ・cm以上の実用可能な優れた温度補償用磁器コン
デンサを提供することができる。なお、後述の試料No.5
4から明らかな如く、上記出願に従う誘電体磁器の曲げ
強度(抗折強度)は約1300kg/cm2である。
According to the dielectric ceramic composition disclosed in Japanese Patent Application No. 60-270542, the relative permittivity ε s is 30 or more, and the temperature coefficient TC is
Is -800 to + 40ppm / ℃, Q is 2000 or more, resistivity ρ is 1 × 1
It is possible to provide a practicable and excellent temperature-compensating porcelain capacitor of 0 7 MΩ · cm or more. Sample No. 5 described later
As is clear from 4, the bending strength (flexural strength) of the dielectric ceramic according to the above application is about 1300 kg / cm 2 .

しかし、更に高い抵抗率ρ、曲げ強度σ、比誘電率ε
等を有する誘電体磁器が要望されている。誘電体磁器
の抵抗率ρを高くすることができれば、コンデンサの高
耐圧化が可能になる。曲げ強度σを大きくすることがで
きれば、磁器コンデンサの製造時及び回路基板に自動装
着する時における磁器コンデンサの破損が少なくなる。
誘電体磁器の比誘電率εを大きくすることができれ
ば、静電容量の大きい磁器コンデンサを提供することが
可能になる。また、従来と同じ静電容量を得る場合に
は、比誘電率εが大きいと、磁器コンデンサの電極間
距離を大きくし、単位厚み当りの電圧を下げることが可
能になる。
However, higher resistivity ρ, bending strength σ, relative permittivity ε
Dielectric porcelain having s or the like is desired. If the resistivity ρ of the dielectric ceramic can be increased, the breakdown voltage of the capacitor can be increased. If the bending strength σ can be increased, damage to the porcelain capacitor during manufacture of the porcelain capacitor and automatic mounting on the circuit board will be reduced.
If the relative permittivity ε s of the dielectric ceramic can be increased, it becomes possible to provide a ceramic capacitor having a large electrostatic capacitance. Further, in the case of obtaining the same capacitance as in the conventional case, if the relative permittivity ε s is large, it is possible to increase the distance between the electrodes of the ceramic capacitor and reduce the voltage per unit thickness.

そこで、本発明の目的は、非酸化性雰囲気、1200℃以
下の温度での焼成で得るものであるにも拘らず、1.0×1
08MΩ・cm以上の抵抗率と1500kg/cm2以上の曲げ強度σ
を有している磁器コンデンサを提供することにある。
Therefore, the object of the present invention is 1.0 × 1 in spite of being obtained by firing at a temperature of 1200 ° C. or less in a non-oxidizing atmosphere.
0 8 MΩ · cm or more resistivity and 1500 kg / cm 2 or more bending strength σ
To provide a porcelain capacitor having.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するための本発明に係わる磁器コンデ
ンサは、誘電体磁器と、この磁器に接触している少なく
とも2つの電極とから成る。上記誘電体磁器は、100重
量部の基本成分と、0.2〜10.0重量部の添加成分とから
成る。基本成分は、 (Ca1-xMexO)k(Zr1-y-zTiySiz)O2 (但し、MeはSr(ストロンチウム)、Ba(バリウム)の
内の少なくとも1種の元素であり、x、y、z、kは、
0.005≦x≦0.995、0≦y≦0.5、0.005≦z≦0.1、0.8
≦k≦1.25の範囲の数値)から成る。添加成分はLi2O
(酸化リチウム)とSiO2(酸化けい素)とMO〔但し、MO
はBaO(酸化バリウム)、ZnO(酸化亜鉛)、SrO(酸化
ストロンチウム)及びCaO(酸化カルシウム)の内の少
なくとも1種の金属酸化物〕から成る。添加成分のLi
2O、SiO2、MOの割合は、これ等の三角図において、Li2O
が1モル%、SiO2が80モル%、MOが19モル%の点(A)
と、Li2Oが1モル%、SiO2が49モル%、MOが50モル%の
点(B)と、Li2Oが25モル%、SiO2が35モル%、MOが40
モル%の点(C)と、Li2Oが50モル%、SiO2が49モル
%、MOが1モル%の点(D)と、Li2Oが19モル%、SiO2
が80モル%、MOが1モル%の点(E)とを結ぶ5本の直
線で囲まれた領域内とされている。
A porcelain capacitor according to the present invention for achieving the above object comprises a dielectric porcelain and at least two electrodes in contact with the porcelain. The dielectric porcelain is composed of 100 parts by weight of the basic component and 0.2 to 10.0 parts by weight of the additive component. The basic component is (Ca 1-x Me x O) k (Zr 1-yz Ti y Si z ) O 2 (where Me is at least one element selected from Sr (strontium) and Ba (barium)) , X, y, z, k are
0.005 ≦ x ≦ 0.995, 0 ≦ y ≦ 0.5, 0.005 ≦ z ≦ 0.1, 0.8
≦ k ≦ 1.25). Additive is Li 2 O
(Lithium oxide), SiO 2 (silicon oxide) and MO (however, MO
Is at least one metal oxide selected from BaO (barium oxide), ZnO (zinc oxide), SrO (strontium oxide) and CaO (calcium oxide). Li as an additive component
The proportions of 2 O, SiO 2 and MO are shown in these triangular diagrams as Li 2 O.
Is 1 mol%, SiO 2 is 80 mol%, and MO is 19 mol% (A)
And (1) Li 2 O is 1 mol%, SiO 2 is 49 mol%, and MO is 50 mol% (B), and Li 2 O is 25 mol%, SiO 2 is 35 mol%, and MO is 40 mol%.
Mol% point (C), Li 2 O 50 mol%, SiO 2 49 mol%, MO 1 mol% point (D), Li 2 O 19 mol%, SiO 2
Is 80 mol% and MO is 1 mol%, and it is defined as an area surrounded by five straight lines connecting the points (E).

