JP2511061B2 - Alumina refractory manufacturing method - Google Patents

Alumina refractory manufacturing method

Info

Publication number
JP2511061B2
JP2511061B2 JP62209736A JP20973687A JP2511061B2 JP 2511061 B2 JP2511061 B2 JP 2511061B2 JP 62209736 A JP62209736 A JP 62209736A JP 20973687 A JP20973687 A JP 20973687A JP 2511061 B2 JP2511061 B2 JP 2511061B2
Authority
JP
Japan
Prior art keywords
alumina
particles
fused
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62209736A
Other languages
Japanese (ja)
Other versions
JPS6452669A (en
Inventor
隆之 杉山
市朗 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENU JII KEI ADORETSUKU KK
NIPPON GAISHI KK
Original Assignee
ENU JII KEI ADORETSUKU KK
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENU JII KEI ADORETSUKU KK, NIPPON GAISHI KK filed Critical ENU JII KEI ADORETSUKU KK
Priority to JP62209736A priority Critical patent/JP2511061B2/en
Publication of JPS6452669A publication Critical patent/JPS6452669A/en
Application granted granted Critical
Publication of JP2511061B2 publication Critical patent/JP2511061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えばIC用基板の焼成用棚板などに適した
アルミナ質耐火物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing an alumina refractory material suitable for, for example, a shelf for firing IC substrates.

(従来の技術) IC用基板としては一般にアルミナ質基板が多用されて
おり、これを焼成するための棚板としてはアルミナ質耐
火物が使用される。従来この種の耐火物は、所定粒度分
布の電融アルミナ粒子及び電融ムライト粒子を混合成形
して焼成することにより製造されていた。
(Prior Art) In general, an alumina substrate is often used as an IC substrate, and an alumina refractory material is used as a shelf plate for firing the substrate. Conventionally, this type of refractory has been manufactured by mixing and molding electrofused alumina particles and electrofused mullite particles having a predetermined particle size distribution and firing them.

ところが、アルミナ質耐火物は熱膨張率が大きく耐熱
衝撃性に劣り、また曲げ強度の点で不十分な点があっ
た。更に、表面の平滑性に欠けるため、焼成後に研磨仕
上げが必要となってコスト高になるという問題もあっ
た。
However, the alumina refractory has a large coefficient of thermal expansion, is inferior in thermal shock resistance, and is insufficient in bending strength. Furthermore, since the surface lacks in smoothness, polishing is required after firing, which causes a problem of high cost.

そこで、特に表面平滑性の改善のために、電融アルミ
ナ及び電融ムライトの原料粒子を微粒化したり、これら
に粘土を添加することが近時試みられている。
Therefore, in order to improve the surface smoothness, it has recently been attempted to atomize raw material particles of fused alumina and fused mullite or to add clay to these.

(発明が解決しようとする問題点) しかしながら、単に原料粒子を微粒化する方法では、
表面平滑性は多少改善されても、成形時にラミネーショ
ンやキレ欠き等が発生し易くなって成形性が低下し、し
かも焼成時の焼け縮みが著しくなることから寸法精度が
低下し歩留りが悪くなるという問題点を生じ、且つ耐熱
衝撃性や強度の改善の面でも不十分である。また、単に
電融アルミナ及び電融ムライトに粘土を添加する方法で
は、表面平滑性は改善されても、成形性の改善や耐熱衝
撃性及び曲げ強度の面では不十分であってまだ改善の余
地が残されているのが実情である。
(Problems to be Solved by the Invention) However, in the method of simply atomizing the raw material particles,
Even if the surface smoothness is improved a little, lamination and scratches are likely to occur during molding, the moldability is lowered, and the shrinkage during firing becomes significant, so the dimensional accuracy is lowered and the yield is deteriorated. It causes problems and is insufficient in terms of thermal shock resistance and improvement of strength. In addition, in the method of simply adding the clay to the fused alumina and fused mullite, even if the surface smoothness is improved, it is still insufficient in terms of the improvement of moldability, thermal shock resistance and bending strength, and there is still room for improvement. It is the actual situation that is left.

