JP2514353B2 - Evaluation method of solid-state laser rod - Google Patents

Evaluation method of solid-state laser rod

Info

Publication number
JP2514353B2
JP2514353B2 JP6920187A JP6920187A JP2514353B2 JP 2514353 B2 JP2514353 B2 JP 2514353B2 JP 6920187 A JP6920187 A JP 6920187A JP 6920187 A JP6920187 A JP 6920187A JP 2514353 B2 JP2514353 B2 JP 2514353B2
Authority
JP
Japan
Prior art keywords
rod
absorption
transmittance
laser rod
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6920187A
Other languages
Japanese (ja)
Other versions
JPS63236382A (en
Inventor
正夫 鈴木
利男 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6920187A priority Critical patent/JP2514353B2/en
Publication of JPS63236382A publication Critical patent/JPS63236382A/en
Application granted granted Critical
Publication of JP2514353B2 publication Critical patent/JP2514353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,固体レーザであるNd:YAG単結晶レーザロッ
ドの評価方法に関する。
The present invention relates to a method for evaluating a Nd: YAG single crystal laser rod that is a solid-state laser.

(従来の技術) YAGレーザロッドは現在,固体レーザで最も多く使わ
れている。その発振性能は,活性イオン(Nd3+)の量
と,量子効率,光散乱,光吸収で決定される。光吸収
は,安定な吸収と一時的な吸収とに分けられるが,これ
らの吸収はおたがいまったく別の吸収ではなく,安定な
吸収が一時的な吸収とある程度関係することが推測され
ている。安定な吸収はクリプトン−クランプ等を用いる
連続発振に,一時的な吸収はキセノンフラッシュランプ
を用いるパルス発振にそれぞれ関係する。
(Prior Art) YAG laser rods are currently most commonly used in solid-state lasers. The oscillation performance is determined by the amount of active ions (Nd 3+ ), quantum efficiency, light scattering, and light absorption. Light absorption is divided into stable absorption and temporary absorption, but these absorptions are not different absorptions at all, and it is speculated that stable absorption is related to temporary absorption to some extent. Stable absorption is related to continuous oscillation using a krypton-clamp, and temporary absorption is related to pulse oscillation using a xenon flash lamp.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来,この種の吸収を測定するためには,活性イオン
(Nd3+)をドープしていない適当な大きさのYAG単結晶
試料を作製し,励起用ランプ光の照射前後に吸収スペク
トルを測定する方法,または,照射中に吸収を測定する
ことにより吸収の大きさを調べる方法が実施されてい
る。しかし,これらの方法は,Ndをドープした時としな
い時とでは,原料などの単結晶育成条件が異り,実際に
レーザ発振が不可能なため出力特性と吸収スペクトルと
の直接的な相関を判定し難い。
Conventionally, in order to measure this kind of absorption, a YAG single crystal sample of appropriate size not doped with active ions (Nd 3+ ) was prepared, and the absorption spectrum was measured before and after irradiation with excitation lamp light. Or the method of examining the magnitude of absorption by measuring the absorption during irradiation. However, in these methods, single crystal growth conditions such as raw materials differ between when Nd is doped and when Nd is not doped, and since laser oscillation is actually impossible, there is a direct correlation between the output characteristics and the absorption spectrum. It is difficult to judge.

また,従来の方法でNdをドープした試料の吸収スペク
トルを測定すると,Ndによる吸収のため,微妙な吸収の
相違を判別することが困難になる欠点がある。
In addition, when the absorption spectrum of a sample doped with Nd is measured by the conventional method, it is difficult to determine a subtle difference in absorption due to absorption by Nd.

本発明は上記の欠点を改善し,Ndドープ試料を用いて
吸収スペクトルの微妙な差を調べることでレーザ発振出
力値との相関を評価できるようにすることにある。
The present invention aims to improve the above-mentioned drawbacks, and to make it possible to evaluate the correlation with the laser oscillation output value by examining the subtle difference in the absorption spectrum using an Nd-doped sample.

(問題点を解決するための手段) 本発明では,400nmから200nmの波長領域における標準
ロッドの透過率を100%として,それに対する測定ロッ
ドの透過率を測定し,その測定値からYAGレーザロッド
の性能を予測することを特徴とする。
(Means for Solving Problems) In the present invention, the transmittance of the standard rod in the wavelength region of 400 nm to 200 nm is set to 100%, the transmittance of the measuring rod is measured, and the measured value is used to measure the YAG laser rod. It is characterized by predicting performance.

具体的に言えば,発振可能なNd:YAGレーザロッドを作
製して分光光度計の試料光束側,対照光束側に1本づつ
セットする。そして,バックグラウンドを消去し,試料
光束側ロッドの透過光を100%とし,測定ロッドの透過
率を測定してその差を求めることを特徴とする。
Specifically, an Nd: YAG laser rod that can oscillate is manufactured and set on the sample beam side and the reference beam side of the spectrophotometer. Then, the background is erased, the transmitted light of the rod on the light beam side of the sample is set to 100%, the transmittance of the measuring rod is measured, and the difference is obtained.