〔発明の作用効果〕[Effects of the Invention]

上記発明の磁器コンデンサにおける誘電体磁器を非酸
化性雰囲気、1200℃以下の焼成で得ることができる。従
つて、ニツケル等の卑金属の導電性ペーストをグリーン
シートに塗布し、グリーンシートと導電性ペーストとを
同時に焼成する方法によつて磁器コンデンサを製造する
ことが可能になる。誘電体磁器の組成を本発明で特定さ
れた範囲にすることによつて、抵抗率ρが1×108MΩ
・cm以上、曲げ強度が1500kg/cm2以上、比誘電率ε
33〜139、静電容量の温度係数が−1000〜+45ppm/℃、1
MHzにおけるQが5000以上の磁器コンデンサを提供する
ことができる。
The dielectric porcelain in the porcelain capacitor of the above invention can be obtained by firing at 1200 ° C. or lower in a non-oxidizing atmosphere. Therefore, it is possible to manufacture a porcelain capacitor by a method of applying a conductive paste of a base metal such as nickel to a green sheet and simultaneously firing the green sheet and the conductive paste. By setting the composition of the dielectric ceramic to the range specified in the present invention, the resistivity ρ is 1 × 10 8 MΩ.
-Cm or more, bending strength of 1500 kg / cm 2 or more, relative permittivity ε s
33 to 139, temperature coefficient of capacitance is -1000 to + 45ppm / ℃, 1
It is possible to provide a porcelain capacitor having a Q in MHz of 5000 or more.

〔実施例〕〔Example〕

次に、本発明の実施例(比較例も含む)について説明
する。
Next, examples of the present invention (including comparative examples) will be described.

第1表の試料No.1のk=1.0、x=0.2(但しSr=0.
1、Ba=0.1)、y=0.2、z=0.01に従つて決定される
組成式 (Ca0.8Me0.2O)1.0(Zr0.79Ti0.2Si0.01)O2 より具体的にはMe0.2=Sr0.1Ba0.1であるので、 (Ca0.8Sr0.1Ba0.1O)1.0(Zr0.79Ti0.2Si0.01)O2から成る
基本成分を得るために、純度99.0%以上のCaCO3(炭酸
カルシウム)、SrCO3(炭酸ストロンチウム)、BaCO
3(炭酸バリウム)、ZrO2(酸化ジルコニウム)、TiO2
(酸化チタン)、SiO2(酸化けい素)を出発原料として
用意し、 CaCO3 350.23g (0.8モル部相当) SrCO3 64.63g (0.1 〃 ) BaCO3 86.39g (0.1 〃 ) ZrO2 426.16g (0.79 〃 ) TiO2 69.96g (0.2 〃 ) SiO2 2.63g (0.01 〃 ) をそれぞれ秤量した。なお、この秤量において不純物は
目方に入れなかつた。次に、秤量されたこれ等の原料を
ポツトミルに入れ、更にアルミナボールと水2.5lとを入
れ、15時間湿式攪拌した後、攪拌物をステンレスバツト
に入れて熱風式乾燥器で150℃、4時間乾燥した。次
に、この乾燥物を粗粉砕し、この粗粉砕物をトンネル炉
にて大気中で1200℃、2時間仮焼し、上記組成式の基本
成分を得た。
Sample No. 1 in Table 1 k = 1.0, x = 0.2 (however, Sr = 0.
1, Ba = 0.1), y = 0.2, z = 0.01, and the composition formula (Ca 0.8 Me 0.2 O) 1.0 (Zr 0.79 Ti 0.2 Si 0.01 ) O 2 more specifically, Me 0.2 = Sr 0.1 Since it is Ba 0.1 , in order to obtain the basic component composed of (Ca 0.8 Sr 0.1 Ba 0.1 O) 1.0 (Zr 0.79 Ti 0.2 Si 0.01 ) O 2 , CaCO 3 (calcium carbonate) with a purity of 99.0% or more, SrCO 3 ( Strontium carbonate), BaCO
3 (barium carbonate), ZrO 2 (zirconium oxide), TiO 2
Prepare (titanium oxide) and SiO 2 (silicon oxide) as starting materials, and use CaCO 3 350.23g (equivalent to 0.8 parts by mole) SrCO 3 64.63g (0.1〃) BaCO 3 86.39g (0.1〃) ZrO 2 426.16g ( 0.79 〃) TiO 2 69.96 g (0.2 〃) SiO 2 2.63 g (0.01 〃) were weighed. It should be noted that impurities were not included in the weight in this weighing. Next, these weighed raw materials were put in a pot mill, and alumina balls and 2.5 l of water were further put therein, and the mixture was wet-stirred for 15 hours. Then, the agitated product was placed in a stainless steel bath and heated at 150 ° C. for 4 hours with a hot air dryer. Dried for hours. Next, this dried product was roughly pulverized, and this coarsely pulverized product was calcined in a tunnel furnace in the atmosphere at 1200 ° C. for 2 hours to obtain a basic component of the above composition formula.