そこで、本発明の目的は、成形性や製品歩留りを低下
させることなく表面平滑性を改善できると共に、耐熱衝
撃性,曲げ強度等の特性も向上させることのできるアル
ミナ質耐火物の製造方法を提供するにある。
Therefore, an object of the present invention is to provide a method for producing an alumina refractory material that can improve surface smoothness without lowering moldability and product yield, and can also improve properties such as thermal shock resistance and bending strength. There is.

[発明の構成] (問題点を解決するための手段) 本発明によるアルミナ質耐火物の製造方法は、電融ア
ルミナ粒子及び電融ムライト粒子の双方を含み且つ電融
アルミナ粒子の含有量を電融ムライト粒子よりも多くし
た主原料45〜85重量%(以下w%と記す)と、仮焼アル
ミナ10〜40w%と、粘土粒子3〜15w%との混合物を成形
し、焼成することを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method for producing an alumina refractory material according to the present invention includes both the fused alumina particles and the fused mullite particles, and determines the content of the fused alumina particles to be the same. Characterized by molding and firing a mixture of 45 to 85 wt% of the main raw material (hereinafter referred to as w%), which is more than the fused mullite particles, 10 to 40 w% of calcined alumina, and 3 to 15 w% of clay particles. It is what

(作用) 従来のアルミナ質耐火物の主原料であった電融アルミ
ナ及び電融ムライトの混合物に加えて、粘土と仮焼アル
ミナとを更に配合したことによって、焼成過程において
粘土はアルミナと反応し高温下での強度に優れたムライ
トを生成させる。そのために、焼成後に得られるアルミ
ナ質耐火物は耐熱衝撃性が高められ、また高温下での曲
げ強度などの機械的強度が向上する。しかも、本発明で
はアルミナ成分の一部は仮焼アルミナにより構成され、
これは一般に複数の一次粒子が集合して二次粒子を構成
する凝集粒構造をなして化学的活性が高い。従って、粘
土とアルミナとによって上述のムライト生成反応が起り
易くなって多量のムライトが生成し、且つ生成ムライト
に無数の微細孔が含まれるようになる。この結果、焼成
製品の曲げ強度を高めると共に、組織の気孔率が高まっ
て耐熱衝撃強度が大幅に改善される。更にこの凝集粒構
造を有する仮焼アルミナを使用することにより、成形性
と表面平滑性の両立を図ることが可能になる。即ち成形
時には仮焼アルミナは二次粒子としての性質が発揮され
てラミネーションやキレ欠け等の発生が抑えられ、且つ
それでいながら焼成されると微細な一次粒子としての性
質が発揮されて優れた表面平滑性が得られるのである。
また、上述した粘土の添加はムライト生成による強度向
上効果に加え、焼結組織の緻密化ももたらし、これによ
っても成形性を犠牲にすることなく表面平滑性の向上を
図ることができる。
(Function) In addition to the mixture of fused alumina and fused mullite, which have been the main raw materials of conventional alumina refractories, clay and calcined alumina are further blended, whereby clay reacts with alumina in the firing process. It produces mullite with excellent strength at high temperatures. Therefore, the alumina refractory obtained after firing has improved thermal shock resistance and mechanical strength such as bending strength at high temperature. Moreover, in the present invention, a part of the alumina component is composed of calcined alumina,
This generally has an agglomerated grain structure in which a plurality of primary particles are aggregated to form secondary particles and has a high chemical activity. Therefore, the above-mentioned mullite formation reaction easily occurs due to clay and alumina, a large amount of mullite is formed, and the generated mullite contains innumerable fine pores. As a result, the bending strength of the fired product is increased, the porosity of the structure is increased, and the thermal shock resistance is significantly improved. Further, by using the calcined alumina having this agglomerated grain structure, it becomes possible to achieve both moldability and surface smoothness. That is, during molding, calcined alumina exhibits the properties as secondary particles and suppresses the occurrence of lamination, chipping, etc., and when it is fired while still being, it exhibits the properties as fine primary particles and has an excellent surface. Smoothness is obtained.
In addition, the addition of clay described above brings about the effect of improving the strength due to the formation of mullite and also densifies the sintered structure, whereby the surface smoothness can be improved without sacrificing the formability.