(実施例) 30×63.5lのNd:YAGレーザロッドの両端面を光学研磨
し,第1図(a)に示すように,分光光度計試料室の試
料光束5側,対照光束4側にそれぞれ1本づつ平行か
つ,検出器6までの距離が等しくなるようにセットす
る。試料光束5側を標準ロッド2,対照光束4側を基準ロ
ッド1として,この状態でバッググラウンドを消去す
る。すなわち,標準ロッド2の透過率を常に100%とす
る。次に,第1図(b)に示すように,基準ロッド1と
測定用ロッド3を並設して1200nm〜200nmで測定して第
1図(a)の場合との透過率の差を調べる。
(Example) As shown in FIG. 1 (a), both end surfaces of a 30 × 63.5 l Nd: YAG laser rod were optically polished, and as shown in FIG. Set them so that they are parallel to each other and the distances to the detector 6 are equal. The sample light beam 5 side is used as the standard rod 2 and the reference light beam 4 side is used as the reference rod 1, and the background is erased in this state. That is, the transmittance of the standard rod 2 is always 100%. Next, as shown in FIG. 1 (b), the reference rod 1 and the measuring rod 3 are arranged side by side and measured at 1200 nm to 200 nm to examine the difference in transmittance from the case of FIG. 1 (a). .

第2図はその測定結果を示す。300nmから400nmの波長
帯において,レーザロッドのNd濃度の相異による透過率
のピークが350〜360nm付近に見られる。同時に,レーザ
ロッド間に400〜260nmの波長帯において連続的な透過率
の相異が見られた。基準ロッド,標準ロッドを用いて10
0%補正を行なわない通常の分光測定法によるスペクト
ルを第3図に示す。第3図において400nm〜260nmにおけ
る標準ロッドSとロッドBの吸収特性を比較する際に,N
dによる吸収が存在するために,このままではNdによる
吸収とレーザ母体による吸収を明確に分離することが難
しい。一方,第2図によれば,Ndの吸収をバックグラウ
ンドとして,消去してあるため,母体の吸収が示す260
〜400nmにおける連続的な透過率の相異を容易に見い出
せる。
FIG. 2 shows the measurement results. In the wavelength band from 300 nm to 400 nm, the peak of the transmittance due to the difference in the Nd concentration of the laser rod is seen near 350 to 360 nm. At the same time, a continuous difference in transmittance was observed between the laser rods in the wavelength range of 400 to 260 nm. 10 using standard rod and standard rod
FIG. 3 shows a spectrum obtained by a usual spectroscopic measurement method without 0% correction. When comparing the absorption characteristics of standard rod S and rod B at 400 nm to 260 nm in FIG.
Since there is absorption due to d, it is difficult to clearly separate the absorption due to Nd and the absorption due to the laser matrix as it is. On the other hand, according to Fig. 2, the absorption of Nd is used as the background to eliminate it, so that the absorption of the matrix shows 260
It is easy to find continuous transmission differences at ~ 400 nm.

ところで,この連続的吸収の差とNd濃度には関連性が
見られないが,レーザ発振出力との間には関連性があ
る。その結果を第1表に示す。
By the way, there is no relation between this continuous absorption difference and the Nd concentration, but there is a relation between the laser oscillation output. The results are shown in Table 1.

第2図において,200〜400nmで標準ロッドと比較して
透過率が連続的に低下しているロッドは,発振出力も標
準ロッドより低い。また,相対的に透過率の低下が大き
いロッドほど,発振出力値も小さい。
In Fig. 2, the rod with a continuous decrease in transmittance at 200 to 400 nm compared to the standard rod has a lower oscillation output than the standard rod. Moreover, the oscillation output value is smaller as the rod has a relatively large decrease in transmittance.