一方、試料No.1の添加成分を得るために Li2O 0.43g ( 1モル%) SiO2 68.77g (80 〃 ) BaCO3 10.73g (3.8 〃 ) MgO 2.19g (3.8 〃 ) ZnO 4.42g (3.8 〃 ) SrCO3 8.03g (3.8 〃 ) CaCO3 5.44g (3.8 〃 ) を秤量し、これ等にアルコールを300cc加え、ポリエチ
レンポツトにてアルミナボールを用いて10時間攪拌した
後、大気中1000℃で2時間仮焼し、これを300ccの水と
共にアルミナポツトに入れ、アルミナボールで15時間粉
砕し、しかる後、150℃で4時間乾燥させてLi2Oが1モ
ル%、SiO2が80モル%、MOが19モル%(BaO 3.8モル
%、MgO 3.8モル%、ZnO 3.8モル%、SrO 3.8モル%、C
aO 3.8モル%)の組成の添加成分の粉末を得た。
On the other hand, Li 2 O 0.43g (1 mol%) SiO 2 68.77g (80 〃) BaCO 3 10.73g (3.8 〃) MgO 2.19g (3.8 〃) ZnO 4.42g ( 3.8 〃) SrCO 3 8.03 g (3.8 〃) were weighed CaCO 3 5.44 g (3.8 〃) was added 300cc of alcohol to like, after stirring for 10 hours using alumina balls in a polyethylene pepper DOO, 1000 ° C. in air Calcination for 2 hours in an alumina pot with 300 cc of water, crush with alumina balls for 15 hours, and then dry at 150 ° C for 4 hours to obtain 1 mol% Li 2 O and 80 mol SiO 2. %, MO is 19 mol% (BaO 3.8 mol%, MgO 3.8 mol%, ZnO 3.8 mol%, SrO 3.8 mol%, C
A powder of the additive component having a composition of aO 3.8 mol%) was obtained.

次に、基本成分の粉末1000g(100重量部)に対して上
記添加成分の粉末10g(1重量部)を加え、更に、アク
リル酸エステルポリマー、グリセリン、縮合リン酸塩の
水溶液から成る有機バインダを基本成分と添加成分との
合計重量に対して15重量%添加し、更に、50重量%の水
を加え、これ等をボールミルに入れて粉砕及び混合して
磁器原料のスラリーを作製した。
Next, 10 g (1 part by weight) of the above-mentioned additive component powder was added to 1000 g (100 parts by weight) of the basic component powder, and an organic binder composed of an aqueous solution of acrylic ester polymer, glycerin, and condensed phosphate was further added. 15% by weight was added to the total weight of the basic component and the additional component, 50% by weight of water was further added, and these were put in a ball mill and pulverized and mixed to prepare a slurry of a porcelain raw material.

次に、上記スラリーを真空脱泡機に入れて脱泡し、こ
のスラリーをリバースロールコーターに入れ、これを使
用してポリエステルフイルム上にスラリーに基づく薄膜
を形成し、この薄膜をフイルム上で100℃に加熱して乾
燥させ、厚さ約25μmのグリーンシート(未焼結磁器シ
ート)を得た。このシートは、長尺なものであるが、こ
れを10cm角の正方形に打ち抜いて使用する。
Next, the above slurry was put in a vacuum defoaming machine to be degassed, and this slurry was put into a reverse roll coater, which was used to form a thin film based on the slurry on a polyester film, and this thin film was put on a film for 100 minutes. It was heated to ℃ and dried to obtain a green sheet (unsintered porcelain sheet) having a thickness of about 25 μm. Although this sheet is long, it is used by punching it out into a 10 cm square.

一方、内部電極用の導電ペーストは、粒径平均1.5μ
mのニツケル粉末10gと、エチルセルローズ0.9gをブチ
ルカルビトール9.1gに溶解させたものとを攪拌機に入
れ、10時間攪拌することにより得た。この導電ペースト
を長さ14mm、幅7mmのパターンを50個有するスクリーン
を介して上記グリーンシートの片面に印刷した後、これ
を乾燥させた。
On the other hand, the conductive paste for internal electrodes has an average particle size of 1.5μ.
10 g of nickel powder of m and 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol were placed in a stirrer and stirred for 10 hours to obtain the powder. This conductive paste was printed on one surface of the green sheet through a screen having 50 patterns having a length of 14 mm and a width of 7 mm, and then dried.

次に、上記印刷面を上にしてグリーンシートを2枚積
層した。この際、隣接する上下のシートにおいて、その
印刷面がパターンの長手方向に約半分程ずれるように配
置した。更に、この積層物の上下両面にそれぞれ4枚ず
つ厚さ60μmのグリーンシートを積層した。次いで、こ
の積層物を約50℃の温度で厚さ方向に約40トンの荷重を
加えて圧着させた。しかる後、この積層物を格子状に裁
断し、50個の積層体チツプを得た。
Next, two green sheets were laminated with the printed surface facing up. At this time, the adjacent upper and lower sheets were arranged such that their printing surfaces were displaced by about half in the longitudinal direction of the pattern. Furthermore, four green sheets each having a thickness of 60 μm were laminated on each of the upper and lower surfaces of this laminate. Next, this laminate was pressed at a temperature of about 50 ° C. by applying a load of about 40 tons in the thickness direction. Then, this laminate was cut into a lattice shape to obtain 50 laminate chips.

次に、この積層体チツプを雰囲気焼成が可能な炉に入
れ、大気雰囲気中で100℃/hの速度で600℃まで昇温し
て、有機バインダを燃焼させた。しかる後、炉の雰囲気
を大気からH2 2体積%+N2 98体積%の雰囲気に変え
た。そして、炉を上述の如き還元性雰囲気とした状態を
保つて、積層体チツプの加熱温度を600℃から焼結温度
の1160℃まで100℃/hの速度で昇温して1160℃(最高温
度)3時間保持した後、100℃/hの速度で600℃まで降温
し、雰囲気を大気雰囲気(酸化性雰囲気)におきかえ
て、600℃を30分間保持して酸化処理を行い、その後、
室温まで冷却して焼結体チツプを得た。
Next, this laminated body chip was put into a furnace capable of firing in an atmosphere, and heated to 600 ° C. at a rate of 100 ° C./h in an air atmosphere to burn the organic binder. After that, the atmosphere of the furnace was changed from the atmosphere to an atmosphere of H 2 2% by volume + N 2 98% by volume. Then, while maintaining the furnace in the reducing atmosphere as described above, the heating temperature of the laminated chip is increased from 600 ° C to 1160 ° C of the sintering temperature at a rate of 100 ° C / h to 1160 ° C (maximum temperature). ) After holding for 3 hours, the temperature is lowered to 600 ° C at a rate of 100 ° C / h, the atmosphere is changed to the atmospheric atmosphere (oxidizing atmosphere), and the temperature is held at 600 ° C for 30 minutes to perform the oxidation treatment, and then,
After cooling to room temperature, a sintered chip was obtained.