本発明によるアルミナ質耐火物の原料配合として、電
融アルミナ及び電融ムライト粒子を45〜85w%としたの
は、45w%未満では成形性や耐ベント性が悪化し、また8
5w%以上では仮焼アルミナの含有量が少なくなり過ぎ
て、仮焼アルミナによる上記の作用が満足に得られなく
なるからである。
As the raw material blend of the alumina refractory according to the present invention, the fused alumina and fused mullite particles are set to 45 to 85% by weight, if less than 45% by weight, moldability and vent resistance deteriorate, and
This is because if the content is 5 w% or more, the content of calcined alumina becomes too small, and the above-described effects of calcined alumina cannot be satisfactorily obtained.

そして、仮焼アルミナの配合割合を10〜40w%とした
のは、10w%以下では満足すべき作用効果が生ぜず、ま
た40w%%以上にすると成形性が悪化するからである。
The reason why the blending ratio of the calcined alumina is set to 10 to 40% by weight is that if it is 10% by weight or less, no satisfactory effect is produced, and if it is 40% by weight or more, the formability is deteriorated.

更に粘土粒子の配合割合を3〜15w%としたのは、3w
%以下では焼成に伴うムライト生成量が不充分であり、
15w%以上にするとムライト化されない粘土粒子の残存
量が増して耐ベント性が低下するからである。
Furthermore, the mixing ratio of clay particles was set to 3 to 15w% because it was 3w.
% Or less, the amount of mullite produced by firing is insufficient,
This is because if it is 15 w% or more, the residual amount of clay particles that are not mullite increases and the vent resistance decreases.

尚、電融アルミナ及び電融ムライトの粒子は、粒径44
μ未満のものの含有率が5w%以下であることが焼成収縮
を極力低く抑えるためには好ましい。また、電融アルミ
ナ及び電融ムライトの双方の配合比はアルミナリッチで
あることが好ましく、特には電融アルミナが70〜85w%
であることが最適である。
The particles of fused alumina and fused mullite have a particle size of 44
The content of less than μ is preferably 5 w% or less in order to suppress firing shrinkage as low as possible. Further, the blending ratio of both fused alumina and fused mullite is preferably alumina-rich, and especially fused alumina is 70 to 85% by weight.
Is optimal.

一方、仮焼アルミナは、表面平滑性を最も効果的に確
保するうえで一次粒子の粒径が1〜5μの範囲にあるこ
とが好ましく、そして成形性を最も効果的に確保するう
えでは、二次粒子の平均粒径が15〜75μの範囲にあるこ
とがより好ましい。
On the other hand, the calcined alumina preferably has a primary particle size in the range of 1 to 5 μ in order to ensure the surface smoothness most effectively, and in order to ensure the formability most effectively, More preferably, the average particle size of the secondary particles is in the range of 15 to 75μ.

次に、粘土を添加するうえで、その粒径は5μ以下
で、且つAl2O3,SiO2を除く成分の合計含有率が1w%以下
であることがより好ましい。粒径を5μ以下にするの
は、それが5μを超えると焼成収縮のばらつきが増大す
る場合があるためである。また、Al2O3,SiO2以外の成分
を1w%以下とするのは粘土中の不純物たるFe2O3,TiO2
が1w%を超えて存在すると、アルミア質のIC基板等を焼
成する場合には、その基板等を着色したり色斑を生じさ
せたりする虞れがあるからである。
Next, in adding clay, it is more preferable that the particle size is 5 μm or less, and the total content of the components excluding Al 2 O 3 and SiO 2 is 1 w% or less. The reason why the particle size is 5 μm or less is that if it exceeds 5 μm, variations in firing shrinkage may increase. In addition, the content of components other than Al 2 O 3 and SiO 2 is set to 1 w% or less when the impurities such as Fe 2 O 3 and TiO 2 in the clay are present in excess of 1 w%, the aluminic IC substrate is baked. In that case, there is a risk that the substrate or the like will be colored or color spots will be generated.

(実施例) 次に本発明のいくつかの実施例につき、表1乃至表8
を参照して述べる。尚、各表において試料番号に*印を
付したものは本発明の範囲外にある比較例であり、試料
番号に*印を付していないものが本発明の範囲内にある
実施例である。また、各表中、電融アルミナと電融ムラ
イトとの双方の配合比は、電融アルミナが70〜85w%で
電融ムライトが25〜30w%である。
(Examples) Next, Tables 1 to 8 will be described for some Examples of the present invention.
Will be described with reference to. In each table, the sample number with * is a comparative example outside the scope of the present invention, and the sample number without * is an example within the scope of the present invention. . Further, in each table, the compounding ratio of both the fused alumina and the fused mullite is 70 to 85% by weight for the fused alumina and 25 to 30% for the fused mullite.