(発明の効果) 以上の棒に,本発明の方法でレーザ発振可能なレーザ
ロッドを直接分光測定することにより,200nm〜400nmのN
dに依存しない連続的吸収を,標準ロッドの透過率との
差の形で相対的に評価することが容易となり,透過率と
レーザ出力との相関より測定ロッドの性能を見積ること
が可能となった。この方法によれば,用いる標準ロッド
の性能が良いほど,高品質のYAGレーザロッドの開発が
可能となる。
(Effect of the invention) By directly spectroscopically measuring a laser rod capable of lasing by the method of the present invention on the above rod, N of 200 nm to 400 nm
The continuous absorption independent of d can be relatively evaluated in the form of the difference from the transmittance of the standard rod, and the performance of the measuring rod can be estimated from the correlation between the transmittance and the laser output. It was According to this method, the better the performance of the standard rod used, the higher the quality of YAG laser rod that can be developed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による評価方法を実施する際の構成を,
バックグラウンドを消去して標準ロッドの透過率を100
%に補正する場合,及び分光測定時の場合について示す
図,第2図は本発明の方法により測定した分光光度スペ
クトルの特性図,第3図は基準ロッド,標準ロッドのな
い状態を100%補正し,試料光束側にのみ測定ロッドを
配置する通常の方法で測定した分光特性の400〜200nmの
スペクトルを示す図である。 図中,1は基準ロッド,2は標準ロッド,3は測定ロッド,4は
対照光束,5は試料光束,6は検出器。
FIG. 1 shows the configuration for carrying out the evaluation method according to the present invention.
The background is erased and the transmittance of the standard rod is set to 100.
FIG. 2 is a diagram showing a case of correcting to% and a case of spectroscopic measurement, FIG. 2 is a characteristic diagram of a spectrophotometric spectrum measured by the method of the present invention, and FIG. 3 is a 100% correction in a state without a reference rod and a standard rod. It is a figure which shows the spectrum of 400-200 nm of the spectral characteristic measured by the normal method which arrange | positions a measurement rod only on the sample light beam side. In the figure, 1 is a reference rod, 2 is a standard rod, 3 is a measuring rod, 4 is a reference light beam, 5 is a sample light beam, and 6 is a detector.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】YAG単結晶にNdをドープしたレーザロッド
の評価において,400nmから200nmの波長領域における標
準ロッドの透過率を100%として,それに対する測定ロ
ッドの透過率を測定し,その測定値からYAGレーザロッ
ドの性能を予測することを特徴とする固体レーザロッド
の評価方法。
1. In the evaluation of a laser rod in which a YAG single crystal is doped with Nd, the transmittance of the standard rod in the wavelength region of 400 nm to 200 nm is set to 100%, and the transmittance of the measuring rod is measured. A method for evaluating a solid-state laser rod, which is characterized by predicting the performance of a YAG laser rod.
JP6920187A 1987-03-25 1987-03-25 Evaluation method of solid-state laser rod Expired - Lifetime JP2514353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6920187A JP2514353B2 (en) 1987-03-25 1987-03-25 Evaluation method of solid-state laser rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6920187A JP2514353B2 (en) 1987-03-25 1987-03-25 Evaluation method of solid-state laser rod

Publications (2)

Publication Number Publication Date
JPS63236382A JPS63236382A (en) 1988-10-03
JP2514353B2 true JP2514353B2 (en) 1996-07-10

Family

ID=13395875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6920187A Expired - Lifetime JP2514353B2 (en) 1987-03-25 1987-03-25 Evaluation method of solid-state laser rod

Country Status (1)

Country Link
JP (1) JP2514353B2 (en)

Also Published As

Publication number Publication date
JPS63236382A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
Strasser et al. Fluorescence emission spectra of photosystem I, photosystem II and the light-harvesting chlorophyll a/b complex of higher plants
CN107037003A (en) A kind of system that moisture content in high-purity gas is detected based on cavity ring down spectroscopy technology
Su et al. Saturation effects on ultraviolet resonance Raman intensities: Excimer/YAG laser comparison and aromatic amino acid cross‐sections
Cherif et al. A new investigation of aqueous orthophosphoric acid speciation using Raman spectroscopy
Dolan et al. A new method for absolute absorption cross-section measurements: rhodamine-6G excited singlet-singlet absorption spectrum
Fisher et al. Source-corrected two-photon excited fluorescence measurements between 700 and 880 nm
WO2020196691A1 (en) Spectrometer and method for calibrating correspondence table in spectrometer
Lutz et al. Correction for inner filter effects in fluorescence spectroscopy
Chartier et al. International comparison of iodine cells
JPH09304272A (en) Apparatus for measuring absorbancy of liquid
JP2514353B2 (en) Evaluation method of solid-state laser rod
Geist et al. Electrically based spectral power measurements through use of a tunable cw laser
Chui et al. Study of hyper-Rayleigh scattering and two-photon absorption induced fluorescence from crystal violet
JP3207882B2 (en) Spectral fluorometer spectral correction method and spectral fluorometer with spectrum correction function
Crosley et al. Relative transition probabilities in the AX system of OD
US4890915A (en) Method and apparatus for determining optical absorption and emission characteristics of a crystal or non-crystalline fiber
Klemp et al. Relative quantum yield of the S2→ S1 fluorescence from azulene
EP0961107A3 (en) Method of calculating optical frequency spectrum
Van Dijk Excitation profiles of the sodium D-doublet in an H2-O2-Ar flame
EP0756168A3 (en) Method of measuring amadori compound by light scattering
Rhoades et al. The AC-Spectra, an instrument for hyperspectral characterization of inherent optical properties in natural waters
JPS6147534A (en) Method and apparatus for measuring light loss characteristic of optical fiber
JPH0641916B2 (en) Spectrofluorometer
Rivano et al. Energy transfer in slab dye lasers
Klosowski et al. Experiments on Raman versus primary light scattering fluxes from pressed discs