次に、電極が露出する焼結体チツプの側面に亜鉛とガ
ラスフリツトとビヒクルとから成る導電性ペーストを塗
布して乾燥し、これを大気中で550℃の温度で15分間焼
付け、亜鉛電極層を形成し、更にこの上に銅を無電解メ
ツキで被着させて、更にこの上に電気メツキ法でPb−Sn
半田層を設けて、一対の外部電極を形成した。
Next, a conductive paste consisting of zinc, glass frit and vehicle is applied to the side surface of the sintered chip where the electrodes are exposed and dried, and this is baked in the atmosphere at a temperature of 550 ° C for 15 minutes to form a zinc electrode layer. Then, copper is deposited on this by electroless plating, and Pb-Sn is further deposited on this by electroplating.
A solder layer was provided to form a pair of external electrodes.

これにより、第1図に示す如く、誘電体磁器層(1)
(2)(3)と、一対の内部電極(4)(5)と、一対
の外部電極(6)(7)から成る積層磁器コンデンサ
(8)が得られた。なお、このコンデンサ(8)の誘電
体磁器層(2)の厚さは0.02mm、内部電極(4)(5)
の対向面積は5mm×5mm=25mm2である。また、焼結後の
磁器層(1)(2)(3)の組成は、焼結前の基本成分
と添加成分との混合組成と実質的に同じであり、複合ペ
ロブスカイト(perovskite)型構造の基本成分 {(Ca0.8Sr0.1Ba0.1)O}1.0(Zr0.79Ti0.2Si0.01)O2の結晶
粒子間にLi2O 1モル%とSiO2 80モル%とBaO 3.8モル%
とMgO 3.8モル%とZnO 3.8モル%とSrO 3.8モル%とCaO
3.8モル%から成る添加成分が均一に分布したものが得
られる。
As a result, as shown in FIG. 1, the dielectric ceramic layer (1)
A laminated ceramic capacitor (8) including (2) and (3), a pair of internal electrodes (4) and (5), and a pair of external electrodes (6) and (7) was obtained. The thickness of the dielectric ceramic layer (2) of this capacitor (8) was 0.02 mm, and the internal electrodes (4) (5)
The facing area of is 5 mm × 5 mm = 25 mm 2 . Further, the composition of the porcelain layers (1), (2) and (3) after sintering is substantially the same as the mixed composition of the basic component and the additive component before sintering, and has a composite perovskite structure. Basic component {(Ca 0.8 Sr 0.1 Ba 0.1 ) O} 1.0 (Zr 0.79 Ti 0.2 Si 0.01 ) O 2 between crystal grains Li 2 O 1 mol%, SiO 2 80 mol% and BaO 3.8 mol%
And MgO 3.8 mol% ZnO 3.8 mol% SrO 3.8 mol% CaO
A uniformly distributed additive component consisting of 3.8 mol% is obtained.

次に、完成した積層磁器コンデンサの比誘電率ε
温度係数TC、Q、抵抗率ρ、曲げ強度σを測定したとこ
ろ、第2表の試料No.1に示す如く、εは58、TCは−44
0ppm/℃、Qは8700、ρは2.6×108MΩ・cm、σは1800k
g/cm2であつた。なお、温度係数TCはコンデンサの通常
の使用範囲でほぼ一定である。
Next, the relative permittivity ε s of the completed multilayer ceramic capacitor,
The temperature coefficient TC, Q, resistivity ρ, and bending strength σ were measured, and as shown in sample No. 1 in Table 2, ε s was 58 and TC was -44.
0ppm / ℃, Q is 8700, ρ is 2.6 × 10 8 MΩ ・ cm, σ is 1800k
g / cm 2 . The temperature coefficient TC is almost constant in the normal usage range of the capacitor.

上記諸特性は次の要領で測定した。 The above characteristics were measured in the following manner.

(A)比誘電率εは、温度20℃、周波数1MHz、交流電
圧〔実効値〕0.5Vの条件で静電要領を測定し、この測定
値と一対の内部電極(4)(5)の対向面積25mm2と磁
器層(2)の厚さ0.02mmから計算で求めた。
(A) For the relative permittivity ε s , the electrostatic procedure was measured under the conditions of a temperature of 20 ° C, a frequency of 1 MHz, and an AC voltage [effective value] of 0.5 V. The measured value and the pair of internal electrodes (4) and (5) were measured. It was calculated from the facing area of 25 mm 2 and the thickness of the porcelain layer (2) of 0.02 mm.

(B)温度係数(TC)は85℃の静電容量(C85)と20℃
の静電容量(C20)とを測定し、 (ppm/℃)で算出した。
(B) Temperature coefficient (TC) is 85 ℃ capacitance (C 85 ) and 20 ℃
And the capacitance (C 20 ) of Calculated in (ppm / ° C).

(C)Qは温度20℃において、周波数1MHz、電圧〔実効
値〕0.5Vの交流でQメータにより測定した。
(C) Q was measured with a Q meter at a temperature of 20 ° C. and an alternating current of frequency 1 MHz and voltage [effective value] 0.5 V.

(D)抵抗率ρ(MΩ・cm)は、温度20℃においてDC50
Vを1分間印加した後に一対の外部電極(6)(7)間
の抵抗値を測定し、その測定値と寸法とに基づいて計算
で求めた。
(D) Resistivity ρ (MΩ · cm) is DC50 at a temperature of 20 ℃
After applying V for 1 minute, the resistance value between the pair of external electrodes (6) and (7) was measured, and calculated based on the measured value and dimensions.