<実施例群1>これらは原料中の電融アルミナと電融ム
ライトとの混合物の配合率と、耐火物の諸特性及び成形
性との関連性を示唆するものであって、表1に示すよう
に、粘土と仮焼アルミナとの重量比を略一定にしたうえ
で、上記混合物のは配合率を45〜95w%の範囲で増減さ
せている。
<Example group 1> These show the relationship between the blending ratio of the mixture of the fused alumina and the fused mullite in the raw material, the various properties of the refractory and the formability, and are shown in Table 1. As described above, the weight ratio of clay and calcined alumina is kept substantially constant, and the mixture ratio of the mixture is increased or decreased within the range of 45 to 95 w%.

耐火物の成形及び焼成方法は、表に示した各配合原料
にその4.0%の水を添加して充分に混合したうえ、油圧
成形機を用いて1,000t/cm2のプレス圧を加え、200×100
×10mmの板状テストピースを各10枚ずつ成形し、1,700
℃で焼成を行なった。表中の各特性は夫々下記の測定方
法に従って計測又は評価した。
The refractory is molded and fired by adding 4.0% of water to each compounded raw material shown in the table and mixing them well, and then applying a pressing pressure of 1,000 t / cm 2 using a hydraulic molding machine, × 100
Molded 10 x 10mm plate-shaped test pieces, 1,700
Firing was carried out at ° C. Each property in the table was measured or evaluated according to the following measuring method.

(a)曲げ強度:各テストピースから130×30×10mmの
試験片を切り出し、スパン100mmとしてミハイルス曲げ
試験機を用いて測定した。
(A) Bending strength: A test piece of 130 × 30 × 10 mm was cut out from each test piece, and a span of 100 mm was measured using a Mikhail's bending tester.

(b)耐ベント性:テストピースを電気炉内に納めてス
パン180mmの耐火材の間に載せ、その中央部に50×50×5
0mmの大きさのアルミナ質耐火物ブロックを載せたう
え、所定の昇温速度のもとに最高1,600℃迄炉内温度を
高めた後の、テストピースのそり変形量をダイヤルゲー
ジで測定した。
(B) Vent resistance: The test piece was placed in an electric furnace and placed between refractory materials with a span of 180 mm, and 50 × 50 × 5 was placed in the center.
The amount of warp deformation of the test piece was measured with a dial gauge after the alumina refractory block having a size of 0 mm was placed and the temperature inside the furnace was raised up to 1,600 ° C at a predetermined heating rate.

(c)耐熱衝撃性:テストピースの上面に50×50×50mm
のアルミナ質耐火物のブロックを2個並べて載せた状態
のもとに800℃に熱されているトンネル式電気炉内を30
分間かけて通過させた直後における亀裂の発生を観察し
た。
(C) Thermal shock resistance: 50 × 50 × 50 mm on the upper surface of the test piece
Of the tunnel type electric furnace heated to 800 ℃ under the condition that two blocks of alumina refractory are placed side by side.
The generation of cracks was observed immediately after passing through for a minute.

(d)表面平滑性:焼成後のテストピースを棚板として
アルミナ質IC基板を焼成し、そのIC基板の表面の傷など
を観察した。
(D) Surface smoothness: The alumina-based IC substrate was fired using the fired test piece as a shelf, and the surface of the IC substrate was observed for scratches and the like.

(e)成形性:前記テストピースをプレス成形する際に
ラミネーション(層状剥離),切れ,欠けなどの発生状
態を観察して評価した。
(E) Formability: When press-molding the test piece, the state of occurrence of lamination (delamination), breakage, chipping, etc. was observed and evaluated.

尚、これらのテスト方法は以下に記す各実施例群につ
いても同様である。
These test methods are the same for each of the examples described below.

実施例群1のデータをまとめた表1から理解されるよ
うに、電融アルミナと電融ムライトとの混合物の配合率
が45〜85w%の範囲では、得られるアルミナ質耐火物の
強度特性及び成形性は略良好であった。
As can be understood from Table 1 which summarizes the data of Example group 1, when the blending ratio of the mixture of fused alumina and fused mullite is in the range of 45 to 85% by weight, the strength characteristics of the obtained alumina refractory material and The moldability was almost good.