(E)曲げ強度σは、第3図に示す如く、支持台(10)
の一対の突起(11)(12)の上に試料即ち磁器コンデン
サ(8)を置き、ゲージ(13)を伴なつている断面形状
円形の加圧棒(14)で磁器コンデンサ(8)の中央を押
圧し、磁器コンデンサ(8)が破壊した時のゲージ(1
3)の値(最大荷重)Pを読み取り、次式によつて算出
した。
(E) The bending strength σ is as shown in FIG.
Place the sample, that is, the porcelain capacitor (8) on the pair of protrusions (11) (12), and press the center of the porcelain capacitor (8) with the pressure rod (14) having a circular cross section with the gauge (13). When the porcelain capacitor (8) is destroyed by pressing, the gauge (1
The value (maximum load) P of 3) was read and calculated by the following formula.

ここで、Pはゲージ(13)で読み取つた最大荷重〔k
g〕であり、Lはレール状い平行に伸びる一対の突起(1
1)(12)の相互間隔〔cm〕であり、bは試料即ち磁器
コンデンサの幅〔cm〕であり、dは試料即ち磁器コンデ
ンサの厚み〔cm〕である。なお、幅b、厚みdは各試料
で異なる値を有するが、bは約0.52cm、dは約0.04cmで
ある。
Where P is the maximum load [k read by the gauge (13)
g], and L is a pair of protrusions (1
1) The mutual distance [cm] of (12), b is the width [cm] of the sample or ceramic capacitor, and d is the thickness [cm] of the sample or ceramic capacitor. The width b and the thickness d have different values for each sample, but b is about 0.52 cm and d is about 0.04 cm.

以上、試料No.1の作製方法及びその特性について述べ
たが、その他の試料No.2〜80についても、基本成分及び
添加成分の組成、これ等の割合、及び還元性雰囲気(非
酸化性雰囲気)での焼成温度を第1表及び第2表に示す
ように変えた他は、試料No.1と全く同一の方法で積層磁
器コンデンサを作製し、同一方法で特性を測定した。
The manufacturing method and the characteristics of Sample No. 1 have been described above. For other Samples No. 2 to 80, the composition of the basic components and additive components, the ratio of these, and the reducing atmosphere (non-oxidizing atmosphere ), The firing temperature was changed as shown in Tables 1 and 2, and a laminated ceramic capacitor was manufactured by the same method as in Sample No. 1, and the characteristics were measured by the same method.

第1表は、それぞれの試料の基本成分 (Ca1-xMexO)k(Zr1-y-zTiySiz)O2 (但し、MeはSr、Baのうちの少なくとも一方の元素)と
添加成分との組成を示し、第2表はそれぞれの試料の還
元性雰囲気における焼結のための焼成温度(最高温
度)、及び諸特性を示す。なお、第1表の基本成分の欄
のk、x、y、zは組成式 (Ca1-xMexO)k(Zr1-y-zTiySiz)O2の各元素の原子数の割
合を示す数値である。添加成分の添加量は基本成分100
重量部に対する重量部で示されている。また、MOの内容
の欄には、BaO、MgO、ZnO、SrO、CaOの割合がモル%で
示されている。
Table 1 shows the basic components (Ca 1-x Me x O) k (Zr 1-yz Ti y Si z ) O 2 (where Me is at least one element of Sr and Ba) of each sample. The composition with the additive components is shown, and Table 2 shows the firing temperature (maximum temperature) for sintering of each sample in the reducing atmosphere and various characteristics. Note that k, x, y, and z in the column of basic components in Table 1 are the numbers of atoms of each element of the composition formula (Ca 1-x Me x O) k (Zr 1-yz Ti y Si z ) O 2 . It is a numerical value indicating the ratio. Addition amount of basic component is 100
It is shown in parts by weight relative to parts by weight. In the MO content column, the proportions of BaO, MgO, ZnO, SrO, and CaO are shown in mol%.

第1表から明らかな如く、本発明に従う試料では、非
酸化性雰囲気、1200℃以下の焼成で、比誘電率εが33
〜139、Qが5000以上、抵抗率ρが1×108〔MΩ・cm〕
以上、誘電率の温度係数が−1000から+45ppmの範囲、
曲げ強度σが1500〔kg/cm2〕以上となり、所望の温度補
償用磁器コンデンサを得ることができる。一方、試料N
o.6、7、8、9、10、25、30、31、36、37、42、48、4
9、53、54、55、59、60、67、68、73、80、では本発明
の目的を達成することができない。従つて、これ等は本
発明の範囲外のものである。
As is clear from Table 1, in the sample according to the present invention, the relative permittivity ε s is 33 in a non-oxidizing atmosphere and firing at 1200 ° C or lower.
~ 139, Q is 5000 or more, resistivity ρ is 1 × 10 8 [MΩcm]
Above, the temperature coefficient of the dielectric constant is in the range of -1000 to + 45ppm,
The bending strength σ becomes 1500 [kg / cm 2 ] or more, and a desired temperature compensating porcelain capacitor can be obtained. On the other hand, sample N
o.6, 7, 8, 9, 10, 25, 30, 31, 36, 37, 42, 48, 4
9, 53, 54, 55, 59, 60, 67, 68, 73, 80 cannot achieve the object of the present invention. Therefore, these are outside the scope of the invention.

次に組成の限定理由について述べる。 Next, the reasons for limiting the composition will be described.