<実施例群2>これらは、仮焼アルミナ及び粘土の好ま
しい配合割合を示唆する。そのデータをまとめた表2,表
3及び表1を参照すれば理解されるように、仮焼アルミ
ナの配合率を10〜40w%としたとき機械的強度及び成形
性が略満足され、また粘土の配合率を3〜15w%とした
とき、同様に満足すべき結果が得られる。
<Example group 2> These suggest preferable mixing ratios of calcined alumina and clay. As can be understood by referring to Table 2, Table 3 and Table 1 which summarize the data, mechanical strength and formability are substantially satisfied when the compounding ratio of the calcined alumina is 10 to 40 w%, and the clay is Satisfactory results are similarly obtained when the compounding ratio is 3 to 15% by weight.

<実施例群3>これらは望ましい焼成温度を示唆する。
そのデータをまとめた表4及び表5に示されているよう
に、夫々異なった原料配合により作製した3種類のテス
トピースはいずれも1500℃では十分な強度が得らえず、
また1900℃では変形が起ったので、焼成適温はこの実験
の原料配合では略1600〜1800℃の範囲にあると判断され
た。
Example Group 3 These suggest a desired firing temperature.
As shown in Tables 4 and 5 which summarize the data, none of the three types of test pieces produced with different raw material blends could obtain sufficient strength at 1500 ° C.
Also, since deformation occurred at 1900 ℃, it was determined that the optimum firing temperature was in the range of approximately 1600 to 1800 ℃ in the raw material formulation of this experiment.

<実施例群4>これらは電融アルミナ及び電融ムライト
に含まれる微粒子の望ましい含有率を示唆する。粒径44
μ以下の微粒子の含有率が5w%を超えると、表6に示し
た如く焼成収縮率が増大して歩留りが悪化する。
<Example group 4> These suggest a desirable content ratio of fine particles contained in the fused alumina and fused mullite. Particle size 44
If the content of the fine particles of μ or less exceeds 5% by weight, the firing shrinkage increases and the yield deteriorates as shown in Table 6.

<実施例群5>これらは仮焼アルミナを構成する一次粒
子の粒径と歩粒り及び表面平滑性との関係を示唆するも
ので、この場合一次粒子の集合体としての二次粒子の径
は25μの一定値に保った。表7にみられるように、粒径
が0.5μになると焼成収縮率が増大し、また5μを超え
ると表面平滑性が悪化するので、特に低焼成収縮率及び
表面平滑性の双方を確保するために望ましい粒径範囲は
1〜5μであると判断された。
<Example group 5> These indicate the relationship between the particle size of primary particles constituting the calcined alumina and the stepping and surface smoothness. In this case, the diameter of the secondary particles as an aggregate of the primary particles. Was kept constant at 25μ. As seen in Table 7, when the particle size is 0.5μ, the firing shrinkage increases, and when it exceeds 5μ, the surface smoothness deteriorates. Therefore, in order to secure both low firing shrinkage and surface smoothness. It was determined that the desirable particle size range is 1 to 5 μm.

<実施例群6>これらは仮焼アルミナを構成する二次粒
子の望ましい粒径範囲を示唆するもので、データを要約
した表8にみられる如く、10μ以下では機械的強度と成
形性が共に低下し、80μ以上になると表面平滑性が悪化
する。そのため強度及び成形性の双方とも確保するため
には、二次粒子の径は15〜75μの範囲内が好ましいこと
がわかった。
<Example group 6> These indicate the desirable particle size range of the secondary particles constituting the calcined alumina. As shown in Table 8 which summarizes the data, both mechanical strength and moldability were found at 10 μm or less. If it becomes 80 μ or more, the surface smoothness deteriorates. Therefore, in order to secure both strength and moldability, it was found that the diameter of the secondary particles is preferably within the range of 15 to 75 µ.