添加成分の添加量が零の場合には、試料No.74から明
らかな如く、焼成温度が1300℃であつても緻密な焼結体
が得られないが、試料No.75に示す如く、添加量が100重
量部の基本成分に対して0.2重量部の場合には、1180℃
の焼成で所望の特性を有する焼結体が得られる。従つ
て、添加成分の添加量の下限は0.2重量部である。一
方、試料No.80に示す如く、添加量が12重量部の場合に
は、Qが5000、抵抗率ρが1.0×108MΩ・cm、曲げ強度
σが1500〔kg/cm2〕をそれぞれ下回つてしまい所望の特
性が得られないが、試料No.79に示す如く、添加量が10
重量部の場合には、所望の特性を得ることができる。従
つて添加量の上限は10重量部である。
When the additive amount of the additive component is zero, a dense sintered body cannot be obtained even if the firing temperature is 1300 ° C., as is clear from Sample No. 74, but as shown in Sample No. 75, 1180 ° C when the amount is 0.2 parts by weight for 100 parts by weight of basic components
By firing, a sintered body having desired characteristics can be obtained. Therefore, the lower limit of the addition amount of the additive component is 0.2 parts by weight. On the other hand, as shown in Sample No. 80, when the added amount is 12 parts by weight, Q is 5000, resistivity ρ is 1.0 × 10 8 MΩ · cm, and bending strength σ is 1500 [kg / cm 2 ]. Although it is less than the desired value, the desired characteristics cannot be obtained, but as shown in sample No. 79, the addition amount is 10
In the case of parts by weight, desired characteristics can be obtained. Therefore, the upper limit of the amount added is 10 parts by weight.

xの値が試料No.25、31、37に示す如く0の場合や、
試料No.30、36、42に示す如く1の場合には、抵抗率ρ
及び曲げ強度σがそれぞれ1×108〔MΩ・cm〕、1500
〔kg/cm2〕を下回つてしまい、所望の特性を得ることが
できないが、試料No.32に示す如く0.005、及び試料No.3
5に示す如く0.995の場合、及びこれ等の間の範囲では所
望の特性を得ることができる。従つてxの好ましい範囲
は0.005≦x≦0.995である。
When the value of x is 0 as shown in sample Nos. 25, 31, 37,
In the case of 1 as shown in Sample Nos. 30, 36 and 42, the resistivity ρ
And bending strength σ are 1 × 10 8 [MΩ · cm] and 1500, respectively.
Since it is less than [kg / cm 2 ] and desired characteristics cannot be obtained, as shown in sample No. 32, 0.005, and sample No. 3
In the case of 0.995 as shown in FIG. 5 and in the range between these, desired characteristics can be obtained. Therefore, the preferable range of x is 0.005 ≦ x ≦ 0.995.

yの値が試料No.48に示す如く0.55の場合には温度係
数TCが−1000ppm/℃よりも小さくなり所望の特性が得ら
れないが、yの値が0〜0.50の範囲では−1000ppm/℃〜
+45ppm/℃の任意のTCを得ることができる。従つてyの
範囲は0≦y≦0.50である。なお、試料No.43から明ら
かな如くyが零であつても目的とする特性を得ることが
できるが、yの値を大きくするに従つて比誘電率を大き
くすることができる。
When the value of y is 0.55 as shown in Sample No. 48, the temperature coefficient TC is smaller than -1000 ppm / ° C and desired characteristics cannot be obtained, but when the value of y is 0 to 0.50, it is -1000 ppm / ° C. ℃ ~
Any TC of + 45ppm / ° C can be obtained. Therefore, the range of y is 0 ≦ y ≦ 0.50. As is clear from Sample No. 43, the desired characteristics can be obtained even when y is zero, but the relative permittivity can be increased as the value of y is increased.

zの値が試料No.49、55に示す如く、0の場合には曲
げ強度σが1500kg/cm2を下回り、所望の曲げ強度を得る
ことができないが、試料No.56に示すようにzの値が0.0
05の場合には所望の曲げ強度を得ることができる。ま
た、試料No.53、59に示す如くzの値が0.12、0.11にな
るとQ、ρ、σの値が所望値よりも低くなるが、試料N
o.58に示す如くzの値が0.1になると、所望の特性が得
られる。従つて、zの好ましい範囲は0.005≦z≦0.1で
ある。
As shown in Sample Nos. 49 and 55, when the value of z is 0, the bending strength σ is less than 1500 kg / cm 2 , and the desired bending strength cannot be obtained. Has a value of 0.0
In the case of 05, the desired bending strength can be obtained. Further, as shown in Sample Nos. 53 and 59, when the values of z are 0.12 and 0.11, the values of Q, ρ and σ are lower than the desired values.
When the value of z becomes 0.1 as shown in o.58, desired characteristics are obtained. Therefore, the preferable range of z is 0.005 ≦ z ≦ 0.1.

kの値が試料No.60、68に示す如く0.80よりも小さい
場合、あるいは試料No.67、73に示す如く1.25よりも大
きい場合には、いずれも1300℃の高温で焼成しても緻密
な焼結体が得られないが、試料No.61〜66及び69〜72か
ら明らかな如くkの値が0.80から1.25の範囲であれば、
緻密な焼結体が得られ、かつ所望の諸特性を得ることが
できる。従つて、kの値の範囲は0.80≦k≦1.25であ
る。
If the value of k is smaller than 0.80 as shown in sample Nos. 60 and 68, or larger than 1.25 as shown in sample Nos. 67 and 73, both are dense even if fired at a high temperature of 1300 ° C. Although a sintered body cannot be obtained, as is clear from Sample Nos. 61 to 66 and 69 to 72, if the value of k is in the range of 0.80 to 1.25,
A dense sintered body can be obtained and desired characteristics can be obtained. Therefore, the value range of k is 0.80 ≦ k ≦ 1.25.

また、試料No.54には基本成分の組成式が (CaO)1.03(Zr0.95Ti0.05)O2 で表わされる従来例が示されている。これと、試料No.5
6とを比較すると、Me及びSiの両成分を同時に導入する
ことによつて、特に抵抗率ρ及び曲げ強度σが大幅に改
善されることがわかる。
Further, Sample No. 54 shows a conventional example in which the composition formula of the basic component is represented by (CaO) 1.03 (Zr 0.95 Ti 0.05 ) O 2 . This and Sample No. 5
Comparing with 6, it is understood that the resistivity ρ and the bending strength σ are greatly improved by introducing both the components of Me and Si at the same time.

添加成分の好ましい組成は、第2図のLi2O−SiO2−MO
の組成比をモル(mol)%で示す三角図に基づいて決定
することができる。三角図の点(A)は、試料No.1のLi
2O 1モル%、SiO2 80モル%、MO 19モル%の組成を示
し、点(B)は試料No.2のLi2O 1モル%、SiO2 49モル
%、MO 50モル%の組成を示し、点(C)は試料No.3のL
i2O 25モル%、SiO2 35モル%、MO 40モル%の組成を示
し、点(D)は試料No.4のLi2O 50モル%、SiO2 49モル
%、MO 1モル%の組成を示し、点(E)は試料No.5のLi
2O 19モル%、SiO2 80モル%、MO 1モル%の組成を示
す。
The preferred composition of the additive component is Li 2 O-SiO 2 -MO in FIG.
The composition ratio can be determined on the basis of a triangular diagram showing mol%. The point (A) in the triangular diagram is the Li of sample No. 1.
2 O 1 mol%, SiO 2 80 mol%, MO 19 mol% composition is shown. Point (B) is the composition of Li 2 O 1 mol%, SiO 2 49 mol%, and MO 50 mol% of sample No. 2. The point (C) is L of sample No. 3.
i 2 O 25 mol%, SiO 2 35 mol%, MO 40 mol%, the composition is shown. Point (D) indicates that sample No. 4 has Li 2 O 50 mol%, SiO 2 49 mol%, and MO 1 mol%. The composition is shown, and the point (E) is Li of sample No. 5.
2 O 19 mol%, SiO 2 80 mol%, and MO 1 mol%.

本発明の範囲に属する試料の添加成分の組成は三角図
の第1〜第5の点(A)〜(E)を順に結ぶ5本の直線
で囲まれた領域内の組成になつている。この領域内の組
成とすれば、所望の電気的特性を得ることができる。
The composition of the additive component of the sample within the scope of the present invention is the composition within the region surrounded by the five straight lines connecting the first to fifth points (A) to (E) of the triangular diagram in order. If the composition is within this region, desired electrical characteristics can be obtained.

一方、試料No.6、7、8、9、10のように添加成分の
組成が本発明で特定した範囲外となれば、緻密な焼結体
を得ることができない。なお、MO成分は例えば試料No.1
5、16、17、18、19に示す如くBaO、MgO、ZnO、SrO、CaO
のいずれか一つであつてもよいし、又は他の試料に示す
ように適当な比率としてもよい。
On the other hand, if the composition of the additive component is outside the range specified in the present invention as in Sample Nos. 6, 7, 8, 9, and 10, a dense sintered body cannot be obtained. The MO component is, for example, sample No. 1
As shown in 5, 16, 17, 18, and 19, BaO, MgO, ZnO, SrO, CaO
It may be any one of the above, or may have an appropriate ratio as shown in other samples.

〔変形例〕 以上、本発明の実施例について述べたが、本発明はこ
れに限定されるものではなく、例えば次の変形例が可能
なものである。
[Modification] The embodiment of the present invention has been described above, but the present invention is not limited to this, and the following modifications are possible, for example.

(a)基本成分の中に、本発明の目的を阻害しない範囲
で微量のMnO2(好ましくは0.05〜0.1重量%)等の鉱化
剤を添加し、焼結性を向上させてもよい。また、その他
の物質を必要に応じて添加してもよい。
A small amount of a mineralizing agent such as MnO 2 (preferably 0.05 to 0.1% by weight) may be added to the basic component (a) within a range that does not impair the object of the present invention to improve the sinterability. Moreover, you may add another substance as needed.

(b)出発原料を、実施例で示したもの以外の酸化物又
は水酸化物又はその他の化合物としてもよい。
(B) The starting materials may be oxides or hydroxides other than those shown in the examples, or other compounds.

(c)焼成時の非酸化性雰囲気での処理の後の酸化性雰
囲気での処理の温度を600℃以外の焼結温度よりも低い
温度(好ましくは500℃〜1000℃の範囲)としてもよ
い。即ち、ニツケル等の電極と磁器の酸化とを考慮して
種々変更することが可能である。
(C) The temperature of the treatment in the oxidizing atmosphere after the treatment in the non-oxidizing atmosphere during firing may be lower than the sintering temperature other than 600 ° C (preferably in the range of 500 ° C to 1000 ° C) . That is, it is possible to make various changes in consideration of the electrodes such as nickel and the oxidation of the porcelain.

(d)非酸化性雰囲気中の焼成温度を、電極材料を考慮
して種々変えることが出来る。ニツケルを内部電極とす
る場合には、1050℃〜1200℃の範囲でニツケル粒子の凝
集がほとんど生じない。
(D) The firing temperature in the non-oxidizing atmosphere can be variously changed in consideration of the electrode material. When nickel is used as the internal electrode, nickel particles hardly aggregate in the range of 1050 ° C to 1200 ° C.

(e)焼結を中性雰囲気で行つてもよい。(E) Sintering may be performed in a neutral atmosphere.