次に、粘土粒子の望ましい粒径とその化学組成につい
て、実験データの記載を省いて説明すると、耐火物の表
面平滑性の向上に寄与する微粒粘土の粒径が5μを超え
ると焼成収縮率が増大し、且つそのばらつきが増大する
傾向を呈するので、粘土粒子の粒径は5μ以下が最も好
ましいと判断された。また、粘土中にFe2O3やTiO2など
の不純物が1w%以上含まれていると、被焼成品たるアル
ミナ質基板と反応して焼成品が着色したり、色斑を生じ
るので、このような現象を避けるためには主成分として
のAl2O3,SiO2を除く他の成分の合計含有率は1w%以下と
するのが好ましい。
Next, the desirable particle size of the clay particles and the chemical composition thereof will be explained without mentioning the experimental data. If the particle size of the fine clay particles that contribute to the improvement of the surface smoothness of the refractory exceeds 5 μ, the firing shrinkage ratio Since it tends to increase and its variation tends to increase, it is judged that the particle size of the clay particles is preferably 5 μm or less. In addition, if the clay contains impurities such as Fe 2 O 3 and TiO 2 in an amount of 1 w% or more, it reacts with the alumina-based substrate, which is the product to be fired, and the fired product is colored or has color spots. In order to avoid such a phenomenon, it is preferable that the total content of other components except Al 2 O 3 and SiO 2 as main components is 1 w% or less.

[発明の効果] 以上の説明から明らかなように本発明によれば、良好
な成形性を備えて表面平滑性がすぐれると共に、高温下
における耐ベント性,耐熱衝撃性などの機械的強度が高
いアルミナ質耐火物を得ることができる。従って、この
ようなすぐれた特性を備えた耐火物は、例えばアルミナ
質IC基板のように寸法精度を始めとする高い品質を求め
られるセラミックの焼成用棚板として用いたときには、
不良品の発生率を著しく低く抑えることができる。
[Effects of the Invention] As is apparent from the above description, according to the present invention, good moldability is provided, surface smoothness is excellent, and mechanical strength such as vent resistance at high temperature and thermal shock resistance is improved. A high alumina refractory can be obtained. Therefore, a refractory having such excellent properties, when used as a ceramic baking shelf for high quality such as dimensional accuracy such as an alumina IC substrate,
The incidence of defective products can be significantly reduced.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼成炉内で被焼成品を支持する棚板等の窯
道具に用いられるアルミナ質耐火物を製造するための方
法であって、 電融アルミナ粒子及び電融ムライト粒子の双方を含み且
つ電融アルミナ粒子の含有量を電融ムライト粒子よりも
多くした主原料45〜85重量%と、仮焼アルミナ10〜40重
量%と、粘土粒子3〜15重量%との混合物を成形して焼
成することを特徴とするアルミナ質耐火物の製造方法。
1. A method for producing an alumina-based refractory used for a kiln tool such as a shelf for supporting an article to be fired in a firing furnace, comprising the steps of producing both fused alumina particles and fused mullite particles. A mixture of 45 to 85% by weight of the main raw material containing more of the fused alumina particles than the fused mullite particles, 10 to 40% by weight of calcined alumina, and 3 to 15% by weight of clay particles is molded. A method for producing an alumina-based refractory material, which comprises:
【請求項2】電融アルミナ及び電融ムライトは、夫々粒
径44μ未満の粒子の含有率が5重量%以下であることを
特徴とする特許請求の範囲第1項に記載のアルミナ質耐
火物の製造方法。
2. The alumina refractory material according to claim 1, wherein the content of particles having a particle size of less than 44 μ is 5% by weight or less in each of the fused alumina and the fused mullite. Manufacturing method.
【請求項3】仮焼アルミナは、複数の一次粒子が集合し
て二次粒子を構成する凝集粒構造をなし、一次粒子の粒
径が1〜5μであり、且つ二次粒子の平均粒径が15〜75
μの範囲にあることを特徴とする特許請求の範囲第1項
又は第2項に記載のアルミナ質耐火物の製造方法。
3. The calcined alumina has an agglomerated grain structure in which a plurality of primary particles are aggregated to form secondary particles, the particle diameter of the primary particles is 1 to 5 μm, and the average particle diameter of the secondary particles. Is 15 to 75
The method for producing an alumina refractory material according to claim 1 or 2, wherein the method is in the range of μ.
【請求項4】粘土粒子の粒径は5μ以下であり、且つAl
2O3,SiO2を除く他の成分の合計含有率が1重量%以下で
あることを特徴とする特許請求の範囲第1項乃至第3項
のいずれかに記載のアルミナ質耐火物の製造方法。
4. A clay particle having a particle size of 5 μm or less, and Al
The total content of other components excluding 2 O 3 and SiO 2 is 1% by weight or less, and the production of the alumina refractory material according to any one of claims 1 to 3. Method.
JP62209736A 1987-08-24 1987-08-24 Alumina refractory manufacturing method Expired - Lifetime JP2511061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62209736A JP2511061B2 (en) 1987-08-24 1987-08-24 Alumina refractory manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62209736A JP2511061B2 (en) 1987-08-24 1987-08-24 Alumina refractory manufacturing method