(f)積層磁器コンデンサ以外の一般的な磁器コンデン
サにも勿論適用可能である。
(F) Of course, it can be applied to general porcelain capacitors other than laminated porcelain capacitors.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係わる積層型磁器コンデンサ
を示す断面図、第2図は添加成分の組成範囲を示す三角
図、第3図は曲げ強度を測定する装置の概略図である。 1、2、3…磁器層、4、5…内部電極。
FIG. 1 is a sectional view showing a laminated ceramic capacitor according to an embodiment of the present invention, FIG. 2 is a triangular diagram showing a composition range of additive components, and FIG. 3 is a schematic view of an apparatus for measuring bending strength. 1, 2, 3 ... Porcelain layers, 4, 5 ... Internal electrodes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸 弘志 東京都台東区上野1丁目2番12号 太陽 誘電株式会社内 (56)参考文献 特開 昭60−255666(JP,A) 特開 昭63−86315(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Kishi 1-2-12 Ueno, Taito-ku, Tokyo Within Taiyo Yuden Co., Ltd. (56) Reference JP-A-60-255666 (JP, A) JP-A-63 -86315 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘電体磁器と、前記磁器に接触している少
なくとも2つの電極とから成る磁器コンデンサにおい
て、 前記磁器が、100重量部の基本成分と、0.2〜10.0重量部
の添加成分とから成り、 前記基本成分が、 (Ca1-xMexO)k(Zr1-y-zTiySiz)O2 (但し、MeはSr及びBaの内の少なくとも1種の元素であ
り、x、y、z、kは、0.005≦x≦0.995、0≦y≦0.
5、0.005≦z≦0.100、0.8≦k≦1.25の範囲の数値)で
あり、 前記添加成分がLi2OとSiO2とMO(但し、MOはBaO、MgO、
ZnO、SrO及びCaOの内の少なくとも1種の金属酸化物)
との組成を示す三角図における、 前記Li2Oが1モル%、前記SiO2が80モル%、 前記MOが19モル%の点(A)と、 前記Li2Oが1モル%、前記SiO2が49モル%、前記MOが50
モル%の点(B)と、 前記Li2Oが25モル%、前記SiO2が35モル%、前記MOが40
モル%の点(C)と、 前記Li2Oが50モル%、前記SiO2が49モル%、前記MOが1
モル%の点(D)と、 前記Li2Oが19モル%、前記SiO2が80モル%、前記MOが1
モル%の点(E)と を順に結ぶ5本の直線で囲まれた領域内のものであるこ
とを特徴とする磁器コンデンサ。
1. A porcelain capacitor comprising a dielectric porcelain and at least two electrodes in contact with the porcelain, wherein the porcelain comprises 100 parts by weight of a basic component and 0.2 to 10.0 parts by weight of an additive component. The basic component is (Ca 1-x Me x O) k (Zr 1-yz Ti y Si z ) O 2 (where Me is at least one element of Sr and Ba, x, y, z and k are 0.005 ≦ x ≦ 0.995 and 0 ≦ y ≦ 0.
5, 0.005 ≦ z ≦ 0.100, 0.8 ≦ k ≦ 1.25), and the additive components are Li 2 O, SiO 2 and MO (where MO is BaO, MgO,
ZnO, SrO and at least one metal oxide of CaO)
In ternary diagram, wherein Li 2 O is 1 mol% showing the composition of the SiO 2 is 80 mol%, wherein the MO is 19 mol% of the point and (A), the Li 2 O is 1 mol%, the SiO 2 is 49 mol% and the MO is 50
Mol% point (B), the Li 2 O content is 25 mol%, the SiO 2 content is 35 mol%, and the MO content is 40 mol%.
Mol% point (C), Li 2 O is 50 mol%, SiO 2 is 49 mol%, and MO is 1
Mol% point (D), Li 2 O is 19 mol%, SiO 2 is 80 mol%, and MO is 1
A porcelain capacitor characterized by being within a region surrounded by five straight lines connecting in sequence with the mol% point (E).
【請求項2】前記電極は、前記磁器の中に埋められたも
ものである特許請求の範囲第1項記載の磁器コンデン
サ。
2. The porcelain capacitor according to claim 1, wherein the electrodes are embedded in the porcelain.
【請求項3】前記電極は、卑金属で形成されたものであ
る特許請求の範囲第1項記載の磁器コンデンサ。
3. The porcelain capacitor according to claim 1, wherein the electrode is formed of a base metal.
【請求項4】前記卑金属はニツケルである特許請求の範
囲第3項記載の磁器コンデンサ。
4. The porcelain capacitor according to claim 3, wherein the base metal is nickel.
JP8843987A 1987-04-10 1987-04-10 Porcelain capacitor Expired - Lifetime JP2514358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8843987A JP2514358B2 (en) 1987-04-10 1987-04-10 Porcelain capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8843987A JP2514358B2 (en) 1987-04-10 1987-04-10 Porcelain capacitor

Publications (2)

Publication Number Publication Date
JPS63254603A JPS63254603A (en) 1988-10-21
JP2514358B2 true JP2514358B2 (en) 1996-07-10

Family

ID=13942830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8843987A Expired - Lifetime JP2514358B2 (en) 1987-04-10 1987-04-10 Porcelain capacitor

Country Status (1)

Country Link
JP (1) JP2514358B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018701A1 (en) * 1998-09-30 2000-04-06 Tdk Corporation Unreduced dielectric ceramic material, process for producing the same, and layer-built ceramic capacitor

Also Published As

Publication number Publication date
JPS63254603A (en) 1988-10-21

Similar Documents

Publication Publication Date Title
JPS621595B2 (en)
JPH0552604B2 (en)
KR910003215B1 (en) Ceramic capacitor
JPH0552602B2 (en)
JPH0559522B2 (en)
JPH0518204B2 (en)
JPH0544764B2 (en)
JP2843736B2 (en) Porcelain capacitor and method of manufacturing the same
JP2514358B2 (en) Porcelain capacitor
KR930004741B1 (en) Solid dielectric capacitor and method of manufacture
JP2514359B2 (en) Porcelain capacitor
JP2843733B2 (en) Porcelain capacitor and method of manufacturing the same
JP2831894B2 (en) Porcelain capacitor and method of manufacturing the same
JP2521856B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269908B2 (en) Porcelain capacitor and method of manufacturing the same
JPS621596B2 (en)
JPH0552603B2 (en)
JP3269907B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0551127B2 (en)
JP2521855B2 (en) Porcelain capacitor and method of manufacturing the same
JP2521857B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0518203B2 (en)
JP2843734B2 (en) Porcelain capacitor and method of manufacturing the same
JP2843735B2 (en) Porcelain capacitor and method of manufacturing the same
JPH05270904A (en) Porcelain condenser and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term