Publications (2)

Publication Number Publication Date
JPS6452669A JPS6452669A (en) 1989-02-28
JP2511061B2 true JP2511061B2 (en) 1996-06-26

Family

ID=16577787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62209736A Expired - Lifetime JP2511061B2 (en) 1987-08-24 1987-08-24 Alumina refractory manufacturing method

Country Status (1)

Country Link
JP (1) JP2511061B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080736B2 (en) * 2005-12-01 2012-11-21 日本碍子株式会社 Refractory manufacturing method and refractory obtained thereby
JP4994092B2 (en) * 2007-04-10 2012-08-08 株式会社ニッカトー Black alumina sintered body and manufacturing method thereof
CN112341221A (en) * 2020-11-11 2021-02-09 广州市白云区石井特种耐火材料厂 Re-sintered electric-melting mullite brick and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011402A (en) * 1973-06-01 1975-02-05
JPS5235038B2 (en) * 1973-07-20 1977-09-07
JPS5231369A (en) * 1975-09-04 1977-03-09 Honshu Paper Co Ltd Selffrecovering capacitor
JPS5616112A (en) * 1979-07-19 1981-02-16 Sharp Corp Liquid crystal display unit
JPS5631313A (en) * 1979-08-20 1981-03-30 Omron Tateisi Electronics Co Overcurrent relya
JPS606303A (en) * 1983-06-23 1985-01-14 Hisaya Teraoka Cutting and dividing method for welded parts between base material and vertical member
JPS6265988A (en) * 1985-09-14 1987-03-25 ハリマセラミック株式会社 Production of ceramic tool for baking ceramic
JPS62119160A (en) * 1985-11-18 1987-05-30 日本碍子株式会社 Thermal shock resistant refractories

Also Published As

Publication number Publication date
JPS6452669A (en) 1989-02-28

Similar Documents

Publication Publication Date Title
CN100393668C (en) Oxide-bonded silicon carbide material
JPS6117468A (en) Ceramic products
KR20090115964A (en) Refractory ceramic composite and method of making
EP0395203B1 (en) Refractory supports
JP2511061B2 (en) Alumina refractory manufacturing method
JP2001220259A (en) Alumina-mullite porous refractory sheet and method for producing the same
JP2003137671A (en) Mullite-based porous body and method of producing the same
JP3034808B2 (en) Thermal shock resistant ceramics and manufacturing method thereof
JPH07237958A (en) High-strength porcelain and production thereof
JPS62283885A (en) Porous refractory formed body for burning functional parts
JP4073221B2 (en) Ceramic firing tool material and manufacturing method thereof
JP2592223B2 (en) Alumina ceramics for bonding capillaries and method for producing the same
JP3373312B2 (en) SiC-based kiln tool and method of manufacturing the same
JP2001220260A (en) Alumina-based porous refractory sheet and method for producing the same
JP3949408B2 (en) Silica brick for hot repair and its manufacturing method
JP3949950B2 (en) Thermal shock resistant alumina / zirconia firing jig and manufacturing method thereof (normal firing)
JP4318403B2 (en) Manufacturing method of ceramic plate
JP3142360B2 (en) SiC refractory raw material, method of preparing the same, and SiC refractory obtained using the refractory raw material
JP3368960B2 (en) SiC refractory
JP3949951B2 (en) Thermal shock resistant alumina / zirconia firing jig and manufacturing method thereof (high temperature firing)
JP4785824B2 (en) Shaped refractory brick with spalling resistance and erosion resistance, its manufacturing method and fire wall
US3846145A (en) Refractory articles for metal pouring tubes and the like
JP2005082450A (en) SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD
JPH07109129A (en) Fire brick for lining float bath
JP2002173366A (en) Cordierite based ceramic material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12